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Dynamic heterogeneity is expected to be a key concept for understanding the origin of slow dynamics near the
glass transition. In previous studies, quantitative evaluations of dynamic heterogeneity have been attempted using
two different routes, i.e., the speckle patterns in scattering experiments or the four-body correlation functions of
microscopic configuration data obtained from molecular dynamics simulations or real-space observations using
confocal microscopy. However, the physical relationship between these dynamic heterogeneities obtained using
different methods has not been clarified. This study proposes a connection between dynamic heterogeneities
characterized based on speckle patterns and those obtained from four-body correlations. The validity of the
relationship is also clarified.
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The glass transition is a common phenomenon observed in
metals, polymers, molecular and ionic liquids, and colloidal
dispersions [1,2]. However, this phenomenon has remained
a mystery in many areas for decades, such as the dramati-
cally slow dynamics near the glass transition upon cooling;
consequently, it is recognized as an open problem in physics.
As an example of this problem, a dramatic increase in the
viscosity of a liquid near its glass transition temperature is
experimentally observed. One suggestion for the cause of
this dynamic behavior is the cooperative movement of the
molecules in a supercooled liquid. Dynamic heterogeneity
(DH) has been proposed in previous studies [3,4] to under-
stand the mechanism underlying these molecular dynamics.
This concept characterizes the heterogeneity of molecules’
mobility dependent on their positions in a liquid. The idea
of DH is helpful for understanding the origin of the slow
dynamics near the glass transition.

Two methods for evaluating DH have been reported to date
to quantify the phenomenon of the cooperative movement of
molecules; one is based on a four-body correlation function S4

(Approach 1), and the other is based on the scattering intensity
I of the speckle patterns measured in a scattering experiment
(Approach 2).

In Approach 1, one calculates the function S4 from micro-
scopic configuration data generated in molecular dynamics
(MD) simulations or obtained from real-space observations
using confocal microscopy. Many studies on this topic have
been reported since approximately 2000 [5–15], where several
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observables were used to measure the mobility of each particle
to evaluate the DH. However, this method is not applicable
in experiments because the information of each individual
particle cannot be measured. Therefore, researchers have not
yet clearly determined whether the results obtained using
Approach 1 are valid in reality due to a lack of any method
for confirmation. On the other hand, in Approach 2, one eval-
uates DH based on the scattering intensity I measured in a
scattering experiment, such as x-ray photon correlation spec-
troscopy (XPCS). According to previous studies [4,16–18],
DH is quantitatively evaluated using the scattering intensity
of speckle patterns measured in this type of experiment. Using
this method, one can determine the actual extent of the hetero-
geneity of the dynamics. This approach has also been applied
to computer simulations, such as MD simulations. However,
to our knowledge, no reports have directly compared the two
approaches yet after some earlier related studies, found for
example in [19].

Based on the background described above, we have stud-
ied the relation between Approaches 1 and 2. The relation
between these two approaches must be determined because
they may focus on different physical origins. We applied
the two approaches individually to the same system via MD
simulations and evaluated the DH intensity, representing the
amplitude of the spatio-temporal variations of slow/fast do-
mains, using each approach independently to investigate this
relation. We examined the dependence of the extent to which
a state is supercooled on the intensity by setting different
temperatures, representing states ranging from a normal liquid
to a highly supercooled liquid. In this paper we will present
the two types of DH intensity calculated using Approaches 1
and 2 and discuss the relation between them by comparing the
corresponding results.

This paper is organized as described below. After our MD
simulation model is briefly explained, we quantitatively show
the methods we used to evaluate DH with this model. The
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results of the two evaluation approaches introduced above,
i.e., by calculating the four-body correlation function and
using the scattering intensity, are also presented. Finally, we
discuss the relation between the two approaches by comparing
their results and summarize our findings.

