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We propose a modified XY model in which cascade transfer emerges from spatially local interactions where
the spin corresponds to the “velocity” of a turbulent field. For this model, we theoretically calculate the scale-to-
scale energy flux and the equal time correlation function in d dimensions. The result indicates an inverse energy
cascade with the non-Kolmogorov energy spectrum proportional to k−3. We also numerically confirm the result
for the cases of d = 2 and d = 3. We thus conclude that the cascade transfer in our model represents a different
universality class from standard fluid turbulence.
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Introduction. Many phenomena in nature can be regarded
as cooperative phenomena in the sense that they emerge from
interactions between many components. Although such inter-
actions are complicated, the resulting cooperative phenomena
themselves are often universal regardless of the details of the
interaction, allowing for a phenomenological understanding.
Therefore, if we are only interested in the universal aspect of a
certain phenomenon, it is sufficient to investigate the simplest
model that can describe the phenomenon. Simple models have
provided us phenomenological perspectives with which to
understand various phenomena, such as critical phenomena
[1], phase separation [2,3], directed percolation [4], surface
growth [5,6], and flocking [7].

One of the most extreme examples in which complicated
interaction between many degrees of freedom plays a central
role is cascade transfer [8]. This is the phenomenon that
an inviscid conserved quantity, such as energy or enstro-
phy, is transferred conservatively from large (small) to small
(large) scales. In the scale range where the cascade transfer
occurs—the inertial range—the scaling of the distribution
of the conserved quantity is governed by the corresponding
conserved scale-to-scale flux. In other words, cascade transfer
underlies the remarkable universality of the scaling. In fluid
turbulence, for example, the energy spectrum follows the Kol-
mogorov spectrum E (k) ∝ k−5/3 independent of the details of
the initial/boundary conditions or the mechanism of external
stirring [8–11]. Such universal behavior is observed even in
systems different from ordinary fluids, such as quantum fluids
and supercritical fluids near a critical point [12–17]. Further-
more, cascade transfer is not limited to such fluid systems
but is also observed even in wave and spin systems [18–25].
We thus conjecture that cascade transfer is a ubiquitous phe-
nomenon.
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From this viewpoint, we ultimately aim to establish the
concept of a universality class for cascade transfer. As a
first step toward this end, here we propose a simple model
representing one universality class. We specifically regard the
phenomenon as a cooperative phenomenon of unidirectional
transport across scales and ask how it emerges from spatially
local interactions. In contrast, it is nonlocal in most existing
cascade models [8,26–28].

The constructed model is a modified XY model with
amplitude fluctuations in which the spin is regarded as the
“velocity” of a turbulent field in d dimensions. We show that
the model exhibits an inverse “energy” cascade for any d , and
we calculate the functional form of the velocity correlation
function, which corresponds to the non-Kolmogorov energy
spectrum ∝k−3. This behavior is quite different from ordinary
fluid turbulence even in two dimensions where the inverse
energy cascade inevitably accompanies the enstrophy cascade
and the Kolmogorov spectrum.

Insights into the cascade transfer. Let us consider the
minimum elements required for cascade transfer to occur.
Obviously, nonlinearity is indispensable because the essence
of cascade transfer is strong inevitable interference between
widely separated length scales. Furthermore, this nonlinearity
must conserve energy if there is neither injection nor dissi-
pation [29]. To ensure the existence of the “inertial range,”
the injection and dissipation must act at large (small) and
small (large) scales, respectively. Thus, the minimum ele-
ments required for the energy cascade to occur are as follows:
(i) nonlinearity that conserves energy, (ii) injection at large
(small) scales, and (iii) dissipation at small (large) scales.

