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Crossing a quantum critical point in finite time challenges the adiabatic condition due to the closing of the
energy gap, which ultimately results in the formation of excitations. Such nonadiabatic excitations are typically
deemed detrimental in many scenarios, and consequently several strategies have been put forward to circumvent
their formation. Here, however, we show how these nonadiabatic excitations—originated from the failure to
meet the adiabatic condition due to the presence of a quantum critical point—can be controlled and thus
harnessed to perform certain tasks advantageously. We focus on closed cycles reaching the quantum critical
point of fully connected models analyzing two examples. First, a quantum battery that is loaded by approaching
a quantum critical point, whose stored and extractable work increases exponentially via repeating cycles. Second,
a scheme for the fast preparation of spin squeezed states containing multipartite entanglement that offer a
metrological advantage, analogous to a two-axis twisting scheme. The corresponding figure of merit in both
examples crucially depends on the universal critical exponents and the scaling of the protocol in the vicinity
of the transition. Our results highlight the rich interplay between quantum thermodynamics and metrology with
critical nonequilibrium dynamics.
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Introduction. Nonequilibrium dynamics triggered by a
quantum phase transition (QPT) is one of the most fascinating
aspects in the area of quantum many-body systems [1,2].
The understanding of nonequilibrium scaling behavior near
a quantum critical point has attracted significant attention in
condensed matter and statistical physics [1–4]. The ongoing
theoretical efforts are benefiting from the extraordinary ex-
perimental progress made during the last decades in ultracold
atomic and molecular gases, trapped ions, and solid state sys-
tems, where quantum many-body systems can now be realized
and controlled to a very high degree of isolation [5–12]. These
advances are opening exciting new directions aiming at ex-
ploiting and harnessing quantum effects to perform different
tasks [13,14], for instance in the fields of quantum compu-
tation and information processing [15,16], quantum sensing
[17,18], and quantum thermodynamics [19,20]. In this regard,
a finite-time modulation of a control parameter in a quantum
system may be essential to carry out the desired goal as, for
example, in quantum thermodynamic engines [21,22] or in
quantum annealing and adiabatic quantum computation [23].
However, a finite-time evolution may entail nonadiabatic ex-
citations, which are typically detrimental to the performance
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and, therefore, different strategies have been proposed to cir-
cumvent their formation [24–28]. This is particularly relevant
when the evolution traverses or reaches a QPT, since the
vanishing energy gap at the critical point leads to the break-
down of the adiabatic condition [29], and the formation of
excitations, as described within the Kibble-Zurek mechanism
[4,30–32].

Among the distinct directions within the flourishing field
of quantum thermodynamics [19,20], quantum many-body
systems acting as working medium of heat engines or as quan-
tum batteries are attracting considerable attention in the quest
to enhance thermodynamic performance thanks to quantum
effects [33–43]. Yet, the resulting nonadiabatic excitations due
to existence of a critical point can impair their performance
[44]. Hence, underpinning scenarios where the existence of a
QPT can be advantageous is of primarily importance to devise
strategies to scale up quantum machines and disclose novel
settings to achieve quantum enhancement.

Conversely, it is well known that the ground state at a
QPT can serve as a resource for quantum information pro-
cessing tasks [45–47] due their large degree of entanglement,
which can also be beneficial in quantum metrology [43,48–
52] and quantum thermometry [53]. Nevertheless, the prepa-
ration of such critical ground states is challenged by the
breakdown of the adiabatic condition, and thus either long
evolution times and/or sophisticated protocols are typically
required to exploit their critical features. In this manner,
new strategies capable of yielding resourceful quantum states
while minimizing the time and complex protocols are very
desirable.
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In this Letter we tackle these problems and show that
nonadiabatic excitations, formed as a consequence of the van-
ishing energy gap at a critical point, can be harnessed and
controlled in critical fully connected models featuring a QPT
[54], whose effective description reduces to a driven quantum
harmonic oscillator, such as the quantum Rabi model [55–57]
or Lipkin-Meshkov-Glick (LMG) model [58–60], among oth-
ers. We consider closed cycles in these systems reaching the
critical point, and show the advantage that such nonadiabatic
excitations entail for two different scenarios.

