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Isochrons, phase response and synchronization dynamics of tunable photonic oscillators
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The global structure of the isochrons and the corresponding phase response curves are investigated and
numerically computed for the fundamental photonic oscillator consisting of an optically injected laser. Their
crucial role in the synchronization dynamics under a periodic modulation of the injection beam is shown,
along with their capability for providing conditions for stable phase locking and periodic outputs with discrete
equidistant spectra in the form of frequency combs.
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Optically injected lasers (OILs) are widely used tunable
photonic oscillators of fundamental technological importance
that have been studied, both theoretically and experimentally,
for more than four decades. They are well known for a remark-
ably rich set of complex dynamical features such as different
types of instabilities, cascades of bifurcations, multistability,
and chaotic transitions [1–3]. Among them, the existence of
self-sustained oscillations corresponding to stable limit cycles
(LC) has the most fundamental role in terms of their practical
applications as tunable photonic oscillators. Their dynamical
complexity enables cutting-edge applications related to secure
chaos [4,5] and quantum [6] communications, rf over fiber
communications [7–9], and optical sensing [10].

The periodic modulation of either the current of the slave
laser or the injection beam provides an additional degree of
freedom that introduces new interesting dynamics in OILs
[11–14], including Arnold-type locking with additional re-
gions of stable frequency locking and generation of devil’s
staircases [15]. These features suggest a great potential for
the utilization of semiconductor lasers with modulated optical
injection as simple signal processing units [16] and has driven
a recently increasing research interest related to the dynamics
of frequency combs injected to OILs [17–22].

The key issue in the dynamical response of such peri-
odically stimulated limit-cycle oscillators is their ability for
synchronization between the internal characteristic frequency
of the limit cycle and the external driving frequency, in order
to produce a phase-locked periodic output [23–26]. The syn-
chronization dynamics have global characteristics that have
been met in a large variety of physical or technological sys-
tems ranging from biological systems [27–30] to electronic
circuits [23]. A stable limit cycle is uniquely characterized
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in terms of its synchronization properties by the foliation
of its basin of attraction as partitioned by its corresponding
isochrons that determine the phase response of the system
and allows for the study of synchronization dynamics in terms
of one-dimensional circle maps [28,30,31]. Although these
concepts have been widely used and proved extremely useful
in biological oscillators, their utilization in optical oscillators
has not been explored yet.

In this work, we consider and numerically calculate the
phase space structure of the isochrons for limit cycles of an
OIL and obtain their corresponding phase response. More-
over, we utilize them in order to study the synchronization
dynamics of OIL subjected to periodic modulation of the
injected beam in terms of a simple circle map capable of
governing the dynamics of the original system and predicting
conditions for periodic output under a periodic modulation in
the form of a frequency comb.

The fundamental model describing the dynamics of the
normalized complex electric field Y and the normalized excess
carrier density Z in an optically injected laser is

dY

dt
= (1 + iα)Y Z − i�Y + η,

T
dZ

dt
= P − Z − (1 + 2Z )|Y |2,

(1)

where η ≡
√

τsGN
2 τpκEin is the normalized injection rate, � ≡

ντp is the normalized detuning between the frequency of
the master laser and the frequency of the free-running slave
laser, α is the linewidth enhancement factor, T is the ra-
tio of carrier to photon lifetimes, and P is the normalized
excess electrical pumping rate of the slave laser. The rate
equation model (1) can be derived from first principles [1,32]
and has been systematically checked against experimental
data with an unprecedented agreement [33–35]. Moreover,
the complex dynamical features supported by the model [2]
have been confirmed by several experimental studies [36–40].
The model can also be expressed either in terms of the ampli-
tude R and phase ψ (Y = Reiψ ) or the real x and imaginary
y parts (Y = x + iy), of the complex electric field, with the
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latter given as

dx

dt
= (x − αy)Z + �y + η,

dy

dt
= (y + αx)Z − �x,

T
dZ

dt
= P − Z − (1 + 2Z )(x2 + y2).

