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Physical learning beyond the quasistatic limit
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Physical networks, such as biological neural networks, can learn desired functions without a central processor,
using local learning rules in space and time to learn in a fully distributed manner. Learning approaches such
as equilibrium propagation, directed aging, and coupled learning similarly exploit local rules to accomplish

learning in physical networks such as mechanical, flow, or electrical networks. In contrast to certain natural
neural networks, however, such approaches have so far been restricted to the quasistatic limit, where they learn on
timescales slow compared to their physical relaxation. This quasistatic constraint slows down learning, limiting
the use of these methods as machine learning algorithms, and potentially restricting physical networks that could

be used as learning platforms. Here we explore learning in an electrical resistor network that implements coupled
learning, both in the laboratory and on the computer, at rates that range from slow to far above the quasistatic
limit. We find that up to a critical threshold in the ratio of the learning rate to the physical rate of relaxation,
learning speeds up without much change of behavior or error. Beyond the critical threshold, the error exhibits
oscillatory dynamics but the networks still learn successfully.
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There is a class of physically realizable learning ap-
proaches that do not require a central processor and can in
principle be implemented in real networks such as biological
neuron, mechanical, flow, or electrical resistor networks. In
order for such physical networks to learn on their own, they
cannot minimize an arbitrary cost function by gradient descent
since that is a global process that requires knowing all the
microscopic details at once, carrying out the global compu-
tation of gradient descent, and then manipulating networks
at the microscopic (node or edge) level. Rather, approaches
such as contrastive learning [1-4], equilibrium propagation
[5,6], directed aging [7-12], and coupled learning [13-15]
use local rules, in which learning degrees of freedom (e.g.,
the conductances of edges in electrical networks of variable
resistors) respond to physical degrees of freedom (e.g., node
voltages) which automatically adjust themselves to minimize
a physical cost function (e.g., difference in dissipated power),
automatically performing an approximation to gradient de-
scent on the cost function. Until now, the use of local rules
has been restricted to the limit in which the physical degrees of
freedom equilibrate rapidly compared to the learning degrees
of freedom. This quasistatic or near-quasistatic condition of
slow learning has also limited the utility of local learning
approaches such as equilibrium propagation as machine learn-
ing algorithms on the computer, by rendering them too slow
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to compete with global approaches such as backpropagation
[16].

It was shown recently that learning can occur beyond the
strict quasistatic limit, and that continual updating of the
learning degrees of freedom is possible for sufficiently low
learning rates [17-19]. However, certain biological networks
are capable of learning at rates not just close to the quasistatic
limit but far above it. For instance, some natural neural net-
works may reach a steady spiking state on a similar timescale
to synaptic plasticity processes [20-23]. If a system must
adapt to a rapidly fluctuating environment supplying the train-
ing signals, learning must occur on timescales similar to that
of physical adjustment. This may be the case in the humoral
immune response, where antibodies are formed rapidly after
infection, even before the onset of symptoms [24-26].

In this work, we explore learning as a function of the
scaled learning rate R, the ratio of the rates of evolution of
the learning and physical degrees of freedom. We specifically
consider the task of allosteric response on electrical resistor
networks that implement coupled learning, but our approach
can be applied to other tasks on any physical learning network.
We find that local learning rules can lead to effective learn-
ing not only in the quasistatic limit as previously assumed
(R « 1), but also for values of R near and even far above
unity. We show experimentally and numerically that up to a
critical threshold R, ~ 1, learning speeds up with essentially
no change in the error or behavior. Beyond R, the system still
learns but at the cost of a higher error and oscillatory learning
dynamics. At still higher learning rates /R >> 1, the achievable
error drops once more, vanishing in the limit of infinitely fast
learning R — oo. It is notable that even for systems trained
far from equilibrium, the error in performing the allosteric
task in equilibrium is minimized as well.
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We analyze the system theoretically to understand these
results. Overall, our results suggest that learning in physical
systems is achievable far from equilibrium, well above the
quasistatic limit. This potentially allows for massive reduc-
tion in training times, relaxing limitations on local learning
approaches as machine learning algorithms and opening up
the use of coupled learning for training physical networks with
slow physical dynamics.

Quasistatic and nonequilibrium coupled learning. Recent
learning methods in physical systems generally assume that
the learning process is decoupled from physical processes.
For example, the approach of directed aging for mechanical
networks assumes that the physical degrees of freedom (node
positions) equilibrate to minimize the physical cost function
(elastic energy) on fast timescales compared to the evolution
of the learning degrees of freedom (spring constants, equilib-
rium lengths).