On the one hand, promoting excitations in a critical sys-
tem can be considered as a resource to produce and store
work. Besides a full characterization of the accumulated work
and fluctuations thereof, we demonstrate that the consecutive
repetition of M cycles can lead to an exponential increase
of the stored and extractable work from such quantum crit-
ical battery. On the other hand, we show how to harness
these nonadiabatic excitations to yield a large degree of spin
squeezing in the LMG model, which describes the long-range
interaction of N spin-1/2 particles. We show that such spin
squeezed states contain multipartite entanglement and are
therefore useful for quantum metrology tasks [18,49]. Owing
to the inherently nonadiabatic nature of the protocol, such
states are obtained in a fast fashion. Our results, which can be
readily applied to different experimental platforms, highlight
the rich interplay between quantum thermodynamics, quan-
tum metrology, and critical nonequilibrium dynamics.

Preliminaries. We shall start our analysis considering a
driven quantum harmonic oscillator (h̄ = 1),

H (t ) = ωa†a − g2(t )ω

4
(a + a†)2, (1)

which effectively captures the critical features of different
fully connected models such the LMG model [58–60], the
critical quantum Rabi model, and related systems display-
ing a superradiant phase transition [55,56,61–65], as well as
different realizations of Bose-Einstein condensates [66–69].
It is worth mentioning that these models have been realized
experimentally [11,66–70]. The Hamiltonian of Eq. (1) is a
valid description of these models for |g| � gc = 1, where gc

denotes the critical point at which the energy gap ε(g) =
ω

√
1 − g2 vanishes as ε(g) ≈ |g − gc|zν with zν = 1/2 depen-

dent on the critical exponents of the QPT [3]. The harmonic
oscillator is described in terms of the standard creation and
annihilation operators, [a, a†] = 1, and is driven according
to a cyclic transformation reaching the critical point gc. In
particular, the time-dependent protocol reads as

g(t ) =
{

gc
(
1 − (τ−t )r

τ r

)
, 0 � t � τ,

gc
(
1 − (t−τ )r

τ r

)
, τ < t � 2τ,

(2)

where we have assumed, without loss of generality, that
g(0) = g(2τ ) = 0. The nonlinear exponent r > 0 controls
how the system approaches the critical region [71], namely,
|gc − g(t )| ∝ |t − τ |r , and the rate at which the system is
driven, |ġ(t )| = 2gcr|t − τ |r−1τ−r (cf. Fig. 1).

Under these general considerations, one can show that the
evolved state of the system at time t reads |ψ (t )〉 ∝ eb(t )(a† )2 |0〉
where |0〉 is the initial state and the parameter b(t ) changes

FIG. 1. (a) Sketch of the cyclic transformation to harness nona-
diabatic excitations formed in the vicinity of the critical point gc.
In light of the Hamiltonian in Eq. (1), the state becomes squeezed.
(b) Distinct profiles of g(t ) for different nonlinear exponents r [cf.
Eq. (2)].

according to the equation of motion [72]

ḃ(t ) = −iω

(
2b(t ) − g2(t )

4
[1 + 2b(t )]2

)
, (3)

with b(0) = 0. Hence, the state is simply a squeezed
state |ψ (t )〉 = S(s)|0〉 with |s| = artanh[2|b(t )|] and S(s) =
es(a† )2/2−s∗a2/2 the squeezing operator [72–75]. By setting
ḃ(t ) = 0 one recovers the ground state squeezing of Eq. (1),
that is, |s| = − log(1 − g2)/4 [55].

