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Learning algorithm reflecting universal scaling behavior near phase transitions
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Machine-learning-inspired techniques have emerged as a new paradigm for analysis of phase transitions in
quantum matter. In this work, we introduce a supervised learning algorithm for studying critical phenomena
from measurement data, “neural network scaling,” which is based on iteratively training convolutional networks
of increasing (spatial) complexity and test it on the transverse field Ising chain and ¢ = 6 Potts model. At the
continuous Ising transition, our scaling procedure directly reflects the hallmark of a continuous (second-order)
phase transition, divergence of a characteristic length scale. Specifically, we extract a classification length scale
by measuring the response of the classification accuracy while varying the largest convolution size (architecture
of the network). We observe empirically the scaling exponent of the classification length is consistent with
a power law with the correlation length exponent v = 1. Furthermore, we demonstrate the versatility of our
algorithm by showing the universal scaling behaviors persist across a variety of measurement bases, including
when the order parameter is nonlocal. Finally, we show that the classification length scale remains finite for the
q = 6 Potts model, which has a first-order transition and lacks a divergent correlation length.
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Introduction. Machine learning techniques have emerged
as a new tool for analyzing complex many-body systems
[1-4]. A particularly well-studied application of such tech-
niques is that of the identification and classification of phase
transitions directly from the data, assuming little to no prior
knowledge of the underlying physics [5-21]. Typically, the
algorithms take as input labeled snapshot measurements
of the kind obtained in cold-atom and quantum simulator
experiments [22-33]. Recent efforts have expanded such ex-
plorations to a diverse range of systems, including disordered
[34-37] and topologically ordered systems [38—44], as well as
applications to experiments [45-47].

An often-voiced concern, however, is that machine learn-
ing methods appear as a black box and that it is difficult to
trust neural network classification without traditional support-
ing evidence. For example, in the study of phase transitions
with machine learning, the phase boundary identified by
a conventional approach may be affected by short-distance
correlations, which turn out to be irrelevant for the thermody-
namic phase of the system [10]. Instead, learning algorithms
should ideally focus on characteristic signatures of phase tran-
sitions which are insensitive to irrelevant correlations, such
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as power-law divergences near the critical point of a second-
order phase transition.

In this paper we develop a machine learning algorithm
inspired by this fundamental feature of critical phenomena,
i.e., the emergence of long-distance correlations and scale
invariance. We dub this method “neural network scaling,” as
it systematically analyzes critical behavior near a suspected
transition point, using only snapshot data, by scaling the func-
tional form of a neural network and looking at the response
of the classification accuracy (see Fig. 1). Specifically, we
restrict the architecture so the network can only access patches
of the snapshot at a time and then vary the largest patch size.
The resulting family of models is similar in architecture to
those in Refs. [12,48-51]. Critical scaling for varying patch
sizes has also been recently observed in Ref. [52] using con-
nected correlation functions.

Under these conditions we can extract information about
the structure of correlations in the underlying data. In par-
ticular, our main result is the identification of an emergent
classification length scale &, which we argue on general
grounds reflects the underlying system’s correlation length.
Thus, for a second-order phase transition, &,¢; should diverge
at the critical point according to a power law with a universal
exponent. We exemplify this on the one-dimensional (1D)
transverse field Ising model and see scaling of the classifica-
tion length consistent with known exponents. In contrast, for a
first-order transition in the two-dimensional (2D) g = 6 Potts
model, we see no scaling of the classification length, in line
with expectations.

The learning algorithm proves quite versatile and neither
requires prior knowledge of the order parameter nor the mea-
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FIG. 1. Conceptual illustration of our method for a 1D spin
chain. Snapshots near a second-order phase transition reveal a char-
acteristic length scale &, over which spins are correlated and which
diverges at the critical point. The modules m* are designed to only
capture correlations in the data up to a certain length scale ¢, and
their outputs are aggregated into M*. On length scales shorter than
Ecor» the algorithm cannot make a firm distinction between the two
phases. As the module size is increased, the prediction (M*) is
improved until €, ~ &, after which it quickly saturates.