We now construct a simple model for cascade transfer
by specifying these three elements. Respecting the ease of
the intuitive interpretation of the nonlinear interaction, we
consider the two-component velocity vector vi at each site
i on a two-dimensional square lattice. In the case shown in
Figs. 1(a) and 1(b), the energy 〈|vi|2〉/2, where 〈·〉 denotes
the ensemble average, may be localized at small and large
scales, respectively. For the model to evolve from the state
shown in Fig. 1(a) to that shown in Fig. 1(b) whereas con-
serving energy, “ferromagnetic interactions” may be suitable
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FIG. 1. (a) and (b) Schematics of the idea of constructing a
simple model. The arrow on each site represents the velocity of a
turbulent field. (c) Snapshot of the steady-state velocity profile of the
model with T = λ = 1 and γ = 0.001. The color bar denotes the
magnitude of the velocity vector |vi|.

nonlinearity. Because this nonlinear interaction may induce an
inverse energy cascade where the energy is transferred from
small to large scales, we must incorporate into the model
injection and dissipation terms that act at small and large
scales, respectively. To this end, it may be suitable for the ease
of analysis to choose a random force that is white in space and
time and a friction dissipation.

Model. Let vi(t ) := (v1
i (t ), v2

i (t )) ∈ R2 be the velocity at
site i of a d-dimensional hypercubic lattice. For simplicity,
we consider a hypercubic lattice with Nd vertices and lattice
constant a and impose periodic boundary conditions. The
collection of the nearest-neighboring sites of i is denoted Bi.
The time evolution of va

i , a ∈ {1, 2}, is given by the following
Langevin equation:

∂tv
a
i = λ

∑
j∈Bi

Rab(vi )v
b
j − γ va

i + √
εξ a

i , (1)

where Rab(vi ) represents the projection in the direction per-
pendicular to vi,

Rab(vi ) := δab − va
i v

b
i

|vi|2 . (2)

Here, λ > 0 is a coupling constant, γ � 0 is a friction coeffi-
cient, and ε > 0 represents the strength of the random force,
which is the zero-mean white Gaussian noise that satisfies〈

ξ a
i (t )ξ b

j (t ′)
〉 = δabδi jδ(t − t ′), (3)

and |vi|2 := vc
i v

c
i . Here and hereafter, we employ the sum-

mation convention for a, b, c that repeated indices in one
term are summed over {1, 2}. A snapshot of the steady-state
velocity profile of the model for the case d = 2 is shown in
Fig. 1(c). Below, we mainly consider the case of d = 2, but
the extension to any d is straightforward [30].

Basic properties. Let |vi|2/2 be the energy at site i. A
crucial property of the nonlinear term of the model (1) is that

the term does not contribute to the energy exchange,

va
i

(
λ

∑
j∈Bi

Rab(vi )v
b
j

)
= 0. (4)

Therefore, the time evolution of |vi|2/2 is governed only by
the dissipation rate γ |vi|2 and injection rate

√
εvc

i ◦ ξ c
i ,

∂t
1

2
|vi|2 = −γ |vi|2 + √

εvc
i ◦ ξ c

i , (5)

where the symbol ◦ denotes multiplication in the sense of
Stratonovich [31]. Thus, if there is neither injection nor dis-
sipation (i.e., ε = γ = 0), the energy at site i, |vi|2/2 is
conserved without any averaging. If ε > 0 and γ > 0, it
follows that 〈|vi|2〉 = 2T in the steady state, where we intro-
duced the “temperature” as T := ε/2γ .

It becomes easier to understand the behavior of the
model by introducing the amplitude Ai and the phase θi

as vi = Ai(cos θi, sin θi ). In terms of Ai and θi, (1) can be
expressed as

∂t Ai = −γ Ai + ε

2Ai
+ √

εξA
i , (6)

Ai∂tθi = −λ
∑
j∈Bi

A j sin(θi − θ j ) + √
εξθ

i . (7)

Here, ξA
i := ξ 1

i cos θi + ξ 2
i sin θi and ξ θ

i := −ξ 1
i sin θi +

ξ 2
i cos θi where the multiplication is interpreted in the Itô

sense [31]. Note that (7) has the form of the random-bond
XY model with asymmetric coupling. If Ai is frozen uni-
formly in space, the system exhibits the Kosterlitz-Thouless
transition [32–34]. Therefore, we can say that this model is
a modified XY model with amplitude (energy) fluctuations.
We emphasize that, in contrast with the standard XY model,
the detailed balance is broken in our model by the amplitude
fluctuations. The absence of the detailed balance is necessary
for the cascade transfer to occur in the steady state.