We have conducted MD simulations in three dimensions to
investigate the origin of the slow dynamics in a supercooled
state. Our simulation model is composed of two types of
particles, 1 and 2, whose sizes and masses differ. The mass
ratio between these two types of particles is set to m2/m1 = 2,
and the size ratio is set to σ2/σ1 = 1.2, which is effective for
preventing crystallization of the system at low temperatures
[20]. In this model, a repulsive soft-sphere potential exists
between particles:

vαβ (r) = ε(σαβ/r)12, σαβ = (σα + σβ )/2, (1)

where r is the distance between two particles and σα and σβ

are the radii of particles α, β ∈ 1, 2, respectively. ε represents
the strength of the pair interaction, which is truncated at
r = 3σαβ . Spatial distance, time, and temperature are mea-
sured in units of σ1, τ0 = (m1σ

2
1 /ε)1/2 and ε/kB, respectively.

We set the number of particles in the whole system to
N = 1 × 105, which includes equal numbers of particles of
each type, i.e., N1 = N2 = 5 × 104, and we fix the density to
ρ = N/V = 0.8/σ 3

1 . Then, the system length is L = V 1/3 =
50.0 σ1. We set different temperatures of kBT/ε = 0.772,
0.473, 0.352, 0.306, and 0.267 to assess the dependence of
DH on the degree of supercooling of the system. Note that
the freezing point of the corresponding binary mixture is
approximately T = 0.772 [20], below which the system is in
a supercooled state.

In previous studies [5], the intensity of DH has been quan-
titatively evaluated by calculating the four-body correlation
function S4,k . In this approach, one obtains S4,k from an order
parameter Qk , which indicates the mobility (or immobility)
of each particle in the system. Several forms of the order
parameter have been suggested [5–15]. In this study we define
it as

Qk (r, t, τ ) = 1

N
〈
σ 3

j

〉
N∑

j=1

δDjσ
3
j δ[r − r j (t )], (2)

Q̂k (q, t, τ ) = 1

N
〈
σ 3

j

〉
N∑

j=1

δDjσ
3
j e−iq·r j (t ), (3)

where r j is the position vector of particle j in real space
and the bracket 〈· · ·〉 denotes the ensemble average over all
particles. The hat ˆ denotes a value in Fourier space, and q
is the wave vector corresponding to the position vector r. In
this order parameter, the particle mobility deviation δDj is
weighted by each particle position considering each volume
ratio σ 3

j /〈σ 3
j 〉. We quantified the mobility deviation by defin-

ing the immobility of particle as

Dj = Dj (km, t, τ ) = 〈
e−ik·	r j (t,τ )〉

km
,

δDj = 〈D〉t − Dj, where D ≡ 1

N

N∑
j=1

Dj . (4)

Here 	r j (t, τ ) is the displacement of particle j
between time = t and t + τ . k represents the wave vector

FIG. 1. The spatial distributions of Dj are drawn on an xy cross-
sectional plane of the 3D system as a function of the time interval τ

from a fixed initial time t . The upper panels correspond to kBT/ε =
0.772, and the lower panels correspond to kBT/ε = 0.267. Accord-
ing to Eq. (4), the value of Dj changes from 1 to 0 as the particle
displacements increase with time interval τ (increasing from left
to right). Although Dj uniformly is assigned a value of 1 (black)
at τ = 0 or 0 (white) for τ � τα , notable heterogeneity appears at
intermediate time intervals τ � τα , where darker (or lighter) colors
represent the heterogeneous domains in which the dynamics of the
particles are faster (or slower) than the average. Clearly the variance
(intensity) of the heterogeneity is larger at kBT/ε = 0.267 than at
0.772 around τ � τα .

corresponding to the particle displacement 	r. The
average 〈· · ·〉km is calculated for all wave vectors k that
are consistent with the periodic boundary condition and
satisfy km − δkm � |k| � km + δkm, with km ≡ 2π and
δkm = 0.001km for Eq. (4) or 0.01km for Eq. (8), assuming
isotropy of the system. Dj is defined as any quantity that
represents the mobility (or immobility) of particle j from
time t to t + τ . However, in this study, we use the definition
in Eq. (4) for better consistency with the latter method that
uses the scattering intensity. In this definition, the value of Dj