(2)

This system is well known for its dynamical complex-
ity, including a rich set of qualitatively different dynamical
features, including stable and unstable steady states (fixed
points) and self-sustained oscillations (limit cycles), as well
as self-modulated quasiperiodic (torus) and chaotic (strange
attractors) oscillations, with all of them related through a web
of bifurcations [2]. Among these features, in this work, we
are mostly interested in conditions under which the system
supports a self-sustained oscillation corresponding to a stable
limit cycle. A basic bifurcation analysis is needed in order to
identify the relevant parameter ranges in terms of injection
rate η and detuning � as well as other coexisting dynamical
objects. The latter, being unstable, cannot be observed as op-
erating states of the system; however, they have a crucial role
in determining the phase space structure of the isochrons and
the phase response of the stable limit cycle of interest, as will
be shown in the following sections and in the Supplemental
Material [41].

For the case where the system exhibits a stable limit cycle,
any initial condition within its basin of attraction asymp-
totically evolves to the limit cycle. After a transient time
interval, all solutions coincide with the limit cycle oscillatory
solution, but with a different relative phase of oscillation, in
general. The locus of the initial conditions, within the basin
of attraction of the limit cycle, that have the same asymptotic
phase is known as an isochron [28,30,31]. In fact, isochrons
partition the basin of attraction of a limit cycle according
to the most interesting quantity characterizing each initial
condition, namely its asymptotic phase. The complement of
the basin of attraction of the limit cycle with respect to the
whole phase space is called the phaseless set. Initial con-
ditions within the phaseless set cannot be characterized by
an asymptotic phase value, since they do not evolve to the
stable limit cycle. Phaseless sets consist of coexisting fixed
points and limit cycles along with their stable manifolds and
their basins of attraction, the boundaries of which crucially
determine the structure of the isochrons of the limit cycle
of interest in the phase space of the system. By introducing
these two notions an invariant foliation of the n-dimensional
phase space is constructed, consisting of (n − 1)-dimensional
hypersurfaces, i.e., the isochrons.

The isochrons of a system cannot be computed analyti-
cally in general. Their numerical computation is a challenging
problem, especially for nonplanar dynamical systems. Most
numerical techniques are based either on backward integration
for a large number of initial conditions [28,30] or numerical
continuation [42]. However, backward integration methods
suffer from instabilities, especially for strongly stable limit
cycles for which backward integration results in strongly di-
verging reverse orbits, whereas the application of numerical
continuation methods presents difficulties in systems with
dimension higher than two. In this work, we utilize a quali-

FIG. 1. (a) Phase space of the system (2) for α = 3, T =
125, P = 0.1 and (η,�) = (0.0025, 0.06). x points denote fixed
points; green (thick) and red (light) curves denote stable and unstable
limit cycles, respectively. (b) Isochron foliation of the 3D stable
manifold of the LC.

tatively different alternative method, based on the Koopman
operator formalism and the computation of Fourier averages
evaluated along trajectories [43], which is more appropriate
for our three-dimensional system.

The structure of the isochrons in the phase space for each
stable limit cycle along with its dependence on the phaseless
set associated with coexisting stable dynamical objects is
systematically shown in the Supplemental Material [41]. For
the case shown here in Fig. 1 α = 3, T = 125, P = 0.1 and
(η,�) = (0.0025, 0.06) the phaseless set includes, in addition
to the one-dimensional stable manifold of the saddle, a coex-
isting unstable limit cycle, which significantly complicates the
form of the isochrons.

The complex structure of the isochrons is of paramount
practical importance, since it underlies the dynamical re-
sponse of the system under perturbations due to either external
modulation or coupling with another oscillating system and
determines its synchronization properties. For a system pe-
riodically evolving along a stable limit cycle, any stimulus
shifts the system from one point of the phase space to a
new point having a different asymptotic phase, in general.
The phase response curve (PRC) is defined as the difference
between the new (θnew) and the old (θ ) phase:

PRC(θ ) = θnew − θ. (3)

Positive (negative) values of the PRC correspond to phase ad-
vances (delays) with respect to the periodic oscillation. Taking
into account the amplitude (A) of the stimulus the generalized
PRC is defined as PRC(A, θ ). Depending on the amplitude
of the perturbation the PRC can be either continuous (small
amplitude) or discontinuous (large amplitude), characterized
as type 1 or type 0, respectively.