As a consequence of the breakdown of the adiabatic condi-
tion due to a vanishing energy gap ε(gc) = 0 [29], the initial
state is never retrieved upon a slow cycle, regardless of how
slow it is performed, that is, independently of how large ωτ is
[72,76]. In particular, the resulting final state after one cycle
for ωτ � 1 acquires a squeezing [72]

|s| = arcosh
[
csc

( π

2 + 2zνr

)]
(4)

that solely depends on the critical exponents zν and the non-
linear exponent r. Moreover, since nonadiabatic excitations
are formed in the vicinity of the critical point, only the non-
linear behavior of g(t ) close to gc is relevant [77].

Quantum critical battery. Let us consider a driven quan-
tum harmonic oscillator as a quantum battery, which is
loaded via the controllable creation of nonadiabatic excita-
tions boosted at the quantum critical point. Through the cyclic
transformation in Eq. (2) we leave the battery in a state ρ =
|ψ (2τ )〈ψ (2τ )〉| and stored a certain amount of work 〈W 〉.
Then the maximum extractable work from the battery in a
state ρ under any cyclic unitary transformation is given by the
so-called ergotropy [78–81], given by E = ∑

n εn(ρnn − rn)
where H = ∑

n εn|n〉〈n| with εn = nω in our case, and the
state is ρ = ∑

n rn|rn〉〈rn| with rn the eigenvalues of ρ sorted
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FIG. 2. (a) An example for the work probability distribution
P(W ) for ωτ =102 and r =4. The resulting fluctuations of the work
distribution 	W/〈W 〉 match the theoretical prediction (solid line),
shown in (b) for ωτ =102. The dashed lines are guide to eyes for the
asymptotic behavior, 	W/〈W 〉 ∼ 21/2 for zνr � 1, and 23/2/(zνrπ )
for zνr 	 1. As illustrated in (c), repeating M cycles can lead to
an amplification of the squeezing parameter |s|M =M|s|. This leads
to an exponential increase of the stored and extractable work [cf.
Eq. (6)] 〈W 〉M/〈W 〉1 ∼ e(2M−2)|s| as shown in (d). The open points in
(c) and (d) show the decoherence effect on the battery with Nth = 2.

in descending order, and |rn〉 the corresponding eigenstate,
and ρnn = ∑

n′ rn′ |〈rn′ |n〉|2.
Upon completion of the protocol, the work performed

on the battery follows a probability distribution given by
P(W )=∑

n=0 |cn|2δ(W − nω), where cn = 〈n|ψ (2τ )〉. Since
|ψ (2τ )〉=S(s)|0〉 only even Fock states are populated,
and thus energy is transferred to the battery in units of
2nω with n = 0, 1, . . .. Since the amount of squeezing can
be controlled by shaping the protocol g(t ), i.e., tuning the
nonlinear exponent r, so are the average work and its variance,
whose expressions are given by 〈W 〉=ω sinh2(|s|) =
ω tan−2[π/(2 + 2zνr)] and 	2W = 〈W 2〉 − 〈W 〉2 =
2ω2 cos2[π/(2 + 2zνr)] sin−4[π/(2 + 2zνr)], respectively.
Moreover, the ergotropy equals the stored work E = 〈W 〉
[72]. In particular, the fluctuations of the work distribution
are given by

	W

〈W 〉 =
√

2 cos−1 [π/(2 + 2zνr)]. (5)

The fluctuations are dominant for zνr 	 1, where
	W/〈W 〉 ∼ 23/2(zνrπ )−1, while they become constant
in the opposite limit 	W/〈W 〉 ∼ 21/2. The resulting work
distribution and fluctuations are illustrated in Figs. 2(a) and
2(b), respectively, which clearly shows how 	W and 〈W 〉,
and thus E, can be controlled by tailoring the nonlinear
protocol. Note that the results plotted in Figs. 2(a) and 2(b)
are independent of the specific duration τ provided ωτ � 1,
i.e., excluding the regime of sudden quenches, which leave
the state trivially unaltered.