changes from 1 to 0 when the displacement of the particle
|	r j (t, τ )| becomes comparable to its radius in the time
interval τ . The mean value averaged over time t is presented
as 〈· · ·〉t . Therefore, δDj is the deviation of the mobility of
particle j from the mean value. We provide the reader a more
intuitive understanding of the order parameter Qk (r, t, τ )
by illustrating the spatial distributions of Dj at three time
intervals, τ/τα = 10−2, 1, and 10, from a fixed initial time t
in Fig. 1 for a normal liquid (kBT/ε = 0.772) and a highly
supercooled liquid (kBT/ε = 0.267). Here the α relaxation
time τα is defined using the self-intermediate scattering
function Fs(km, τα ) = e−1. Note that Dj is discrete in real
space, and thus the plotted values are obtained through local
spatial averaging. A darker (or lighter) color corresponds to
the regions with less (or more) mobile particles; hence, an
increase in the color variation indicates that more significant
DH appears in the system. Accordingly, from these examples,
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DH becomes more intense at lower temperatures, i.e., when
the system is highly supercooled.

Based on the order parameter Qk , we define the four-body
correlation function as

S4,k (q, τ ) = 〈Q̂k (q, t, τ )Q̂k (−q, t, τ )〉t,q, (5)

where 〈· · ·〉t,q is the average over time t and the angular
components of q. The function S4,k represents the spatial
correlation of the mobility of each particle in the time interval
τ . The correlation length ξ4,k (τ ) and the intensity χ4,k (τ ) are
obtained by fitting S4,k (q, τ ) to the Orstein-Zernike (OZ) form

S4,k (q, τ ) = χ4,k (τ )

1 + q2ξ 2
4,k (τ )

(6)

at small wave numbers q [8,21]. The values ξ4,k and χ4,k

thus represent the characteristic size and the intensity of DH,
respectively.

We have quantified χ4,k by calculating the four-body corre-
lation function S4,k using the method described in the previous
paragraphs, and we plot the results against the time interval τ

in Fig. 2(a) at different temperatures kBT/ε = 0.267, 0.306,
0.352, 0.473, and 0.772. This figure shows that the DH inten-
sity χ4,k reaches a peak χ∗

4,k , which increases in height with
decreasing temperature T . Therefore, the dynamics of the sys-
tem become more heterogeneous when it is more supercooled.
In addition, we show the dependence of the particle immobil-
ity averaged over all particles and time, 〈D〉t = 〈 1

N

∑N
j=1 Dj〉t ,

which is identical to the self-intermediate scattering function
Fs(km, τ ), in Fig. 2(b). As the temperature decreases, Fs(km, τ )
exhibits drastic slowing with a more stretched form, consistent
with previous studies [21,22]. In the same figure, the standard
deviation σD =

√
〈D2〉t − 〈D〉2

t is shown with the light col-
ored areas. The relaxation time τα clearly corresponds to the
time interval when the DH intensity peaks τ ∗

4,k .
In previous experimental studies [4,16–18], the DH in-

tensity was reportedly quantified based on speckle patterns
measured in scattering experiments, such as XPCS. The
method discussed in the previous paragraph cannot be ap-
plied to these experiments in practice; therefore, DH must be
quantified from speckle patterns as an alternative. While the
scattering intensity I is feasible to measure experimentally,
we calculate it in our MD simulations using the following
equation:

I (k, t ) = ρk(t )ρ−k(t ), (7)

where ρk(t ) is the Fourier transform of the particle density
ρ(t ) = ∑N

j=1 σ 3
j δ[r − r j (t )] and k is a wave vector. Fig-

ure 3(a) illustrates the scattering intensity in a speckle pattern
calculated using Eq. (7). The pattern is plotted on a 2D
plane with kz = 0 at kBT/ε = 0.267. The scattering intensity
I varies with the vector k, and it reaches a sharp peak with a
magnitude of approximately |k| = km = 2π . One can confirm
this peak in Fig. 3(b), where the intensity averaged over the
angular components of k, 〈I (k, t )〉k , is plotted.