In such frameworks [4-9,13] the physical degrees of free-
dom v, on the nodes, indexed by a, first equilibrate to values
v}, and the learning degrees of freedom G; on the edges,
indexed by j, are then modified according to v}. The physical
degrees of freedom then equilibrate again, spurring further
change to the learning ones. In particular, both equilibrium
propagation [19] and coupled learning [ 13] compare two equi-
librium states (the free state v* and the clamped state v¢)
to derive local learning rules that adjust the learning degrees
of freedom. Likewise, approaches applied in the laboratory to
mechanical networks [4] and electrical resistor networks [14]
use learning rules comparing two different equilibrium states.
In what follows, our notation is specific for electric resistor
networks (with voltage values v, on nodes indexed by a and
conductances G; on edges indexed by j), but can easily be
generalized to other types of physical networks [13].

Throughout this Letter, we will treat the case where the
electrical network is to learn a desired “allosteric” task in
which a set of inputs Vs are applied to designated source
nodes, and the network responds by producing desired outputs
Vr at a designated set of target nodes. The free state is char-
acterized by a vector v;‘F , which is the set of all node voltages
(physical degrees of freedom) when a set of input voltages Vg
are applied to the source nodes, and the network equilibrates
to produce the outputs voltages vi" at the targets. Here the
* notation indicates that the node voltages are equilibrated
so that the physical cost function (dissipated power) is min-
imized; this is the quasistatic condition. The clamped state is
defined by applying the inputs Vs to the source nodes and a set
of voltages v$ at the target nodes. The values v$ are chosen to
be nudged slightly from v} toward the desired output values,
v§ = vl + n[Vr — vif], with n <« 1. The coupled learning
rule is given by

; d
Gj = yenilﬁ{P*F(Vs, U;F) — P*C(Vs, Ug)}, (1)
J

where the learning degrees of freedom are the edge con-
ductances G;, indexed by j, P*f and P*C are the power
dissipated by the system in the equilibrium free and clamped
states, respectively, and y; is a learning rate. Note that since
the power P can be written as a sum over edges, Eq. (1)
is spatially local. An approximation to this learning rule has
been implemented in the laboratory with an electronic circuit

of variable resistors, which can be trained successfully to per-
form diverse tasks [14]. The function C* = n~'[P*C — P*F]
is known as the contrastive function, and has been shown
to approximate the mean-squared-error cost function C* ~
(v — Vr)? in the limit n — 0 [5,13].

Suppose instead that the network learns (updates edge con-
ductances) while the node voltages are still equilibrating. For
simplicity we assume that the physical dynamics are over-
damped, with decay rate y,:

of = —y,8,PF,
G; = —yedaC. )

Here, the nonequilibrium contrastive function is C =
n~'[P€ — PF]. Note that the power (and contrastive function
C) of such physical networks is expressed as a sum over edges.
Moreover, integrating Eq. (2) for some interval involves a
number of iterations that scales with its length (fixed num-
ber of iterations for a forward Euler scheme). Therefore, the
computational efficiency of learning using Eq. (2) is linear in
network size, comparable to backpropagation in feed-forward
neural networks. The scaled learning rate R = y,/y, is the
key quantity we vary here. The limit R — 0 is the quasistatic
limit of coupled learning, in which the node voltages v, evolve
infinitely rapidly compared to the edge conductances G;.

The physical cost function [PF in Eq. (2)] is the total power
dissipated by the network, and can be written as a sum over
edges: P =) ;G jAv% /2, where the voltage drop Av; is the
difference in voltage between the two nodes connected by that
edge Av; = Ajv, (Aj, is the incidence matrix). Equation (2)
can therefore be simplified to

0rC ==y, Y ALG;AEC )2,
J

Gy = yon H[av]T ~ [avfT) 2 3

Equations (1) and (3) are nontrivial to implement experi-
mentally because it is impossible to apply simultaneously two
different sets of boundary conditions (free and clamped). To
circumvent this without storing information in any memory,
the laboratory realization [14] of quasistatic coupled learning
[Eq. (1)] introduced two identical networks subjected to the
different boundary conditions. In the nonequilibrium case,
Eq. (3) can likewise be implemented using two identical net-
works, a free network vg (t) and a clamped network vf(t),
both evolving under the same overdamped physical dynamics
and having the same edge conductances G;(t). As in Ref. [14],
the difference between the two networks is the boundary con-
ditions (applied external constraints): While both networks
are constrained at the source(s) by vg,c = Vs, the clamped
network is further constrained at the target(s) by vg(t) =
vi (1) 4+ 0V — v ()]