L012039-2



ISOCHRONS, PHASE RESPONSE AND SYNCHRONIZATION … PHYSICAL REVIEW RESEARCH 4, L012039 (2022)

FIG. 2. (a) Isochron foliation on {Z = 0} section of the phase
space of (2) for � = 0.06 and η = 0.0025. (b) PRC for perturbation

x = (0.1, 0, 0). The blue line corresponds to T0 − Ts � 12.0601,
while the green line corresponds to T0 − T ′

s � −40.4135. (c) Time
series of perturbed x coordinate. Each solid line corresponds to the
evolution of x after every perturbation (denoted by a black arrow)
and the green dashed line corresponds to the free-running trajectory.
Gray areas represent the first and last part of transient stages, while
black areas are the part of the transient stage that is not presented for
simplicity reasons.

For the case of a periodic sequence of stimuli with period
Ts, applied on a system with a limit cycle of period T0, if the
nth stimulus is applied when the phase is θn with θn ∈ [0, T0),
the phase at the moment of the next stimulus (n + 1) is

θn+1 = [θn + PRC(θn) + Ts] mod T0. (4)

This equation defines a Poincaré mapping of the interval
[0, T0) to itself, which allows one to determine the evolution
of the phase of the system as an “orbit” {θn} if the phase at the
first application of the stimulus θ1 is known. If the orbit {θn}

converges to a fixed point or a closed orbit, synchronization
or phase locking with the external perturbation takes place,
respectively. The fixed points of the Poincaré mapping (4) are
given by the equation

PRC(θ ) = T0 − Ts, (5)

showing that synchronization takes place when the stimulated
phase shift compensates for the difference of the two periods
(detuning). A direct consequence is that the amplitude of the
PRC determines the margin for the detuning in order to have
synchronization. Moreover, the slope of the PRC determines
the stability of the fixed point and the corresponding synchro-
nized state, with the condition for stability expressed as

−2 < PRC′(θ ) < 0, (6)

with the prime denoting differentiation with respect to θ

[30]. The stability condition is of crucial importance for
synchronization in realistic configurations where the modu-
lated injection signal may deviate from exact periodicity due
to noise.

In the following, we focus on the case of parameter
values (η,�) = (0.0025, 0.06) for which the limit cycle and
its corresponding isochrons are depicted in Fig. 1 and we
consider a periodic sequence of stimuli corresponding to a
modulation of the injection rate η according to Dirac comb
(periodic sequence of delta functions) shifting the system in
phase space along the direction of the vector 
x = (0.1, 0, 0)
as shown in Fig. 2(a), where the isochrons of the system are
depicted in a Z = 0 cut of the phase space. The projection of
the limit cycle is shown and the point where it intersects the
plane Z = 0 is denoted by B0, whereas the point B denotes
the point where the system is shifted after the stimulus. The
corresponding phase response curve for such perturbation is
depicted in Fig. 2(b). It is worth emphasizing that the form
of the PRC is determined by the structure of the isochrons in

FIG. 3. Synchronization of phase due to the application of a Dirac comb of period Ts � 87.5264. (a) Convergence of the phase orbit with
initial point θ1 � 24.8219; (b) Poincaré phase map of the orbit shown in (a); (c) synchronization on the limit cycle; (d) time series of the
perturbed x coordinate as obtained from the original system (2).
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FIG. 4. Complex evolution of phase due to the application of a Dirac comb of period T ′
s = 140. (a) Complex phase orbit with initial point

θ1 � 24.8219; (b) Poincaré phase map of the orbit shown in (a); (c) phase evolution on the limit cycle; (d) part of the irregular aperiodic time
series of the perturbed x coordinate as obtained from the original system (2).

the phase space. Fixed points of the respective Poincaré map
(4) correspond to points of intersection between the PRC and
the horizontal line at the level T0 − Ts, with parts of the PRC
fulfilling the stability condition (6) denoted with a continuous
line. The result of the application of a Dirac comb on the
asymptotic phase is shown in Fig. 2(c).