Using the scattering intensity I (k, t ), we calculate the cor-
relation function between the speckle patterns at two different
times using the following equation [23,24]:

CI = CI (km, t, τ ) = 〈I (k, t )I (k, t + τ )〉km

〈I (k, t )〉km
〈I (k, t + τ )〉km

. (8)

FIG. 2. (a) The DH intensity χ4,k as a function of the time
interval τ at different temperatures (kBT/ε = 0.267, 0.306, 0.352,
0.473, and 0.772). As the temperature decreases, the peak intensity
χ∗

4,k becomes more prominent, and the time interval when the peak
occurs, τ ∗

4,k , is prolonged. (b) The particle immobility averaged over
all particles in the system and time t , 〈D〉t = Fs(km, τ ). Ten times
the standard deviation at each time interval ±10σD is shown with the
light colored areas around the average immobility 〈D〉t .

This function CI represents the relaxation process of the scat-
tering intensity at time t . In the presence of DH, CI fluctuates
with time t , and thus the DH intensity is quantified by calcu-
lating the variance of this relaxation function [17,18]. Then,
the normalized variance is defined as follows:

χk (τ ) = 〈C2
I 〉t − 〈CI〉2

t

〈CI (km, t, τ = 0)〉2
t

� 〈C2
I 〉t − 〈CI〉2

t

4
. (9)

The value χk (τ ) represents the intensity of DH at time interval
τ and indicates the extent to which the particle dynamics vary
locally.

We have quantified the DH intensity χk (τ ) based on the
scattering intensity I (k, t ) as described above, and the results
are shown in Fig. 4(a). We have investigated the values at
different temperatures kBT/ε = 0.267, 0.306, 0.352, 0.473,
and 0.772. Note that the value χk directly calculated from
the equation contains some statistical noise due to the limited
number of sampling points on the speckle pattern nk. We have
applied a correlation procedure to the values by extrapolation
to the case of 1/nk → 0 (nk → ∞) to overcome this prob-
lem of spatial resolution [17,18,25]. The values approximated
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FIG. 3. (a) The speckle pattern at a temperature of
kBT/ε = 0.267. The scattering intensity I (k, t ) in the speckle
pattern reaches a peak on a circle at approximately |k| = km = 2π .
(b) The scattering intensity averaged over k vectors of the same
magnitude 〈I (k, t )〉k . The peak is confirmed in this figure.

using the method described above are plotted in the figure.
χk (τ ) reaches a peak at each temperature, and the height of
this peak becomes more prominent in a more supercooled
state. These results are similar to those obtained using the
approach based on the four-body correlation function and in
previous experimental studies [18,25,26]. We also show the
two-time correlation function calculated using Eq. (8) and
averaged over time t , 〈CI〉t − 1, in Fig. 4(b). This averaged
correlation represents the relaxation process of the scattering
intensity I . Similar features are observed when comparing
these results and the intermediate scattering functions shown
in Fig. 2(b). We also show the standard deviation σCI =√

〈C2
I 〉t − 〈CI〉2

t with the light colored areas for each tempera-
ture. Note that the values are multiplied to make the standard
deviations easier to visualize. As shown in this figure, DH
becomes most significant around the relaxation time τ ∗ of
〈CI〉t − 1, which is almost equivalent to the α relaxation time
τα in Fig. 2. Additionally, the peak intensity χ∗

k = χk (τ ∗)
increases when the system is in a more supercooled state, as
also shown in Fig. 4(a).

Finally, we discuss the relation between the two ap-
proaches for evaluating the DH presented above. According to
previous experimental studies [17,18,25], the temporal two-
time correlation function at t , CI − 1, is approximated as
a stretched exponential exp [−[γ (t )τ ]μ(t )], and the variance
of CI (km, t, τ ) arises from the fluctuations of the two dy-
namic parameters γ (t ) and μ(t ). Additionally, the temporal
self-intermediate scattering function D(km, t, τ ) has also been
approximated in a similar form [21]. Therefore, we assume
that both the mean value and the variance of CI − 1 are ap-
proximately equal to those of D, i.e.,