(MY (M) (M?)

surement data. The only information provided is the spatial
structure of the measurement data. We demonstrate this ver-
satility by considering data from projective measurements in
different measurement bases, without passing the information
about the basis to the algorithm. For conventional approaches
based on two-site correlation functions or local order param-
eters, this would make the detection of the thermodynamic
phase a tremendous challenge. Nevertheless, the algorithm
manages to distinguish the two phases with a high degree
of accuracy. This is especially promising in light of studying
phase transitions in measurement data, where the generator of
the dynamics, i.e., the Hamiltonian or the effective field the-
ory, are unknown. It also provides a promising route to design
machine learning approaches to identify phases with nonlocal
or hidden order, for which information on the structure of the
order parameter or the relevant correlation functions may be
unknown or inaccessible.

The algorithm. Neural network scaling is a supervised
learning algorithm that systematically adds complexity to a
machine learning model. The model is composed of a set
of independent computational units, termed modules. The al-
gorithm takes and trains modules iteratively, and, by design,
each new module learns correlations in the data that the prior
modules did not capture. Conceptually, complexity is added
by increasing the amount of correlations representable by the
model in each step. For any specific application, physical
understanding should inform the design of these modules. In
this paper the application is to scaling behavior near critical
points, so modules are designed to incorporate spatial locality,
and each subsequent module captures spatial correlations at a
larger length scale.

Each module m’ : ¥ — R, labeled with an index i =
1, ..., N, takes as input a snapshot (projective measurement)
X and maps it to a scalar. Then we apply an aggregation
function M* that aggregates the outputs of the first k modules

Algorithm 1. Iterative training algorithm.

input: Sequence of modules m!, ..., m'

input: Aggregate models M*(m', ..., m*), k <[
input: Labeled dataset {(X;, y;)}
input: Loss function £
Result: Trained set of models {M*}, k=1, ..., 1
fork=1,...,ldo
train M* on dataset (¥;, y;) by minimizing
L, M (x);
freeze parameters of m*

m!, ..., m*, where k = 1, ..., N. This results in a sequence of

N models M*(m', ..., m*) with shared modules. In practice,
both the modules and the aggregation functions are imple-
mented through a neural network. This model is then trained
to minimize a classification loss function £ using the iterative
training algorithm described in pseudocode in Algorithm 1.

The intuition behind this algorithm is that the improvement
of classification accuracy from model M* to M**+! can only be
due to features captured by module m**!. Thus in our appli-
cation the modular architecture along with iterative training
allows us to independently learn features at different length
scales.

The network. We develop a class of convolutional neural
networks for the modules, designed to probe the spatial struc-
ture of correlations. Each module m* takes the functional form

1
mh (@) = 3 mf(E). M
J

where mf is a two-layer neural network that acts on a subset

)?f* of the data X. The label ¢; indicates the size of a spatial
region corresponding to the subset (e.g., £; adjacent sites in
a one-dimensional lattice), and the index j enumerates all
N regions of size ¢;. Here we have assumed translational
invariance, but for systems with boundaries or disorder, the
network m§ — m’; may also vary from region to region.

The aggregation function we choose is a linear classifier
LC, acting on the module outputs m* (X):

ME@E) = LC(m' ), m* (%), ..m5(3)). 2)

The linear classifier is defined by LC({m'(%)}) =
o) w;m' (%) — b], where o is the sigmoid function
o(z) = 1/(1 +¢e7%), and w; and b are free parameters. The
nonlinearity o maps the linear combination of module outputs
to a value between [0,1], as expected for binary classification.
The loss function we use is the binary cross entropy,
Ly MA )] = (vlog M () + (1 — y) log[1 — M* (o)1),
where y; is the target label y; € {0, 1} and the expectation
value is taken over the training dataset.