In the following, we use the property that the energy dissi-
pation and injection act at large and small scales, respectively.
Let Ki ≡ 	−1

i be the energy injection scale. Since the injection
due to the noise ξ a

i acts with uniform strength on each Fourier
mode, Ki can be defined, for instance, as

Ki := 2π

L

1

Nd

N/2∑
n1=−N/2+1

· · ·
N/2∑

nd =−N/2+1

√
n2

1 + · · · + n2
d , (8)

where L := Na. The energy injection due to the “thermal
noise” mainly acts at scales 
	i. Similarly, let Kγ ≡ 	−1

γ be
the dissipation scale. This scale may depend on the friction
coefficient γ and dissipation rate γ 〈|vi|2〉 = ε. Therefore, Kγ

is defined as Kγ := γ 3/2ε−1/2 [35–37]. We thus expect that the
dissipation is dominant at scales �	γ . Note that Kγ → 0 as
γ → 0.

Main result. Let �(k) be the scale-to-scale energy flux,
which represents the energy transfer from scales >k−1 to
scales <k−1. (The precise definition is given below.) In the
steady state, �(k) becomes scale independent in the inertial
range Kγ 
 k 
 Ki,

�(k) 
 −ε < 0. (9)

Since �(k) is negative, (9) states that the model exhibits
an inverse energy cascade; i.e., the energy is transferred
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conservatively and continuously from small to large scales.
Correspondingly, the equal-time correlation function C(�) :=
〈vc

i v
c
l 〉, where � := ri − rl and ri denotes the position of site i,

follows a power law:

C(�) ∼ 1

16
(λa2)−1ε	2 for 	i 
 	 
 	γ . (10)

From (10), the one-dimensional energy spectrum E (1D)(k)
reads

E (1D)(k) ∼ C(λa2)−1εk−3 for Kγ 
 k 
 Ki, (11)

where C is a positive dimensionless constant.
Numerical simulation. We here present the results of nu-

merical simulation for the case d = 2 [30]. Time integration
is performed using the simplest discretization method with
�t = 0.01. The initial value of va

i is set as va
i (0) = √

ε�W a
i ,

where {�W a
i } denotes the independent Wiener processes with

variance �t . The parameter values are chosen as λ = 1,
ε = 0.002, and γ = 0.001 so that T = 1. The system size
is fixed as N = 1024 with a = 1. In this case, the injection
and dissipation scales are estimated as Kia 
 2.41 and Kγ a 

1 × 10−3, respectively. Note that Ki does not increase but
approaches a constant value as N increases.

Figure 2(a) shows the scale dependence of the scale-to-
scale energy flux �(k) at different times. As expected from the
result (9), �(k) is negative and scale independent in the iner-
tial range Kγ 
 k 
 Ki. The magnitude of �(k) in the inertial
range is on the order of ε, i.e., �(k)/ε 
 −1, which is consis-
tent with (9). Furthermore, the scale range over which �(k) is
nearly constant extends to larger scales as time increases. This
result also supports that the energy is continuously transferred
from small to large scales. In Fig. 2(b), we plot the one-
dimensional energy spectrum E (1D)(k) for the same times as
in Fig. 2(a). In the inertial range, E (1D)(k) follows the power-
law ∝k−3, which is consistent with the theoretical prediction
(11). At scales smaller than the injection scale Ki, E (1D)(k) is
proportional to k. This result implies that the “equipartition of
energy” is realized for small scales �Ki. We can also confirm
the existence of the inverse energy cascade by noting that the
spectrum extends to larger scales as time passes. Note that
the range over which �(k) is flat does not exactly correspond
to the range over which E (1D)(k) ∝ k−3. This discrepancy is
similar to that observed in ordinary fluid turbulence [38].

