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Shell-model study of octupole collectivity near 208Pb
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We show that the collectivity of the particle-hole wave function of low-lying octupole 3− states in doubly
magic nuclei is mainly due to the neutron-proton interaction. Both the enhanced reduced transition probability
to the ground state, B(E3; 3−

1 → 0+
1 ), and the coupling of the octupole excitation to a nucleon result from the

coherent action of all the components of the collective state. The results obtained with a realistic shell-model
interaction both for 208Pb and for 209Pb agree with the geometric collective model of Bohr and Mottelson, where
octupole excitations are associated with phonons corresponding to collective shape oscillations of the surface of
the nucleus.
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Introduction. Collective excitations are ubiquitous in
quantum many-body systems. Their occurrence has given
rise to models that capture essential properties in terms of
a few degrees of freedom, usually of bosonic nature. Ulti-
mately, however, their description invokes excitations of the
constituent particles of the system, which may vary from
fully collective to purely single particle. Nuclei are prime
examples of this dichotomy. Depending on its location in the
nuclear chart (i.e., its number of neutrons N and protons Z),
a nucleus may exhibit either single-particle or collective types
of excitation. To complicate matters even further, in many
nuclei both types of excitation coexist. This dual nature is also
reflected in the history of nuclear physics: the 1950s saw the
development of the nuclear shell model [1,2], which stresses
the importance of single-particle behavior, in parallel with the
elaboration of the geometric collective model [3,4]. It is by
now understood that both descriptions of the nucleus are not
necessarily incompatible; for example, nuclear rotational mo-
tion arises as a result of an SU(3) symmetry of the shell model
[5,6]. Nevertheless, the interplay between single-particle and
collective nuclear excitations to this day remains to be fully
understood microscopically.

In many doubly magic nuclei the lowest-energy excitation
has spin parity Jπ = 3−. In the geometric collective model
this state is described as a surface vibration in the octupole
degree of freedom. In the shell model it corresponds to a
coherent superposition of particle-hole (ph) excitations of nu-
cleons across the shell closures and we show here that this
superposition obeys universal symmetry properties. Nuclei
with one nucleon more or one nucleon less than the double
shell closure are then expected to exhibit excitations associ-
ated with the single particle or hole as well as those where
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the single nucleon is coupled to the octupole vibration [7].
Such odd-mass nuclei are therefore ideal testing grounds of
the interplay between single-particle and collective nuclear
excitations.

Octupole states in doubly magic nuclei. In a one-particle
one-hole (1p1h) approximation an octupole excitation in a
doubly magic nucleus corresponds to the linear combination
of 1p1h excitations across the shell closure

|3−
c 〉 =

∑
ρ

∑
k′k

cρ

k′k

∣∣ jρk′ j−1
ρk ; 3−〉

, (1)

where particle orbitals above the shell closure are denoted
with primed indices jρk′ [shorthand notation for the complete
set of single-particle labels (nl j)ρk′] and hole orbitals below
the shell closure with unprimed indices jρk . Both occur for
neutrons (ρ = ν) as well as protons (ρ = π ). The coefficients
cρ

k′k in Eq. (1) are the amplitudes of the wave function, with
(cρ

k′k )2 being the probability to find the |3−
c 〉 state in the

| jρk′ j−1
ρk ; 3−〉 configuration. The values of cρ

k′k result from the
diagonalization of the nuclear Hamiltonian

Ĥ =
∑

ρ

(∑
k

ερkn̂ρk +
∑

k′
ερk′ n̂ρk′ + V̂ρρ

)
+ V̂νπ , (2)

where n̂ρk is the number operator for ρ nucleons in or-
bital jρk , ερk is its single-nucleon energy, and V̂νν , V̂ππ , and
V̂νπ are the neutron-neutron (νν), proton-proton (ππ ), and
neutron-proton (νπ ) interactions, respectively. The orbitals
appropriate for the 208Pb region span two major shells for
neutrons and protons, from N = 82 to 184 for neutrons and
from Z = 50 to 126 for protons. The effective single-nucleon
energies have been deduced from the experimental data by
Warburton and Brown [8]. There are ∼35 000 two-body ma-
trix elements in this space, obtained in a variety of ways,
as described by Brown [9]. The set used here is taken from
Ref. [10]. With this realistic shell-model Hamiltonian the
first-excited 3− level in 208Pb is calculated at an excitation
energy Ex = 2460 keV, to be compared with the experimental
value of 2615 keV [11]. The state has a highly fragmented
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FIG. 1. (a) Components in the wave function of the collective
3−

c state calculated with a realistic shell-model Hamiltonian (cρ

k′k ;
black) and compared with the analytic expression (3) (c̄ρ

k′k with
αν = 0.734 and απ = 0.679; blue). (b) The reduced transition ma-
trix elements 〈E3〉 ≡ 〈0+