Choosing a linear classifier ensures that the network cannot
capture additional, spurious correlations between regions. A
nonlinear classifier may also include products of local corre-
lations like m?(¥)m>(X). These capture nonlocal information
about potentially disconnected five-site regions, which we
exclude on purpose. In the remainder of the text, we use M*
instead of MX to denote an aggregate classifier with largest
convolution length £x = ¢.
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The full model is naturally represented by a convolutional
neural network (CNN). The resulting CNN architecture, with
parallel convolutional modules, is similar to the network-in-
network architectures from Refs. [12,48,49], the correlation
probing neural network from Ref. [50], and to the EDNN from
Ref. [51]. Our work introduces the idea of scaling convolution
size iteratively and observing the response via classification
accuracy to extract a characteristic length scale.

Applications. We investigate neural network scaling for a
second-order phase transition in the 1D transverse field Ising
model (TFIM). The single-parameter Hamiltonian for the 1D
TFIM with open boundaries is

L—-1 N
H(g)=—) oioi,—gy o}, 3)
i=1 i=1

where o are Pauli matrices for spin i. At critical value
g. = 1, the ground state of this model undergoes a phase
transition from a disordered (paramagnetic) to an ordered
(ferromagnetic) state, breaking the global Z, symmetry. In
what follows we focus our attention on a region around g = g..
To construct our dataset, we employ the matrix-product-state-
based iTEBD algorithm [53] to numerically determine the
ground state as a function of g and sample configurations
for a system size of L = 400. We then perform projective
measurements in multiple bases, including the z basis (mea-
suring o/ on each site), the x basis (measuring 07'), and a few
intermediate bases, cos(6)o; + sin(f)o;. This illustrates that
the classification algorithm does not rely on the a priori choice
of an optimal basis, which for experimental measurements
may be unknown.

Each snapshot is labeled with the phase it is drawn from,
with ordered (g < g.) or disordered (g > g.), labeled as 1
or 0, respectively. The machine learning model is trained by
minimizing the binary cross entropy between the labels and
the prediction M*(x) (see The Network), on snapshots drawn
from the ground state of H(g) at 85 different values of g with
800 snapshots per g. Points were spread from g = 0 to 4.4
but concentrated in the critical region near g, = 1, with a
minimum separation of Ag = 0.01. Module outputs (mz)g
and phase classification (M"), are computed on a separate
validation dataset consisting of 200 snapshots per g and with
a minimum separation of Ag = 0.002 in the critical region.
(Neural networks were built and trained using the Keras
package [54].) Training is fast, as network sizes are small
compared to state-of-the-art deep learning tasks, with a single
epoch (training once on each snapshot) taking approximately
3 s for the smallest networks (¢ = 2) and 24 s for the largest
(€ = 18) on a Google Colab GPU instance. Typical training
runs require approximately 100 epochs per £. Once the net-
works are trained, (M*), measures how accurately the ground
state of H(g) can be inferred from local measurements with
spatial extent £, and henceforth we call this the classification
accuracy.

Empirically, we find the classification accuracy improves
as the convolution size £ is increased, with the improvement
most dramatic for snapshots drawn near g, see Fig. 2(a). The
continuous sharpening of the classification curve with increas-
ing convolution size is a robust signature of a second-order
phase transition. This is because identifying the phase from
local measurements is intimately connected to correlations

X

in the ground state. At the critical point, the ordered and
disordered phases are indistinguishable, and the system is
dominated by fluctuations with a divergent correlation length
&Ecorr, resulting in an ambiguous prediction (M & =05 Asg
moves away from the critical point, characteristic correlations
indicating one of the possible phases build up at distances
larger than &, while shorter distances remain dominated
by fluctuations. Since &, ~ |g — g|”" decays as a power
law, farther from the critical point the classification accuracy
improves for fixed £. Similarly, as £ is increased, the accuracy
of the classification (M*), will improve, saturating to either
1 or O depending on g < g. or g > g, respectively. For an
infinitely large system, the classification curve approaches a
step function as £ — oo.