So far we have focused on the realization of a single cycle.
Yet, performing M cycles can significantly boost the gener-
ated squeezing, and consequently the stored and extractable
work beyond the linear scenario 〈W 〉M � M〈W 〉1 and EM �
ME1. Indeed, the state after M cycles under g(t ) can result in
a M-fold squeezing, i.e., |s|M = M|s| with |s| given in Eq. (4).
The total duration is then equal to 2Mτ and g(2mτ + t ) ≡ g(t )
with m = 0, 1, . . . , M − 1. Remarkably, such proportional in-
crease in |s|M translates into an exponential rise of the stored
and extractable work [72],

〈W 〉M

〈W 〉1
= EM

E1
∼ e(2M−2)|s|, (6)

while the fluctuations enter the constant regime
	WM/〈W 〉M ∼ 21/2. This is reported in Figs. 2(c) and 2(d).
The solid points show the numerically computed squeezing
after the Mth cycle, which follows well the predicted value
|s|M = M|s|. In this manner, the stored work 〈W 〉M (and EM)
grows exponentially with M, as exemplified in Fig. 2(d) for
r = 1 and ωτ = 10. Similar results can be found for other
choices of r and ωτ .

At this moment, a note is in order. Although for M = 1
the amount of squeezing is τ independent [cf. Eq (4)], its
phase naturally depends on the total evolution time. This
accumulated phase becomes however relevant when M > 1.
As in any quantum engine or battery involving several cycles,
the performance becomes phase sensitive [82,83]. In our case,
we find that constructive interference of the accumulated
phase leads to a sustained squeezing amplification
across M cycles when arg{b(2mτ )} = (2n + 1)π/2 with
n = 0, 1 and m = 1, 2, . . . , M [72]. To the contrary, if
arg{b(2τ )} = 2nπ with n = 0, 1, the subsequent cycle
(M = 2) counteracts leading to a suppression of squeezing
so that |s|M=2 ≈ 0 and |s|M � |s|. In particular, we find
arg{b(2τ )} = mod{−π (1 + ωτ )/2, 2π} for r = 1 so that
ωτ = 10 leads to π/2 and holds for increasing M. This
case corresponds to Figs. 2(c) and 2(d) (see [72] for
further details). Note that the presented results are robust
against moderate imperfections in the control [72]. Finally,
we comment that decoherence impairs the performance,
although an exponential advantage can still be achieved
if 2τκ 	 1 where κ denotes the noise rate [cf. Figs. 2(c)
and 2(d)]. For that, we consider a reservoir at temperature
T interacting with the system in a standard Lindblad form
[84] ρ̇ = −i[H (t ), ρ] + κ (Nth + 1)/2(2aρa† − {a†a, ρ}) +
κNth/2(2a†ρa − {aa†, ρ}) [72] with Nth = (eω/kBT − 1)−1.

Finally, it is worth noting that a finite-size fully connected
model will contain corrections to Eq. (1) that will limit the
exponential growth of 〈W 〉M and EM . The leading-order cor-
rection appears as (a + a†)4/N where N is the system size
[57]. For a fixed N , one can estimate that the exponential ad-
vantage holds until Tr[ρ(a + a†)4] ∼ N , moment at which the
finite-size correction spoils the Gaussian nature of the state.
This allows us to set a limit for number of cycles, Ml ∼ log N ,
after which the exponential advantage breaks down.

Spin squeezing and metrological gain. Let us now consider
N spin-1/2 particles collectively coupled and interacting as
described by the LMG Hamiltonian [58], which can be written
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as

HLMG(t ) = −ωJz − g2(t )ω

N
J2

x , (7)

where the pseudospin operators are defined as Jα =
1
2

∑N
i=1 σα

i for α ∈ {x, y, z}, where σα
i refer to the Pauli ma-

trices for the ith spin. Since [J2, HLMG] = 0 one can restrict to
the highest pseudospin subspace, where the dimension of the
Hilbert space grows linearly with N .