Derivation of the main result. Let v̂a
k be the discrete Fourier

transform of va
i with k := 2πn/L, where n1, n2 ∈ {−N/2 +

1, . . . , 0, 1, . . . , N/2}. We define the low-pass filtering opera-
tor by

P<K : vi �→ v<K
i :=

∑
|k|<K

v̂keik·ri , (12)

where
∑

|k|<K denotes the sum over all possible k that satisfy
|k| < K . This operator sets to zero all Fourier components
with a wave number greater than K . By applying this operator
to both sides of (1) and taking the average, we obtain the
low-pass filtered energy balance equation,

∂t
1

2

〈∣∣v<K
i

∣∣2〉 = −�(K ) − γ
〈∣∣v<K

i

∣∣2〉
+√

ε
〈
v<K

i ◦ ξ<K
i

〉
, (13)

FIG. 2. Scale dependence of (a) the scale-to-scale energy flux
�(k)/ε and (b) the energy spectrum E (1D)(k) with T = λ = 1 and
γ = 0.001 at different times. The dashed-dot and dotted lines repre-
sent the power-laws ∝k−3 and ∝k, respectively. The inset shows the
compensated energy spectrum λa2ε−1k3E (1D)(k) where the solid line
represents C = 1/2.

where

�(K ) := −λ

〈
v<K

i · P<K

[∑
j∈Bi

R(vi ) · v j

]〉
(14)

denotes the scale-to-scale energy flux. Note that only �(K )
includes the contribution from the Fourier modes with |k| �
K because of the nonlinear interaction. The dissipation
mainly acts at scales �	γ , and it follows that γ 〈|v<K

i |2〉 

γ 〈|v<Kγ

i |2〉 
 γ 〈|vi|2〉 for Kγ 
 K . Similarly, because the in-
jection mainly acts at scales 
	i, 〈v<K

i ◦ ξ<K
i 〉 
 0 for K 


Ki. Therefore, in the steady state, we obtain

�(K ) = −γ
〈∣∣v<K

i

∣∣2〉 + √
ε
〈
v<K

i ◦ ξ<K
i

〉

 −γ 〈|vi|2〉
= −ε < 0 for Kγ 
 K 
 Ki. (15)

The model thus exhibits the inverse energy cascade; i.e., the
energy is transferred conservatively from small to large scales
in the “inertial range” Kγ 
 K 
 Ki. Note that the above ar-
gument is essentially the same as that for the two-dimensional
fluid turbulence [35–37,39].
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We now determine the functional form of the energy spec-
trum. To this end, we express the energy flux in terms of
the velocity correlation function as in the derivation of the
Kolmogorov 4/5 law [8]. We first note that �(K ) can be
rewritten as

�(K ) = −∂t
1

2

〈∣∣v<K
i

∣∣2〉∣∣∣∣
NL

= −
∑
|k|<K

1

N2

∑
r j−rl

e−ik·(r j−rl ) ∂t
1

2

〈
vc

jv
c
l

〉∣∣∣∣
NL

, (16)

where ∂t |NL denotes the time evolution due to the nonlinear
term. By taking the continuum limit, (16) can be expressed as

�(K ) = −
∫

|k|<K

d2k
(2π )2

∫
d2� e−ik·�ε(	)

= −
∫ ∞

0
K d	 J1(K	)ε(	). (17)

Here, J1 is the Bessel function of the first kind, and we have
assumed the homogeneity ε(�) := ∂t 〈vc(�)vc(0)〉/2|NL =
∂t 〈vc(r j )vc(rl )〉/2|NL and isotropy ε(�) = ε(	) with � := r j −
rl . We now substitute (17) into the relation (15) to find∫ ∞

0
dx J1(x)ε

( x

K

)

 ε for Kγ 
 K 
 Ki. (18)