1 ‖E3‖ jρk′ j−1
ρk ; 3−〉, in units e fm3, multiplied

with the coefficients cρ

k′k (black) and c̄ρ

k′k (blue). (c) Components
calculated with a realistic shell-model Hamiltonian with zero νπ

interaction (c̃ρ

k′k ; red). On the y axis are indicated all possible 1p1h
configurations in a simplified notation, e.g., f5 → s1 stands for
|s1/2 f −1

5/2; 3−〉.

1p1h structure as illustrated in Fig. 1(a) (black), which shows
the coefficients cρ

k′k for the different 1p1h excitations. The
components of the electric octupole (or E3) decay of the
3−

1 level to the 0+ ground state can be obtained from the
product of the cρ

k′k and the corresponding reduced transi-
tion matrix elements 〈0+

1 ‖E3‖ jρk′ j−1
ρk ; 3−〉; they are shown in

Fig. 1(b) (black). Although the coefficients cρ

k′k themselves
have alternating signs [see Fig. 1(a) (black)], all components
of the E3 transition act coherently. The collective character
of the octupole state 3−

c follows from the above-mentioned
coherence with respect to E3 decay. As a result the total
E3 reduced transition matrix element, obtained by multiply-
ing with the effective charges eν = 0.35 and eπ = 1.35 and
summing all contributions, leads to an enhanced transition

probability, B(E3; 3−
c → 0+

1 ) = 36 W.u., to be compared with
the experimental value of 34.0(5) W.u. [12].

The fragmentation and coherence in the E3 decay of the 3−
c

state can be understood in the context of a schematic model
that assumes degenerate single-nucleon energies below and
above the shell closures (with gaps �ερ) and a surface delta
interaction (SDI) between the nucleons [13]. For the SDI it is
assumed that [14] (i) the interaction takes place at the surface
only, (ii) the two-body force is of extreme short range, and
(iii) the probability of finding a nucleon at the nuclear surface
is independent of the shell-model orbital in which the nucleon
moves. The SDI is a crude approximation to a realistic shell-
model interaction in terms of the isovector strengths a1ρ of
the νν and ππ interactions, and the isoscalar and isovector
strengths a0 and a1 of the νπ interaction, all with an esti-
mated value of (25/A) MeV [14]. With the assumptions of
the schematic model the coefficients in Eq. (1) can be derived
analytically [15],

c̄ρ

k′k ≈ αρ (Sρ )−1/2gρ

k′k, (3)

with Sρ ≡ ∑
kk′ (g

ρ

k′k )2 and

gρ

k′k = (−) jρk−1/2[ jρk][ jρk′ ]
( jρk′ jρk 3

1/2 −1/2 0

)
, (4)

where the symbol between brackets is a Wigner 3 j coef-
ficient [16] and [ j] ≡ √

2 j + 1. For 208Pb, Sν = 25.39 and
Sπ = 16.29. The coefficients αν and απ in Eq. (3) are obtained
from the diagonalization of the 2 × 2 matrix⎡

⎢⎣ �εν − a1ν

2
Sν −3a0 + a1

4

√
SνSπ

−3a0 + a1

4

√
SνSπ �επ − a1π

2
Sπ

⎤
⎥⎦, (5)

which decouples approximately from the rest of the 1p1h
space (see Supplemental Material [17]). This defines the neu-
tron and proton octupole excitations 3−

cν and 3−
cπ , which are

strongly coupled by the off-diagonal element in the matrix (5)
due to the νπ interaction, giving rise to a combination

|3−
c 〉 = αν |3−

cν〉 + απ |3−
cπ 〉 (6)

at low energy, which is symmetric (i.e., the αν and απ have the
same sign), and an antisymmetric (sometimes called isovec-
tor) combination at higher energy.