To quantitatively analyze the relationship between the clas-
sification and convolution size, we extract a characteristic
length scale associated with the improvement of (M*), via an
inverse exponential fit |(M> — M*) ol ~ exp(—£/&xer), where
&net 1s a g-dependent length scale. Specifically, we set M to
1 in the ordered phase and 0 in the disordered phase, the satu-
ration values in an ideal, infinitely large system. We consider
£ < 20, which obtains convincing prediction probabilities for
data points with |g — g.| = 0.01. As our data is for an L = 400
chain, this emulates a thermodynamically large system. We
also exclude the smallest module (¢ = 1), which only captures
single-site observables. The resulting fit between 2 < ¢ < 20
performs well in the z basis (2c). However, in other bases,
specifically, the intermediate 6 = 7 /4 basis, the classification
accuracy exhibits erratic behavior for small £. Nevertheless, at
slightly larger £ ~ 5, scaling with ¢ reappears, and the expo-
nential fit extracts a meaningful length scale &, capturing the
scaling of (M"),.

Near the phase transition we see that the fitted correla-
tion length &, diverges as g approaches the critical point
g. and is well described by a power law [Fig. 2(b)]. Re-
markably, the power-law scaling of the fitted classification
length &,¢ ~ |g — g.|7"™ is consistent with the known ex-
ponent for the 1D TFIM, vy, & v = 1. This includes
other bases where the phases cannot be reliably distinguished
from conventional two-point correlation functions [55]. These
observations suggest &, reflects the underlying correlation
length scale independent of measurement basis and hence can
be used to robustly probe the growth of correlations near the
critical point.

Above, we have assumed g. is known a priori, which is
not typically true. However, we could also consider neural
network scaling with a different partitioning of the training
labels—ordered (g < g.) or disordered (g > g.)—where g, is
not necessarily the true critical point g.. In such a case, the
classification curves (M*) ¢ still reveal information about the
correlations in the vicinity of g.. For example, as shown in
[55], for g, = 1.05 we see the classification curve stops im-
proving at some finite £. This is consistent with the underlying
system having a finite correlation length at ... Thus if the criti-
cal point is unknown a priori, one could estimate it by training
a sequence of models for various g, and identifying g. with the
classification curves that continue improving for the largest
£, in the spirit of confusion methods for using supervised
learning in an unsupervised context [5]. In addition, farther
away from g, the correlation length is smaller so training can
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FIG. 2. (a) Average classification M‘(x) as a function of the TFIM parameter g and the spatial extent £ of the model. Classifiers
incorporating longer range correlations can more reliably identify the phase of snapshots taken near the critical point, as evidenced by
an increase in the slope. (Inset) Average module outputs (m‘) also exhibit scaling with £, as one would expect from an order parameter.
(b) Fitted classification lengths &, on a log-log plot, from measurements in the z (basis = 0), x (basis = 7 /2), and two intermediate bases
c0s(0.187 )z + sin(0.187 )x (basis = 0.187) and (z + x)/«/i (basis = 7 /4), plotted on a log-log scale. For each basis, points are separate for
approaching g, from above (blue) or below (red). Data for g near g. is consistent with power-law behavior with exponent u = 1, which are
depicted by colored dotted lines. Error bars are an estimate of the standard deviation in the fitted &,,. (c) Correlation lengths &, are extracted
by fitting the classification curves (M*), for each value of g to an inverse exponential form. Fits are performed for classifiers with the largest
module size between 2 < £ <20 and are shown in the same four bases. Notice that in the intermediate bases, especially 7 /4, the classification
curves behave erratically at very small £ but exhibit scaling at intermediate £ > 5. The resulting length scales extracted by the exponential fits
are consistent with universal scaling near the critical point g & g, (b).

be stopped at smaller ¢, reducing the computational resources
required.

