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Time scaling of entanglement in integrable scale-invariant theories
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In two-dimensional isotropic scale-invariant theories, the time scaling of the entanglement entropy of a
segment is fixed via the conformal symmetry. We consider scale invariance in a more general sense and show
that in integrable theories in which the scale invariance is anisotropic between time and space, parametrized by
z, most of the entanglement is carried by the slow modes. At early times entanglement grows linearly due to
the contribution of the fast modes, before smoothly entering a slow mode regime where it grows forever with
t

1
1−z . The slow-mode regime admits a logarithmic enhancement in bosonic theories. We check our analytical

results against numerical simulations in corresponding fermionic and bosonic lattice models and find extremely
good agreement. We show that due to the dominance of the slow modes in these non-relativistic theories, local
quantum information is scrambled independent of z in a stronger way, compared to their relativistic counterparts.
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I. INTRODUCTION

Understanding the dynamics of entanglement is a central
problem on the interface of statistical physics, condensed-
matter physics, quantum field theory (QFT), quantum in-
formation, and gravitational physics. Among a wide set of
theoretical questions tied with this interdisciplinary topic are
thermalization and relaxation of many-body systems, dynam-
ics of quantum phase transitions, and evaporation of black
holes (see, e.g., Ref. [1]). Besides these theoretical interests,
in recent years the revolutionary experiments with cold atoms
have made it possible to experimentally probe different fea-
tures of closed quantum systems (see, e.g., Ref. [2]).

In the QFT context, the conformal symmetry is strong
enough to fix the dynamics of entanglement for certain sub-
regions in two-dimensional conformal field theories (CFT)
[3,4]. A related question is: how about the dynamics of en-
tanglement in nonrelativistic scale-invariant theories in two
(and higher) dimensions? The symmetry groups admitting
anisotropic scale-invariance are not powerful enough to fix
the dynamics. Despite this fact, we show that it is possible
to learn important lessons about entanglement dynamics in
(anisotropic) scale-invariant integrable theories, utilizing the
celebrated quasiparticle (QP) picture [4,5].
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Our main focus is on two-dimensional theories with the
dispersion relation

ω = kz, (1)

where z is positive and z �= 1 [6]. These theories are invariant
under Lifshitz scaling, which is interesting partially due to the
symmetry structure of quantum critical points [7]. Our main
focus is on z > 1. We study the dynamics of entanglement
entropy (EE) and mutual information (MI) followed by a
quantum quench. The only relevant scale in this problem is
the one in the prequench state, which we denote by m0. This
scale is basically identified with the parameter that we take it
to vanishes after the quench. We consider m0 to be finite in
our analysis and all physical quantities are compared with this
scale. In our analysis we denote the k < m0 modes as slow
modes and the k > m0 modes as fast modes. The scope of
these modes after the quantum quench is illustrated in Fig. 1.

II. DOMINANCE OF THE SLOW MODES

We consider integrable models with the dispersion relation
(1) and use the QP picture, uplifted with the integrability
knowledge of the final steady state [4,5] to understand the
dynamics of entanglement. The EE of a connected interval
of length � is given by

S(t ) = 2t
∫ k∗

�

0
dk s(k)v(k) + �

∫ ∞

k∗
�

dk s(k), (2)

where v(k) is the group velocity of the QPs given by v(k) =
∂ω/∂k = z kz−1, s(k) denotes the individual contribution of
modes with momentum k to the entropy, and

k∗
� =

(
�

2zt

) 1
z−1

(3)
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FIG. 1. After the quantum quench at t = 0, before and after t∗ ≡
m1−z

0 �/2z, the fast and the slow modes carry the entanglement. For
z > 1 the role of the slow modes is dominant and vice versa for z <

1.

is a characteristic momentum corresponding to time t , in
which k > k∗

� has been saturated before t while k < k∗
� still

contribute to the time evolution. This k∗
� is a decreasing func-

tion of time and k∗
� (t∗) = m0. For t < t∗ the fast modes only

contribute to the dynamics and afterwards the slow modes take
this role. The role of the slow modes stands until infinite time,
though there is no (finite) saturation time in these theories as
apposed to relativistic scale-invariant cases.

In integrable theories, the state of the system will finally
relax to a generalized Gibbs ensemble. This fixes s(k) in
terms of the expectation value of the number operator in the
prequench state as [8]

2π s(k) = −nk ln nk ± (1 ± nk ) ln(1 ± nk ), (4)

where the upper and the lower signs correspond to bosonic
and fermionic theories.