The coefficients c̄ρ

k′k of Eq. (3) are shown in Fig. 1(a) (blue).
The 3−

c states in the realistic and schematic calculations have
a similar structure with an overlap

∑
ρkk′ cρ

k′k c̄ρ

k′k ≈ 0.87. The
strong mixing between 3−

cν and 3−
cπ , obtained with SDI, indi-

cates that the νπ interaction is a key component of octupole
collectivity (see also below). The coherence of the E3 decay
can also be proven analytically for the schematic model, lead-
ing to [13]

B(E3; 3−
c → 0+

1 ) =
(∑

ρ

eραρ

S(3)
ρ√
Sρ

)2

e2b6, (7)

where b is the length parameter of the harmonic oscillator
and S(λ)

ρ ≡ ∑
kk′ (g

ρ

k′k )2I (λ)
nρk lρknρk′ lρk′ , in terms of radial integrals

that are all positive. The corresponding expression in the
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geometric collective model reads (see Sec. 6.3 of Ref. [7])

B(E3; 3−
c → 0+

1 ) =
(

3

4π
ZeR3

√
h̄ω3

2C3

)2

, (8)

where
√

h̄ω3/2C3 is the amplitude of the octupole vibration.
A further remark concerns the origin of octupole collectiv-

ity. A different set of coefficients c̃ρ

k′k in Eq. (1) is obtained
if the νπ component of the realistic interaction is put to zero
[see Fig. 1(c) (red)]. This leads to a strongly reduced frag-
mentation of the 3−

cρ states: Without νπ interaction octupole
collectivity is greatly diminished. It is also diminished if the
νν and ππ interactions are omitted but the loss of collectivity
is less important in that case. Therefore, the collectivity of
the octupole states exists predominantly by virtue of the νπ

interaction, which couples the neutron and proton 3−
cρ states

and generates their collective structure.
Octupole states in odd-mass nuclei. We consider an odd-

mass nucleus with one neutron more than a doubly magic
nucleus. The case of a proton and/or a hole coupled to a
doubly magic nucleus can be treated in a similar fashion. The
shell-model calculation is carried out in a basis with 1p0h and
2p1h states,

| jνr′ 〉 and
∣∣( jρk′ j−1

ρk

)(Jk )
jνs′ ; J

〉
. (9)

The first state represents a neutron in the orbital jνr′ and in
the second state the 1p1h configuration is coupled to angular
momentum Jk , which is subsequently coupled with jνs′ to total
J . All possible combinations of jρk′ , j−1

ρk , Jk , and jνs′ lead to an
overcomplete, nonorthogonal basis, which can be reduced to a
complete, orthogonal one by diagonalizing the overlap matrix.
This basis may include spurious components with Jπ

k = 1−,
which are removed by adding a center-of-mass term [18] to
the physical Hamiltonian (2). The calculation in the basis (9)
requires the evaluation of different types of matrix element,
listed in the Supplemental Material [17].

States of the odd-mass nucleus can be obtained by cou-
pling a particle to the octupole phonon of the core. If such
configurations occur at low excitation energy and if they are
not fragmented over many states by the nuclear interaction,
a simple “octupole” description of the odd-mass nucleus can
be envisaged. In this octupole model, besides single-particle
states, only states obtained from the coupling of a particle
to the octupole phonon are considered. A case of particular
interest occurs if two orbitals jνr′ and jνs′ in the basis (9) have
opposite parity and satisfy | jνs′ − jνr′ | = |lνs′ − lνr′ | = 3. In
209Pb this happens for jνr′ = g9/2 and jνs′ = j15/2. In that
case the single-particle state | jνr′ 〉 and the octupole-particle
state |3−

c × jνs′ ; J〉 may mix if J = jνr′ , giving rise to the
eigenstates

|Jo1〉 = α| jνr′ 〉 + β|3−
c × jνs′ ; J〉,

|Jo2〉 = β| jνr′ 〉 − α|3−
c × jνs′ ; J〉, (10)

where the subscript “o” indicates that these are states in the
octupole model. Since they are obtained from the diagonal-
ization of a 2 × 2 Hamiltonian matrix in the basis | jνr′ 〉 and
|3−

c × jνs′ ; J〉, they carry an additional index 1 or 2.
In the particle-vibration coupling approach of the geomet-

ric collective model [7] the diagonal elements of the 2 × 2

matrix are

〈 jνr′ |Ĥ | jνr′ 〉 = E0 + ενr′ ,

〈3−
c × jνs′ ; J|Ĥ |3−

c × jνs′ ; J〉 = E0 + ενs′ + Ex(3−
c ), (11)

where E0 is the ground-state energy of the doubly magic
nucleus and Ex(3−

c ) the excitation energy of its 3−
c state.