To contrast the continuous Ising transition, we also exam-
ine the ¢ = 6 Potts model. Specifically, we used the metropolis
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FIG. 3. Potts model data. (a) Predicted classifications (M), for
the g = 6 Potts model do not exhibit scaling with system size, reflect-
ing the fact that the phase transition is first order. (b) The module
outputs (m‘)r, averaged over all snapshots at a given temperature,
are in sharp contrast to the second-order transition from Fig. 2.
(c) Zooming in on the classifications (M*); near zero demonstrates
the lack of scaling with £.

Monte Carlo algorithm with Wolff cluster updates [56] to gen-
erate samples for an 80 x 80 lattice with periodic boundary
conditions, drawing 1000 snapshots for every 7. This model
exhibits a first-order phase transition in temperature (7°) and
hence does not feature a diverging correlation length [57].
As a result we expect that spatially local measurement data
should be sufficient to distinguish the two phases, since there
are no long-range critical fluctuations. Indeed, our numerical
data reflects this intuition, since the classification (M*¢)7 does
not exhibit improvement beyond ¢ = 2 (Fig. 3), regardless of
distance to the transition point. Thus neural network scaling
can identify the absence of a divergent correlation length in a
first-order phase transition.

Discussion. We have presented a flexible method for iden-
tifying second-order phase transitions and for extracting a
characteristic length scale &, directly from measurement data
via neural network scaling. Furthermore, &, diverges with
the same scaling exponent as the physical correlation length
&corr- Above we gave physical arguments for why this occurs,
based on indistinguishability of the phase at short distances
dominated by critical fluctuations. These arguments are quite
general and reflect the emergence of universality at critical
points. Indeed, it is widely believed that at the critical point
the correlation length &, is the sole contributor to singular,
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thermodynamic quantities [58,59]. As long as the model can
distinguish the two phases, the classification (M‘z)g should
exhibit a discontinuity at the critical point g = g, in the
thermodynamic limit £ — oo, and & should be the only
length scale governing long-distance behavior of (M‘Z)g, in
agreement with our observations. As such, our scaling pro-
cedure makes few assumptions about the microscopic model
and could be used to study any system with a continuous phase
transition. However, it would be interesting to place our em-
pirical observations on a more rigorous theoretical foundation
using the theory of distinguishability near quantum critical
points [60,61].

Our analysis of the classification length scale &, has been
performed for relatively small module sizes ¢ < 20 compared
to the size of the system L = 400. This mitigates finite-size
effects and yields a scaling of the classification only with the
correlation length. However, the method fundamentally can-
not know about behaviors at £ > 20. This would be relevant
for more subtle cases such as weakly first-order transitions,
where new behaviors emerge at larger length scales [62].
Furthermore, in an experimental setting, the maximum cor-
relation length will often be cut off, due to, e.g., adiabatic
ramp time or finite system sizes. In such cases there may be
multiple relevant length scales for characterizing the classi-
fication curves, and a multiparameter scaling analysis could
be required. This scenario warrants further study, as it will
likely be relevant for near-term quantum simulators, where
resources are limited.

The framework presented here for analyzing continuous
phase transitions shows more broadly that for classifica-
tion tasks we can probe an underlying feature of interest

by systematically varying the functional form of the mod-
els and measuring the response in the form of classification
accuracy. In addition to the convolutional neural networks
used here, one could consider different classes of mod-
els, including kernel methods [8,63] or quantum machine
learning models [64,65]. Neural network scaling could also
be readily generalized to different kinds of order. For ex-
ample, dynamical critical exponents could be estimated by
looking at time-series data, and using a set of models
which can represent observables spanning a finite number
of time slices [36,66]. Similarly, phase transitions without
conventional order parameters could be studied, perhaps by
looking at looplike observables of different sizes [67] or
correlations between different snapshots [65,68]. The tools
developed here are especially timely, as quantum simulation
technologies are rapidly approaching the point where exotic
phases of quantum matter can be directly studied in the
laboratory.
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