By taking first the limit γ → 0 (Kγ → 0) and then the limit
K → 0, we obtain, for large 	 [8],

ε(	) 
 ε, (19)

where we have used the identity
∫ ∞

0 dx J1(x) = 1. A simple
expression for ε(	) can be obtained by noting that vi tends
to align with

〈〈
vi

〉〉
:= ∑

j∈Bi
v j/4 because of the nonlinearity

of the model. In other words, for the angle αi between v̂i :=
vi/|vi| and

〈〈
vi

〉〉
/|〈〈vi

〉〉|, we conjecture that αi 
 1 in the
steady state. Therefore, by assuming that each angle between
v̂i, and its nearest-neighbor v̂ j is on the order of αi 
 1, we
find that

Rab(vi )
〈〈
vb

i

〉〉 = 〈〈
va

i

〉〉 − v̂a
i

∣∣〈〈vi
〉〉∣∣ cos αi


 〈〈
va

i

〉〉 − v̂a
i

∣∣〈〈vi
〉〉∣∣


 〈〈
va

i

〉〉 − va
i + v̂a

i

(
Ai − 〈〈

Ai
〉〉)

. (20)

Since {Ai} are independent and identically distributed random
variables, we obtain from (20) that

∂t
1

2

〈
vc

jv
c
l

〉∣∣∣∣
NL

= 2λ
[〈
va

l Rac(v j )
〈〈
vc

j

〉〉〉 + 〈
va

j R
ac(vl )

〈〈
vc

l

〉〉〉]

 2λ

[〈
vc

l

[〈〈
vc

j

〉〉 − vc
j

]〉 + 〈
vc

j

[〈〈
vc

l

〉〉 − vc
l

]〉]
,

(21)

for |r j − rl | > a. Note that
〈〈·〉〉 − · is the discrete Laplacian.

Therefore, ε(	) in (19) can be expressed in terms of C(	) :=
〈vc(r j )vc(rl )〉,

4λa2

(
∂2

∂	2
+ 1

	

∂

∂	

)
C(	) 
 ε. (22)

It follows from this equation that

C(	) ∼ 1

16
(λa2)−1ε	2 for 	i 
 	 
 	γ . (23)

Correspondingly, the asymptotic behavior of the one-
dimensional energy spectrum E (1D)(k) in the inertial range
reads

E (1D)(k) ∼ C(λa2)−1εk−3 for Kγ 
 k 
 Ki, (24)

where C is a dimensionless positive constant.
Concluding remarks. One of the fundamental properties

of cascades that we have not discussed here is scale locality
[40–42]. An energy cascade is scale local if modes that make
a significant contribution to energy transfer at each scale are
limited to those in the vicinity of that scale. From the fact that
the energy flux and spectrum gradually extend to larger scales
as time passes (see Fig. 2), it seems that the inverse cascade
is scale local. However, a numerical study of scale locality
implies that it is not scale local [43], although there remains
a problem of how to define the scale locality. A more detailed
study on the scale locality should be carried out in the future.

Interestingly, the behavior of the energy spectrum
E (1D)(k) ∝ k−3 at large scales is also observed in atmospheric
turbulence. In the upper troposphere and lower stratosphere,
E (1D)(k) ∝ k−5/3 at scales between 10 and 500 km whereas
E (1D)(k) ∝ k−3 at scales between 500 and 3000 km [39,44–
49]. We also note that turbulent behavior similar to that of
our model is found in so-called spin turbulence [20–25] and
Fibonacci turbulence [50]. It would thus be interesting to
investigate the relationship between these systems and our
model.

In conclusion, we constructed a modified XY model in
which cascade transfer emerges. Because this inverse cas-
cade induces the non-Kolmogorov spectrum E (1D)(k) ∝ k−3,
it represents a different universality class from standard fluid
turbulence. We thus hope that our model triggers further in-
vestigation of cascade transfer in various systems, such as
condensed matter, active matter, and other statistical mechan-
ical systems.
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