Experimental results. To study nonequilibrium learning
in the laboratory, we adapt the learning network introduced
in Ref. [14] that approximates quasistatic coupled learning
[13]. Here we lift the quasistatic condition by slowing down
relaxation of the node voltages, introducing capacitors in
parallel to each variable resistor to realize the overdamped
physical dynamics of Eq. (3). Edges of the network with
attached capacitors are shown in Fig. 1(a). The charging of
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FIG. 1. Nonequilibrium learning in a physical learning net-
work. (a) A single edge (in both free and clamped networks) with
parallel 2.2 uF capacitors highlighted with arrows. (b) Network
structure with inputs and outputs for the allosteric task used in (c)—
(f). (c) Typical nonequilibrium (instantaneous) mean-squared-error
(MSE) traces, divided by initial error value, for an allosteric task as a
function of training steps and (d) real laboratory time. Colors indicate
the scaled learning rate R, and dotted line shows error threshold for
(f). (e) Nonequilibrium MSE for networks trained for 3 x 10* steps
as a function of R. Error bars indicate first and third quartiles. Shapes
indicate capacitor values used, with hollow points corresponding to
the traces shown in (c) and (d). (f) Average training times T when
the system achieves a nonequilibrium MSE below a threshold of
MSE(t) = 1073MSE(0). Dotted lines are power laws of —1 and
—1/2, respectively.

capacitors increases the time required to reach steady current
in the network, but in other respects the experiment is almost
[27] as described in Ref. [14]. The network is initialized by
imposing the inputs and allowing the free network to reach
equilibrium. The clamped boundary condition is applied by
imposing both the desired input and output values and the
clamped network is allowed to reach equilibrium as well. The
training process then commences as in Ref. [14], but with a
pause 1/y, prior to each update of the clamped voltages as
they are adjusted toward the desired target values (see [28] for
more information).

The system’s physical relaxation time changes during
training as the edge resistances evolve. Regardless of these
changes, the relaxation time is proportional to the in-line
capacitance F' added across every resistor. In each experiment
¢ takes one of four values, 2.2, 22, 220, or 2200 uF. We
estimate a typical physical relaxation rate using resistance
Ry = 10 K2 (each resistor starts at 50 K2 and can be varied

through the range 781 2 to 100 K€2). Thus, the two rates in
the system are the learning rate y, and the physical relax-
ation rate y, = (Roc)~! so that the scaled relaxation rate, or
ratio of the rate of learning to that of physical relaxation, is
R = RoC]/g.

We train the network to learn a two-target, two-source
allosteric task [Fig. 1(b)], varying the capacitance F' and
learning rate y, to adjust R. We define the instantaneous
nonequilibrium error as the mean-squared difference be-
tween the free-state outputs and the desired outputs C(¢) =
> Ve — vf (#)]?, normalized by its initial value, as measured
in real time so that the output voltages reflect the network’s
current nonequilibrium state. In the quasistatic regime, the
scaled learning rate is low, R < 1, and the system learns
the task, as shown by the typical mean-squared-error (MSE)
curves in red in Figs. 1(c) and 1(d), which eventually hover at
the noise floor. In this regime, changing the ratio of relaxation
rates, R, does not affect the number of training steps required
to learn the task 7 [see collapse of the two reddest curves in
(Fig. 1(c)] but changes the real time required to learn [see the
same two curves in Fig. 1(d)]. As R increases, the system’s
behavior becomes qualitatively different, at first taking more
training steps to reach low error, and then entering into a
regime with perpetual oscillations (R 2 1), as seen best in the
blue curve in Fig. 1(d). These oscillations widen the distribu-
tion of errors observed, as shown in Fig. 1(e), and increase
the number of training steps required for the system to fall be-
low an arbitrary normalized nonequilibrium error threshold of
C(t) = 1073C(0) for 10 training steps (this 10-step require-
ment yields more consistent results by eliminating the effect
of “lucky” experimental runs in the fast-learning regime, in
which the system flies through a very low-error state but fails
to maintain it). In Fig. 1(f) we see two regimes: for R « 1, the
scaled learning time is well described by T ~ R~!, while for
R > 1, the dimensionless learning time scales approximately
ast ~ R7V2

Simulation results. To test the generality of these results,
we turn to numerical simulations on a larger network with
N = 64 nodes and N, = 143 edges and use nonequilibrium
coupled learning [Eq. (3)] to train a different allosteric task,
involving Mg = 5 source nodes, with applied voltages sam-
pled from a normal distribution Vg ~ A(0, 1), and My =
3 target nodes with desired voltages sampled from Vy ~
N (0, 0.2%). We assess the success of learning with the equi-
librium mean-squared-error (MSE) function C* = ) ", (Vr —
vi)2, normalized by its initial value, and calculated as learn-
ing degrees of freedom are evolving. Note that this cost
function is in equilibrium (once the physical degrees of free-
dom reach steady state), compared to the experimentally
computed nonequilibrium cost function C (for simulations of
the nonequilibrium cost function, see [28]).