In the thermodynamic limit, N → ∞, the LMG exhibits
a QPT at gc = 1 [59,60]. In this limit, the LMG can be effec-
tively described by a single bosonic mode. This is achieved by
performing the Holstein-Primakoff transformation Jz = J −
a†a and J+ = √

2J
√

1 − a†a/(2J )a and Jx = (J+ + J−)/2.
Taking the N → ∞ limit, HLMG reduces to Eq. (1) up to a con-
stant energy shift, and therefore zν = 1/2 [59,60]. Thus, the
bosonic squeezed state S(s)|0〉 translates into a spin squeezing
of the form

|ξ 〉 = Sspin(ξ )|J, mJ = J〉, (8)

where Sspin(ξ ) = eξ∗J2
+/2−ξJ2

−/2 corresponds to the spin squeez-
ing operator. This is similar to generating spin squeezing
via a two-axis twisting Hamiltonian [85,86]. From the previ-
ous considerations, one can immediately see that |ξ | = |s|/N
in the thermodynamic limit, with |s| given in Eq. (4). On
the one hand, as the system size increases N → ∞, i.e.,
as finite-size effects become negligible, the evolved state
upon a cycle g(t ), |ψ (2τ )〉 = U (2τ )|J, mJ = J〉 with U (t ) =
T e−i

∫ t
0 dsHLMG (s), becomes closer to |ξ 〉 with |ξ | = |s|/N .

On the other hand, since the energy gap ε(gc) of HLMG is
nonzero for any finite N , the duration of the protocol τ must
be such that the dynamics lie in the quasiadiabatic regime.
That is, ωτ � 1 as aforementioned (to exclude sudden quench
dynamics), together with ε(gc)τ � 1, which prevents true adi-
abatic cycles in a finite system. Since ε(gc) ∝ N−z with z =
1/3 [87,88], it follows that 1 � ωτ � N1/3. In addition, it is
worth mentioning that for a ramp toward the critical point,
Kibble-Zurek scaling laws emerge in this driving regime
[55,57,89,90], which further highlights that nonadiabatic ex-
citations are caused due to the existence of a critical point.
In order to exemplify the generation of spin squeezed states
via a cyclic protocol g(t ), we compute the state of the form
in Eq. (8) which maximizes Fξ = 〈ξ |ρ|ξ 〉 for different system
sizes N and where ρ denotes the state after the cycle according
to ρ̇ = −i[HLMG(t ), ρ] + κ/2(J+ρJ− − {J+J−, ρ}). For κ =
0, the resulting parameter |ξ | closely follows the expected
relation |ξ | = |s|/N , as illustrated in Fig. 3(a) for ωτ = 2
and r = 2, which also holds for reasonably small noise rates
τκ

√
N � 10−2. Moreover, the fidelity Fξ → 1 as N → ∞,

which is shown in Fig. 3(b). For N = 103 we find already
Fξ ≈ 0.9999, which corroborates the ability to generate spin
squeezing by harnessing controllable nonadiabatic excitations
generated by a QPT. Note that slower cycles impair the gen-
eration of spin squeezing [72].

Such spin squeezed states may contain multipartite entan-
glement shared by its N spins and thus, they may offer a
metrological advantage for sub shot-noise phase sensitivity. In
order to quantify such an advantage, we rely on the quantity
χ2

min related to the quantum Fisher information [49], which

FIG. 3. (a) The resulting squeezing parameter |ξ | for κ = 0 as a
function of the number of spins N for one cycle. The dashed line
shows the predicted theoretical value |s|/N = arcosh{csc[π/(2 +
2zνr)]}/N with zν = 1/2, while the inset shows |ξ | as κ increases
for N = 10, 20, and 40 spins (lines from top to bottom) with their
corresponding |s|/N (dashed lines). The fidelity of the generated state
is very close to the expected spin squeezed state, as shown in (b) for
κ = 0, i.e., Fξ → 1 as N → ∞. The inset shows Fξ for κ �= 0 as in
(a). In (c) we show χ 2

min [cf. Eq. (9)] for M = 1, 2, and 3 cycles
which demonstrates the amount of useful multipartite entanglement,
and survives for κ �= 0 (see inset for M = 1 cycle). (d) The Wigner
function for the state achieved upon M = 3 cycles, N = 14 spins,
and κ = 0. All the results correspond to ωτ = 2 and r = 2.