The mixing between the single-particle and octupole-particle
states is derived from the phonon character of the octupole
excitation, leading to (see Sec. 6.5 of Ref. [7])

h( jνr′ , 3−
c jνs′ ) ≡ 〈 jνr′ |Ĥ |3−

c × jνs′ ; J = jνr′ 〉

= ϕ

√
7

4π
[ jνs′]

( jνs′ jνr′ 3
1/2 −1/2 0

)

×
√

h̄ω3

2C3
〈 jνs′ |k3(r)| jνr′ 〉, (12)

where k3(r) = R0∂V (r)/∂r is the form factor of the octupole
oscillation and ϕ is a phase.

Application to 209Pb. We test the validity of the particle-
vibration coupling approach of the geometric collective model
by comparing it to a shell-model calculation in a 1p0h+2p1h
basis. In a first step the diagonalization of the shell-model
Hamiltonian (2) for the nucleus 208Pb determines the coef-
ficients cρ

k′k . Next, we evaluate the diagonal matrix elements
〈 jνr′ |Ĥ | jνr′ 〉 and 〈3−

c × jνs′ ; J|Ĥ |3−
c × jνs′ ; J〉. While the first

is just the expression (11), the second is calculated microscop-
ically with use of the coefficients cρ

k′k derived for 208Pb. The
off-diagonal matrix element h( jνr′ , 3−

c jνs′ ) in Eq. (12) is also
calculated microscopically with the expression

−
√

7

2J + 1

(∑
k′k

cν
k′k

〈
jνr′ j−1

νs′ ; 3
∣∣V̂νν | jνk′ j−1

νk ; 3
〉

+
∑
k′k

cπ
k′k

〈
jνr′ j−1

νs′ ; 3
∣∣V̂νπ

∣∣ jπk′ j−1
πk ; 3

〉)
. (13)

Although the individual terms in the sums in Eq. (13) are
small, they all act coherently to yield a large off-diagonal
matrix element [19].

The coefficients α and β in Eq. (10) are obtained by
diagonalizing a 2 × 2 Hamiltonian matrix with elements cal-
culated in the shell model. In a final step a diagonalization
of the Hamiltonian (2) is carried out in the full 1p0h+2p1h
basis, followed by the calculation of the overlaps |〈Jπ

k |Jπ
oi〉|2,

where |Jπ
k 〉 is the kth eigenstate in the full space and |Jπ

oi〉,
i = 1, 2, an eigenstate in the two-dimensional space. The
states (10) constitute a good approximation to the lowest
shell-model states in the 1p0h+2p1h space if |〈Jπ

k |Jπ
oi〉|2 � 1

for k = i = 1, 2, and |〈Jπ
k |Jπ

oi〉|2 ≈ 0 otherwise. Figure 2 pro-
vides an illustration of this test. The two-component wave
functions originate from the single-particle orbitals g9/2 and
j15/2, and their coupling to 3−

c ; the wave functions in the
1p0h+2p1h space have 467 and 530 components for Jπ =
9/2+ and 15/2−, respectively. The lower-energy eigenstate
of the 2 × 2 matrix is predominantly of single-particle char-
acter, either g9/2 or j15/2, and this finding is confirmed by
the calculation in the 1p0h+2p1h space. The upper-energy
eigenstate is predominantly of octupole-particle character, and
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FIG. 2. Overlaps |〈Jπ
k |Jπ

oi〉|2 (see text) for the Jπ = 9/2+ and
15/2− states in 209Pb. The two eigenstates |Jπ

oi〉, i = 1, 2, are obtained
in the octupole model with the single-particle orbitals g9/2 and j15/2,
and their coupling to 3−

c . The eigenstates |Jπ
k 〉 are obtained with

the realistic shell-model Hamiltonian in the 1p0h+2p1h space. For
display purposes the squared overlaps are multiplied by 1, 10, 100,
or 1000, indicated in black, red, blue, or green, respectively.

the square of its overlap with the full-space wave function is
0.97 (0.91) for Jπ