Our analysis is quite general for theories with Eq. (1). In
order to perform explicit calculations, we consider two family
of bosonic and fermionic theories as the prototypes to study
anisotropic scale-invariant fixed points. These theories are
generalizations of Klein-Gordon and Dirac fermion theories
defined as [9]

Sb = 1

2

∫
dtd�x

{
φ̇2 − φ

[
(−�)z − m2z

]
φ
}
, (5)

S f = 1

2

∫
dtd�x �̄

(
iγ 0∂t + i�

z−1
2 γ · ∂ − mz

)
�, (6)

where the bosonic theory is defined for integer values of z,
the fermionic theory is defined for odd values of z, and both
theories are invariant under Lifshitz scaling (t, x) → (λzt, λx)
when m → 0. The explicit forms of s(k) for bosonic and
fermionic theories in our case of interest are given by

nk,b = 1

4

( ω

ω0
+ ω0

ω

)
− 1

2
,

nk, f = 1

2
− 1

2

ω

ω0
. (7)

We explicitly study these theories in two-dimensional space-
time, though the analysis is generalizable to higher dimen-
sions for spherically symmetric entangling regions [10].

III. DYNAMICS OF ENTANGLEMENT ENTROPY

As a warm up, s(k) is depicted in these theories in Fig. 2.
Although these nonrelativistic theories are conceptually dif-
ferent from their relativistic counterparts, in which an upper
bound exists on the group velocity of the propagating modes
[4,11], these density plots show that s(k) enjoys an effective
light-cone structure. The entropy is expected to be dominantly
affected by the slow modes, populated close to the time axis

FIG. 2. Density plot of s(k) for bosonic theory followed by a
mass quench, on the t-x plane for z = 1 and 2. For z = 1 all modes
propagate on the edge of the light cone. For z = 2, s(k) is large for
the slow modes while it almost vanishes for the fast modes. We set
m0 = 1 in these plots. The structure is similar for z > 2. Fermionic
theories have the same behavior in a squeezed scale.

[12]. In the following we explicitly analyze the role of fast
and slow modes separately and confirm our analysis with
numerical checks.

A. Fast modes

The fast modes contribute to the entropy in the early steps
of the evolution, namely, for t < t∗. The larger the value of z
is, the more the velocity of all physical modes is increased;
thus, they saturate earlier and this regime becomes shortened.
In other words t∗ decreases for larger values of z. In this
regime we consider the expansion of s(k) around small m0/k.
The crucial point is that for t � t∗ we have k∗ 	 m0, and all
of the fast modes contribute to the linear growth of the EE
through the lower bound of the first integral. Based on this,
considering infinite order of this expansion leads to

Sfast
b/ f (t ) = cb/ f mz

0 t + · · · , (8)

where cb = (π − 2)/4 and c f = 1/2 for bosonic and
fermionic theories, respectively. Note that these coefficients
are independent of z for z > 1 and their values are equal to
the corresponding relativistic counterparts (see, for instance,
Ref. [14]). Such a behavior is expected since the structure of
the fast modes in s(k) does not very much depend on z, though
one should be careful that the regime of validity of this linear
scaling is shortened by a factor of 1/z.

The structure of the ellipsis in Eq. (8) is given by m2nz
0 t

1−2nz
1−z ,

where t ≡ t/�z, m0 ≡ m0�, and n = 1, 2, . . . stands for the
expansion order. The scaling of these terms are suppressed
with the factor of �

z−2nz
z−1 . The first-order correction in fermionic

theories is given by

Sfast
f ,1 (t ) = 2z2αzm

2z
0

(1 − 2z)
t

1−2z
1−z

[
f1 − z ln

(
2

1
z z t

m1−z
0

)]
, (9)

where f1 = (1 − z)(8z − 3)/2(1 − 2z) and αz =
(2z)

1
1−z /(2π z). The same order of correction vanishes

in bosonic theories due to the structure of s(k). These
subleading terms (mixed up with their counterparts among
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FIG. 3. QP prediction for the evolution of EE in scalar and
fermionic theories. The dashed vertical line corresponds to t = t∗.
The inner panels show the same graph with focus on t < t∗. We
have set m0 = 1 in both plots and consider −∞ < k < +∞. We
set Mb = 0.7 and Mf = 0.95. In the fast-mode regime of the scalar
theory, the linear term well approximates almost all the t < t∗ region,
though in the fermionic theory we need to add at least one higher-
order correction. The structure of these plots is the same for any
higher values of z.

the slow modes) provide a smooth transition between these
two regimes around t ∼ t∗.