〈CI〉t − 1 � 〈D〉t = Fs(km, τ ) and σ 2
CI

� σ 2
D. (10)

FIG. 4. (a) The DH intensity χk as a function of the time interval
τ at different temperatures (kBT/ε = 0.267, 0.306, 0.352, 0.473, and
0.772). As the temperature decreases, the intensity peak χ∗

k becomes
more prominent, and the time interval when the peak occurs, τ ∗,
becomes later. (b) The two-time correlation function averaged over
time t with the same time interval τ , 〈CI〉t − 1. Ten times the standard
deviation at each time interval ±10σCI is shown with the light colored
areas around the average immobility 〈CI〉t − 1.

Comparing Figs. 2(b) and 4(b), the present simulation data
support the validity of these assumptions. From Eqs. (3), (4),
(5), and (6), the DH intensity is approximated as

χ4,k (τ ) = lim
q→0

S4,k � 〈D2〉t − 〈D〉2
t . (11)

From Eqs. (9), (10), and (11) we can relate the two types of
DH intensity obtained from the four-body correlation function
and from the scattering intensity as follows:

χ4,k (τ ) ≈ 4χk (τ ). (12)

As summarized in the Supplemental Material [27], the same
result derived from Eq. (12) is also obtained using an equa-
tion based on the Siegert relation [28] with a slightly different
choice for Dj from Eq. (4).

We have checked the relation presented in Eq. (12) by com-
paring the results obtained using both approaches, as shown in
Fig. 5. We show the dependence of χ4,k and 4χk on the time
interval τ , with different colors corresponding to different
temperatures. Note that χ4,k is illustrated using circles, and χk

is illustrated using crosses. As shown in Fig. 5, the heights of
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FIG. 5. A comparison between the DH intensities obtained from
the four-body correlation function χ4,k , and those obtained from the
speckle patterns 4χk , as functions of the time interval τ at different
temperatures (kBT/ε = 0.267, 0.306, 0.352, 0.473, and 0.772). The
two sets of results show good agreement with each other.

the peaks χ∗
4,k and 4χ∗

k are approximately the same at each
temperature. Therefore, we conclude that Eq. (12) is valid
to some extent and that the two approaches discussed above
focus on the same physical property of the system.

In conclusion, in previous studies, only one of the follow-
ing two routes has been used to quantitatively characterize DH
in any particular case: (1) using four-body correlation func-
tions or (2) using the speckle patterns observed in scattering
experiments. In the present study we successfully computed
the intensity of DH using both methods by analyzing the
same simulation data and compared the results in detail as
functions of the temperature and the separation time. We
confirmed a high level of agreement between the two sets of
results throughout the whole parameter range of the present
MD simulations. The present findings provide strong evidence
for physical consistency between the DHs characterized using
routes (1) and (2).
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Research (JSPS KAKENHI) under Grants No. JP 20H00129
and No. 20H05619.

[1] C. A. Angell, Formation of glasses from liquids and biopoly-
mers, Science 267, 1924 (1995).

[2] L. Berthier and G. Biroli, Theoretical perspective on the glass
transition and amorphous materials, Rev. Mod. Phys. 83, 587
(2011).

[3] M. D. Ediger, Spatially heterogeneous dynamics in supercooled
liquids, Ann. Rev. Phys. Chem. 51, 99 (2000).

[4] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W.
van Saarloos, Dynamical Heterogeneities in Glasses, Colloids,
and Granular Media (Oxford University Press, Oxford, 2011),
Vol. 150.

[5] H. Mizuno and R. Yamamoto, Dynamical heterogeneity in a
highly supercooled liquid under a sheared situation, J. Chem.
Phys. 136, 084505 (2012).

[6] S. C. Glotzer, Spatially heterogeneous dynamics in liquids:
Insights from simulation, J. Non-Cryst. Solids 274, 342 (2000).

[7] B. Doliwa and A. Heuer, Cooperativity and spatial correlations
near the glass transition: Computer simulation results for hard
spheres and disks, Phys. Rev. E 61, 6898 (2000).
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