2 = 9/2+
2 (15/2−

2 ). Many spin parities are
not among those available to a single neutron in the 126–
184 orbitals but can be obtained by coupling the neutron to
the octupole phonon. Are such particle-octupole states found
in the low-energy eigenspectrum of the realistic shell-model
Hamiltonian? Figure 3 shows two representative cases,
namely, the states |3−

c × j15/2; Jπ 〉 with Jπ = 13/2+ and
21/2+, and their distribution over the eigenstates in 209Pb.
The Jπ = 21/2+

1 state is overwhelmingly (the squared over-
lap is 0.996) that of a j15/2 neutron coupled to 3−

c .
In contrast, the Jπ = 13/2+

1 state, while still dominantly
3−

c × j15/2 (the squared overlap is 0.74), interacts with
|(g9/2g9/2)(0)i−1

13/2; 13/2〉, which happens to be very close in
energy.

A systematic study of all possible cases involving single-
particle as well as octupole-particle excitations in 209Pb can

FIG. 3. Distribution of a neutron in the j15/2 orbital coupled
to the octupole excitation 3−

c of 208Pb. The bars (in the color
code of Fig. 2) indicate the overlaps |〈Jπ

k |3−
c × j15/2; J〉|2 for Jπ =

13/2+, 21/2+ in 209Pb, where |Jπ
k 〉 are eigenstates of the shell-model

Hamiltonian in the 1p0h+2p1h space.

be found in the Supplemental Material [17]. The conclusion
is that no member of the 3−

c × g9/2 multiplet shows any frag-
mentation in the shell-model calculation, that the 3−

c × j15/2

multiplet is pure except for Jπ = 13/2+, and that the high-
spin members (Jπ � 11/2−) of the 3−

c × i11/2 multiplet are
also unfragmented. Other multiplets occur at higher energies
in the region of higher level density and display considerable
fragmentation. However, close to the full strength of particle-
octupole coupled states can be found within ∼400 keV around
the unperturbed particle-octupole energy. Our results demon-
strate that the 3−

c state preserves its bosonic identity while
coupling with a single particle or hole.

In the schematic model the following expression is ob-
tained for the off-diagonal matrix element (13):

h( jνr′ , 3−
c jνs′ )

≈ (−) jνr′ +1/2
√

7[ jνs′ ]
( jνs′ jνr′ 3

1/2 −1/2 0

)
f (a1ν, a0, a1),

(14)

with

f (a1ν, a0, a1) =
(

a1ν

2
αν

√
Sν + 3a0 + a1

4
απ

√
Sπ

)
. (15)

The analytic expressions (7) and (14) together with the cor-
responding equations (8) and (12) in the geometric collective
model, lead to the following result:

|〈 jνs′ |k3(r)| jνr′ 〉| ≈ 15

16

√
15

2π
Z
√

A
f (a1ν, a0, a1)

S
, (16)

where S = ∑
ρ eραρS(3)

ρ S−1/2
ρ and use is made of Eq. (2.36)

of Ref. [14] for the oscillator length b. Equation (16) gives
a simple expression for the matrix element of R0∂V (r)/∂r in
terms of the orbitals included in the shell-model space and of
the strength parameters of the SDI.

In summary, octupole excitations in doubly magic nu-
clei exhibit universal symmetry properties that explain their
collective structure and phononlike behavior. In 208Pb the
collectivity of the particle-hole wave function of the 3−

1
state is mainly due to the neutron-proton interaction. The
enhanced reduced transition probability to the ground state,
B(E3; 3−

1 → 0+
1 ), results from the fully coherent action of all

participating particle-hole excitations and is a consequence
of the attractive nature of the residual interaction. When
coupled to a low-energy single particle or hole excitation,
the collective nature and bosonic identity of the octupole
state is preserved: E3 collectivity in odd-mass nuclei re-
mains concentrated in a single state and is not fragmented
over many shell-model eigenstates. In the geometric col-
lective model the coupling of octupole degrees of freedom
to a nucleon arises from the variation in the average nu-
clear potential due to the collective vibration. In the shell
model this coupling results from the coherent action of all
the components of the collective state. The findings ob-
tained here with a realistic shell-model interaction both for
208Pb and 209Pb agree with the geometric collective model
and confirm the phononic behavior of octupole excitations
in nuclei.
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