B. Slow modes

The effect of the slow modes drastically changes the story
of entanglement propagation in theories with z > 1 compared
to relativistic scale-invariant theories, z = 1. Due to the com-
paratively large s(k) of the slow modes, they carry most of
the entanglement in these theories, starting to contribute from
t = t∗ and standing until infinite time [15]. In this regime, the
first-order expansion around small k/m0 well approximates
s(k) for k < Mb/f � m0. With this approximation we find

Sslow
b (t ) = b1 � Mb + αz t

1
1−z

[
b2 − z ln

(
2z t

m1−z
0

)]
+ · · · ,

Sslow
f (t ) = ln 2

2π
� Mf + ln 2 αz(1 − z) t

1
1−z + · · · ,

(10)

where 2π b1 = ln(mz
0ez+1/4Mz

b) and b2 = 1 − z2 + (z −
1)(ln 4 − 1). This t

1
1−z function presents the scaling of EE

during most of the evolution, namely, t∗ < t < ∞. Note that
the logarithmic term in the bosonic theories is originated from
the logarithmic divergence of s(k) of the very slow modes in
these theories [16].

In Fig. 3 we show how our results in Eqs. (8), (9), and
(10) lie on the top of the exact (numerically found) values of

Eq. (2). The good approximation for the slow-mode regime
in bosonic models is due to the blow up of s(k) for the
very slow modes, and in the fermionic models it is due to
the slowly varying nature of s(k) in the slow-mode regime.
Though Eq. (10) works quite well, it is straightforward to
work out the higher orders at which their structure is given
as m2nz

0 t
1+2nz

1−z , with n = 1, 2, . . . The exact structure of the
entropy around t ≈ t∗ is complicated due to the mixture of
the subleading effects of both regimes.

C. Numerical results

In this section we report how numerical results for the EE
in the vacuum state of the bosonic and fermionic theories
match with the aforementioned analytic predictions. To find
these numerical results we use the correlation matrix method
for Gaussian states [18] to study quantum quenches from a
massive theory to a scale-invariant theory. We consider regu-
larized versions of Eqs. (5) and (6) on an infinite lattice given
by (see Ref. [19] and the Supplemental Material [20] for this
Letter)

Hb = 1

2

∑
n

[
π2

n + (∂zφn)2 + m2zφ2
n

]
, (11)

Hf =
∑

n

[
− i

2

(
�†

nγ 0γ 1∂z�n − H.c.
) + mz�†

nγ 0�n

]
,

(12)

where ∂z fn = ∑z
k=0(−1)z−k

zCk fn+k and zCk is the binomial
coefficient [21]. Numerical results corresponding to a single
interval are presented in Fig. 4. We find a very good agreement
between numerical results and the QP predictions for a much
wider family of parameters which we have not presented here.
The time scaling of EE after boundary state quench and the
entropy production in bosonic and fermionic Gaussian ther-
mofield double states have been also found to be in a very
good agreement with the QP predictions [10].

We would like to note that, besides our analytic results
found from integrability conditions, the t

1
1−z scaling can be

justified semianalytically, via combining direct analytic cal-
culations for small subsystems with numerical results, without
using integrability conditions [10].

IV. AN IMPLICATION ON SCRAMBLING OF LOCAL
QUANTUM INFORMATION

As an important implication of the dominance of slow
modes, we focus on MI as an important correlation measure,
the dynamics of which quantifies how local quantum infor-
mation scrambles (spreads) over larger subregions [23,24]. In
CFTs, although MI generally depends on the full spectrum
of the theory, the pattern of its time evolution is well known.
Putting aside the cases of very large central charges where the
QP picture fails [26], in these theories (even more generally
in any integrable theory in which most of the entanglement is
carried by the fastest QP), MI exhibits a peak at some finite
time. More precisely, when there is an upper bound on the
QP velocities, MI starts to rise after a certain time and peaks
at tp = (d + �)/(2vm), where vm is the velocity of the fastest
mode, � denotes the subregions’ size, and d is the separation
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FIG. 4. Numerical results for the evolution of EE in scalar and
fermionic theories. The inner panels show how numerics approach
QP prediction as the system size is increased. We have set m0 = 1/2
in the upper panel and m0 = 1/4 in the lower panel. We have used
an infrared (IR) cutoff of m = 10−5 for the scalar theory. These
numerics are found on a lattice where −1 < k < +1. The fitted func-
tions for the scalar case are 0.32 t (green) and 0.32 − t−1(0.125 +
0.047 ln t ) (yellow). The fitted functions for the fermionic case are
0.31 t − 1.59 t5/2 (green) and 0.076 − 0.016 t−1/2 (yellow).

between them. Moreover, MI starts to decay to zero after this
peak.