Despite important differences to the experiment, the simu-
lations capture all of the major features of the experiment (see
[28] for details). In Fig. 2(a), error values C* during training
are shown for different values of the scaled learning rate R.
Here, we set the timescale so that a unit time corresponds to
one training step. In the quasistatic regime where the phys-
ical dynamics are rapid compared to the learning dynamics,
R « 1, the number of required training steps is independent
of R but the real training time speeds up linearly with R
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FIG. 2. Nonequilibrium in silico training of resistor networks.
(a) Network of size N = 64 is trained for an allosteric task with
Mg = 5 sources and My = 3 targets. We plot the equilibrium mean-
squared error (MSE) during training at different scaled learning rates
R. When R 2 1, more training steps are required to reduce the
error (dotted line denotes the quasistatic limit R — 0). (b) However,
training with a higher learning rate allows the system to learn more
rapidly in real time. (c) The average MSE of trained networks (N =
64, Mg = 10, My = 3) shows that comparable success is achieved
for learning rates up to R & 1. While not as accurate, learning still
substantially reduces errors even far from equilibrium, where the
learning degrees of freedom relax rapidly relative to the physical
ones R > 1. (d) Training time 7 until the equilibrium MSE reaches a
threshold MSE*(t) = 10"°MSE*(0). As in the experiment, training
time shortens linearly like R~! for slow learning R < 1, while for
fast learning R >> 1 training times shrink as R /2.

[reddest curves in Figs. 2(a) and 2(b)]. As in the experiment,
R can be increased to R =~ 1 with little effect on learning.
Once R > O(1), we observe that the error oscillates yet the
network still learns successfully at longer times. The error
oscillations strengthen and then weaken as the scale learning
rate R increases further.

Figure 2(c) shows similar results for more complex al-
losteric tasks with 10 sources and 3 targets trained on a
network with 64 nodes; results are averaged over 50 different
choices of such tasks. As seen experimentally and compu-
tationally for the simpler tasks in Figs. 2(a) and 2(b), the
system learns with nearly equal low error for all R < O(1).
Moreover, the achievable error can reach low values even
when the learning degrees of freedom relax rapidly relative
to the physical degrees of freedom (R > 1). In Fig. 2(d), we
plot the real time 7 taken for the network to be trained to
a normalized error threshold C*(t) = 107°C*(0). As in the
experiment, we see a change of scaling in t at R ~ 1; for
R <« 1 we see the expected linear improvement in the training
time 7 ~ R~!. In the far-from-equilibrium regime, R > 1,
training becomes faster, but with slower scaling T ~ R~1/2.
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FIG. 3. Nonequilibrium dynamical effects for fast training of
allosteric tasks in resistor networks. (a) Starting at a critical learning
rate R, ~ 1, the training error exhibits oscillations whose frequency
grows as R!/2. (b) Learning oscillations are suppressed as at higher
learning rates, the network finds solutions of flatter cost, as indicated
by the diminishing lead eigenvalues of the contrastive Hessian 9%C.

Theoretical analysis. To understand the observed behavior
we take a second time derivative of the physical degrees of
freedom in Eq. (2) to obtain a damped harmonic oscillator
equation:

y, 2800 +y, 'H 80) + R(D")*6v] =0, 4)

where we have defined the difference between the free and
desired states §vk = vl — V7, and the physical Hessian and
cross derivatives H = 32PF, DI = 9,35PF . In addition to
an inertial term there is an overdamped term for physical
relaxation and a restoring one that scales with R. As H, D¥
do not depend on the rates y; and y,, the restoring term be-
comes important only when learning is fast enough (R 2 1).
The solutions to this equation become oscillatory when the
discriminant (H*)?> — 4R(D")? becomes negative at a value
R ~ 1. For slow learning R < 1, the decay time of the cost
function C ~ §v? is dominated by the slowest decay mode
of Eq. (4), scaling as T ~ R~!. Beyond the critical learn-
ing rate R > 1, Eq. (4) shows that the oscillation frequency
increases, scaling as R'/2. This frequency scaling dictates
the training time T ~ R~!/2, which can be estimated by the
first pass of the oscillatory dynamics through zero (see [28]).
These predictions are verified numerically in Fig. 3(a) for a
network with N = 64 nodes trained for a complex allosteric
task with Mg = 10, My = 3. The oscillatory learning dynam-
ics converge to solutions v, — O as long as the physical
derivatives H, D¥ vary slowly relative to the physical and
learning degrees of freedom v,, Gj, i.e., if the physical cost
function (dissipated power) is smooth enough with respect
to the learning degrees of freedom. Rugged landscapes with
narrow attractors would lead to physical dynamics that jump
rapidly between basins, so that convergence cannot be guaran-
teed. The systems studied here have physical landscapes that
are convex with a single basin so that they may be trained
extremely fast.