The period of the limit cycle, for the aforementioned
parameter values, is T0 � 99.5865. In order to have synchro-
nization, the Dirac comb must have a period Ts close to T0,
according to Eqs. (5) and (6). For Ts � 87.5264 the horizontal
line y = T0 − Ts intersects the curve PRC(θ ) at two points
at θu � 72.4447 and θs = 90, corresponding to an unstable
and a stable fixed point of the Poincaré map, respectively, as
shown in Fig. 2(b). In such a case, starting from a random
initial phase (excluding the unstable fixed point θu) the orbit
of the Poincaré map converges to θs, as shown in Fig. 3(a) and
the cobweb plot in Fig. 3(b). By applying the same periodic
perturbation with a period 100T0 + Ts in order to omit the
transient stage of the system evolving towards the limit cycle,
the phase converges to the predicted values [Fig. 3(c)] and
synchronization takes place as shown in Fig. 3(d).

The importance of the information provided by the phase
response with respect to synchronization becomes obvious if,
ignoring the restrictions imposed by the PRC(θ ), we choose
T ′

s = 140 for which there is no intersection between the line
y = T0 − T ′

s as shown in Fig. 2(b). In this case the orbit of
the Poincaré map is complex, as shown in Fig. 4(a) and the
cobweb plot Fig. 4(b), and the application of an external
perturbation with period 100T0 + T ′

s results in an irregular
aperiodic evolution of the system, as shown in Figs. 4(c) and
4(d). This complex evolution can be either quasiperiodic or
chaotic depending on whether the PRC is type 1 (as in this
case) or type 0 [26].

It is worth emphasizing the spectral differences between
a synchronized and an irregular aperiodic evolution of the
system. Under the absence of any external perturbation
the system evolves periodically (after an initial transient stage)

according to its limit cycle. In such a case the operating state
of the system has a discrete spectrum with frequency peaks

FIG. 5. Power spectral density |X ( f )|2 for (a) the periodic orbit
corresponding to the unperturbed limit cycle, (b) the synchronized
time series corresponding to Fig. 3(d), and (c) the irregular aperiodic
time series corresponding to Fig. 4(d).
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corresponding to harmonics of the fundamental frequency of
the limit cycle ( f0 = 1/T0), due to the nonharmonic form of
the limit cycle, as shown in Fig. 5(a). For the synchronized
case, corresponding to Fig. 3, the spectrum is again discrete
and forms a finer comb with major peaks corresponding to
the harmonics of f0 and significantly high secondary peaks at
the harmonics of the frequency of the external perturbation
fs = 1/(kT0 + Ts), with k being the number of limit cycle
periods (k = 100 in the aforementioned cases) between the
external stimuli which can be utilized for the control of the
spacing between the frequencies of the comb, as depicted in
Fig. 5(b). In contrast to the synchronized state, in the non-
synchronized state the frequency spectrum contains additional
spectral components and does not form a clear frequency
comb, as shown in Fig. 5(c).

In conclusion, the global structure of the isochrons in
the three-dimensional phase space has been considered and
numerically calculated for the fundamental oscillator consist-
ing of an optically injected laser. The drastic dependency of
the isochrons on the phaseless sets of the system is shown

for characteristic cases of stable limit cycles. Based on the
isochrons’ structure, the phase response of the system has
been obtained and the corresponding phase response curves
have been calculated. The latter were shown to have a crucial
importance for the study of synchronization dynamics of the
original three-dimensional dynamical system with modulated
injection beam in terms of a reduced one-dimensional cir-
cle map. The case of a Dirac comb modulation has been
considered for illustration purposes, whereas the method di-
rectly applies also to any periodic sequence of pulses with
finite duration and arbitrary shape. The study of the dy-
namics of the circle map was proved capable of defining
stable phase-locking conditions for the original system, en-
suring a periodic output with a discrete spectrum consisting
of equidistant lines in the form of a frequency comb. These
results clearly show the importance of the isochrons and
the corresponding phase response curves for the study of
the complex synchronization dynamics and the capabilities
for tunable frequency comb generation in driven photonic
oscillators.
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