It may seem that for z > 1, since there is no upper bound
on the velocity of the propagating modes, MI should instantly
peak and then start to decay. As we have shown in the previous
section, the slow modes carry most of the entanglement, so
the story is different with mostly known cases including CFTs
where z = 1. In theories obeying Eq. (1), the MI starts to
grow very slowly right after the quench (due to the very
fast modes which carry a tiny amount of entanglement) and
smoothly starts to rise significantly after the slower modes
start to contribute. There is a peak due to the effect of the
slow modes, and afterwards the peak decays slowly.

We analyze the dynamics of MI similar to the previous
section. The QP expression for MI [5] can be expressed as

I (t ) =
∫ k∗

d+�

k∗
d

dk s(k)

(
vt − d

2

)

+
∫ k∗

d+2�

k∗
d+�

dk s(k)

(
d

2
+ � − vt

)
. (13)

Since the whole resulting expression may not be informative,
we only present it for far apart subregions, namely, d 	 �,
where the peak of MI occurs at mz

0 tp ≈ rz−1
b/ f

m0 d
2z , where rb =

(4ez−1)
1
z and r f = ( 2z+1

ln 4 )
1
2z . MI at the peak is given by

I (tp) ≈ gb/ f
z

(z − 1)

�2 m0

d
, (14)

FIG. 5. MI for scalar theory (the structure is very similar to
that for fermionic theories) for z = 2. The upper panel shows QP
prediction for the existence of the peak and how it decays with
d . In the lower panel we show the agreement between numerical
calculations and QP analysis. We show how the numerics approach
the QP prediction in � → ∞ for d/� = 10. The tiny peak on the
horizontal axis slightly before ∼3 is a lattice effect.

where gb = 1/rb and g f = 1/r2z+1
f . The MI peak decays with

d−1, which is stronger than the relativistic case decaying with
d− 1

2 , due to the dominance of the fast modes [23]. Interest-
ingly this scaling is independent of the dynamical exponent
over all z > 1 theories. In Fig. 5 we have shown the evolution
of MI predicted by the QP picture and confirmed numerically.
The decay of the MI itself is also independent of the dynami-
cal exponent in these theories given by

I f (t > tp) ≈ ib/ f
z αz

(z − 1)

�2

d2

( t

dz

) 1
1−z

, (15)

where ib = 1 and i f = ln 2. The bosonic case is again en-
hanced with a logarithmic correction as well.

We would like to also comment that entanglement revivals
are also able to capture scrambling of local quantum infor-
mation into global degrees of freedom [27]. By considering
these theories on a compact spatial dimension, we find results
very similar to those for MI for the shortening of the deep
entanglement revival of a connected interval, which will be
reported in future work [10].

V. CONCLUSIONS AND DISCUSSIONS

We analyzed the dynamics of entanglement in integrable
scale-invariant theories where the slow modes play a crucial
role. It is worth noting that, in long-range interacting models
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(see, e.g., Ref. [28]) which admit strict Lieb-Robinson bounds
[29], certain experiments verify the existence of propagating
modes which violate Lieb-Robinson bounds [30]. The scale-
invariant theories studied here are similar to this family of
models and our theoretical explanation is in complete agree-
ment with the aforementioned experiments. The striking role
of slow modes in these theories is tempting for the existence
of Lieb-Robinson bounds. Proving such a bound would be a
very interesting future direction. Another important direction
is exploring the dynamics of EE near anisotropic quantum
critical points (see Ref. [31] for a recent related study).

Finally we would like to compare our results with holo-
graphic studies in Lifshitz theories. Holographic studies result
in linear growth and sharp saturation of EE, similar to rela-
tivistic theories [32], which is totally different from the results
presented in this Letter corresponding to mass quench (as
well as boundary state quench and entropy production in
thermofield double states). It is worth noting that these
dynamical results are not the first example of such a dis-

agreement; holographic results for EE in Lifshitz theories
also do not capture the z dependence of EE in static cases.
An important question to pursue in future works would be
the investigation of the origin of such disagreements be-
tween nonrelativistic field theories and the corresponding
holographic models.
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