These results also explain the suppression of learning
oscillations. Expanding the contrastive function in series,
we see that dgC ~ —DF§vl'. If the learning dynamics pass
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through a flat region, where C changes slowly compared to
the learning parameters G;, the oscillatory term in Eq. (4)
is suppressed, and the dynamics may become overdamped.
To test this, we train a N = 64 network for an allosteric task
with Mg = 10, M7 = 3 at different R. After training, we com-
pute the Hessian of the contrastive function BCZ;C and its top
eigenvalues. Smaller eigenvalues indicate flatter contrastive
landscapes around the solution. In Fig. 3(b), we show that
the landscape becomes flatter linearly with increasing R. In
these networks, the learned solutions become flatter faster
than the increase in oscillation amplitude ~R!/2, explain-
ing the suppression of oscillations at high R in Figs. 2(a)
and 2(b).

Discussion. We have demonstrated that physical learning
does not need to be restricted to the quasistatic limit in which
physical degrees of freedom equilibrate rapidly compared to
the learning degrees of freedom. Indeed, the learning process
can be sped up by many orders of magnitude by updating
learning degrees of freedom at a rate that is comparable to the
relaxation rate of the physical degrees of freedom without any
qualitative change of behavior or much quantitative change in
the achievable error. It is notable that the simulations recover
the experimentally observed phenomenology despite the dif-
ferences between the simulated and experimental networks,
suggesting that nonequilibrium coupled learning is robust to
small alterations in the equations governing learning, as well
as to noise and bias.

Our results may extend beyond contrastive learning in the
electrical networks studied here. Similar results may arise in
mechanical networks that learn using directed aging [7-9]
or contrastive learning [4], studied so far in the quasistatic
limit. There, the physical degrees of freedom are the node
positions, the physical cost function is the elastic energy, and
the learning degrees of freedom are edge stiffnesses, equilib-
rium lengths [7-9], or the presence or absence of edges [4].
The insight obtained here may shed light on certain forms of
biological learning, where plasticity timescales of some neural
circuits are similar to the rate of reaching steady state [22,23].

However, our results most directly apply in machine
learning in artificial neural networks. There, the quasistatic
condition for recurrent networks constitutes a computational
bottleneck for equilibrium propagation [16]. Our results
show that quasistaticity is not mandatory, reducing the
computational effort required for training recurrent nets,

making local rules possible competitors with backpropagation
algorithms.

Our results also identify limits to how far the learning
rate can be increased. We see that the learning rate can be
sped up to the physical rate of relaxation, R ~ 1, without
penalty, and that the learning dynamics are overdamped up
to that point. Beyond a critical rate R, the learning dynamics
develop underdamped oscillations, as learning degrees of free-
dom evolve too fast and overshoot desired solutions. These
oscillations become faster and stronger at higher learning rates
but can be suppressed when the cost function is sufficiently
flat with respect to the learning degrees of freedom. This case
is generic in the overparametrized regime of deep learning. In
complex nonconvex landscapes underlying learning problems
in the underparametrized regime, we expect fast learning to
fail as the network would rapidly jump between basins in the
physical cost function landscape due to the changing learning
parameters. In the flow networks we trained for relatively
few allosteric tasks, which lie in the convex, overparametrized
regime, we observe that training is possible and successful far
from equilibrium.

We trained physical networks for allosteric tasks, where
a network learns a mapping between a single set of inputs
and a single set of outputs. More complex learning prob-
lems such as classification, where networks are trained with
multiple input and output examples [29-31], require further
analysis. Training a network for multiple tasks introduces a
new timescale corresponding to the rate at which the system
is fed training examples, o. The insight from our results here
suggests that training for multiple tasks may only succeed
if the task switching rate is lower than the rate of physical
relaxation o S y,,. Otherwise, the system will not effectively
evolve under the influence of the training example. We leave
a more detailed account of the effect of task switching on
far-from-equilibrium learning for future study.
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