witnesses multipartite entanglement and metrological advan-
tage (sub shot-noise sensitivity) when χ2

min < 1, and reads

χ2
min = min

�n
N

4(	R�n)2
, (9)

with the operator R�n defined as {R�n, ρ} = i[J�n, ρ], (	R�n)2 =
〈R�n〉2 − 〈R�n〉2 its variance on the state ρ, and J�n =
(Jx sin θ cos φ, Jy sin θ sin φ, Jz cos θ ) being the pseudospin
operator in an arbitrary direction �n. Note that 	R�n = 	J�n for
a pure state ρ. From Eq. (8) it is clear that χ2

min is achieved
when θ = π/2, while the angle φ in the xy plane depends
on the phase of ξ . We compute χ2

min minimizing over any
possible pair of angles {θ, φ} for each state in Fig. 3(a) and
find that the produced states always contain multipartite en-
tanglement, provided τκ

√
N � 1, and as expected, are thus

useful for sub shot-noise sensitivity since χ2
min < 1. Moreover,

as shown above in the bosonic case, realizing more cycles may
lead to more squeezing. In this context, this is reflected in a
reduction of χ2

min, as shown in Fig. 3(c), where χ2
min ≈ 0.05

after M = 3 cycles for N = 103 spins. However, further cycles
do not improve significantly χ2

min. In order to illustrate the
features of the resulting spin state, we show as an example
the Wigner functionW(θ, φ) for N = 14 spins upon M = 3
cycles, which is calculated following the standard procedure
[72,91], while the examples for M = 1 and 2 are provided in
[72].
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Finally, we compare our method with the standard one- and
two-axis twisting Hamiltonians [86]. For that we compute the
squeezing ξ 2

S = 4 min�n(	J�n)2/N as defined in [85], which is
known to scale as ξ 2

S ∝ N−2/3 and N−1 for one- and two-axis
twisting, respectively. As our method produces a state that is
equivalent to a two-axis twisting [cf. Eq. (8)], we find that
ξ 2

S ∝ N−1 (see [72] for further details), and thus approaching
Heisenberg limit for phase sensitivity [86].

Conclusions. In this Letter we have investigated the pro-
duction of nonadiabatic excitations as a result of cyclic
protocols reaching a quantum critical point, showing how they
can be controlled and thus harnessed. In particular, we have
focused on critical fully connected models, whose effective
description reduces to a driven quantum harmonic oscilla-
tor. As a result of the breakdown of the adiabatic condition,
the amount of nonadiabatic excitations depends solely on
the critical exponents and the shape of the protocol close to
the QPT. These nonadiabatic excitations produce squeezing
in the initially prepared ground state.

We first considered an effective model, namely, a quan-
tum harmonic oscillator as a quantum battery, where work
is performed through the cyclic driving, whose average value
and fluctuations obey simple relations and are dictated by the
nonlinear form of the protocol in the vicinity of the critical
point, as well as the maximum extractable work. Interestingly,
we showed that the realization of M consecutive cycles can
yield an exponential increase of the stored and extractable
work.

As a second example we considered a system made of N
spin-1/2 particles interacting according to the LMG model,

which reduces to an effective quantum harmonic oscillator
model in the thermodynamic limit. We showed that nonadia-
batic excitations translate into spin squeezing. In this manner,
by performing a quasiadiabatic cycle toward the critical point,
one generates spin squeezing in a controllable fashion, and
analogous to a two-axis twisting Hamiltonian. As expected,
such spin squeezed states contain multipartite entanglement
and are therefore useful for sub shot-noise phase sensitivity.

Finally, since different and experimentally realizable fully
connected quantum many-body systems can be effectively
described in terms of a quantum harmonic oscillator where
the control parameter can be tuned in time [11,66–70], our
findings are relevant to distinct platforms. Our results will
motivate further research in the exciting arena of nonequilib-
rium phenomena and critical dynamics with applications in
quantum thermodynamics and metrology.
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