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Ergodicity is a fundamental principle of statistical mechanics underlying the behavior of generic quantum
many-body systems. However, how this universal many-body quantum chaotic regime emerges due to inter-
actions remains largely a puzzle. This paper demonstrates using both heuristic arguments and a microscopic
calculation that a dephasing mechanism, similar to Altshuler-Aronov-Khmelnitskii dephasing in the theory of
localization, underlies this transition to chaos. We focus on the behavior of the spectral form factor (SFF) as
a function of “time” t , which characterizes level correlations in the many-body spectrum. The SFF can be
expressed as a sum over periodic classical orbits and its behavior hinges on the interference of trajectories
related to each other by a time translation. In the absence of interactions, time-translation symmetry is present
for each individual particle, which leads to a fast exponential growth of the SFF and correspondingly loss of
correlations between many-body levels. Interactions lead to dephasing, which disrupts interference, and breaks
the massive time-translation symmetry down to a global time-translation/energy conservation. This in turn gives
rise to the hallmark linear-in-t ramp in the SFF reflecting Wigner-Dyson level repulsion. This general picture
is supported by a microscopic analysis of an interacting many-body model. Specifically, we study the complex
SYK2 + SYK2

2 model, which allows to tune between an integrable and chaotic regime. It is shown that the
dephasing mass vanishes in the former case, which maps to the noninteracting complex SYK2 model via a time
reparameterization. In contrast, the chaotic regime gives rise to dephasing, which suppresses the exponential
ramp of the noninteracting theory and induces correlations between many-body levels.
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There is a widely held quantum chaos conjecture [1,2],
which states that the spectral statistics of quantum chaotic
systems can be universally described by random matrix theory
(RMT) [3–7]. This conjecture is supported by extensive exper-
imental [8–14] and numerical studies [15–17], and has been
used as one of the diagnostics of quantum chaos. However,
despite numerous efforts, the theoretical understanding of the
underlying general mechanism behind this conjecture is far
from complete. There have been several studies, which use
the semiclassical periodic orbit theory [18] to prove that the
spectral form factor—a probe of two-level statistics—indeed
follows the RMT prediction for single-particle quantum
chaotic systems [19–24], including disordered metals [25,26].
This approach has also been generalized to certain many-body
systems with a well defined semiclassical limit [27–30]. In
the context of the period-orbit theory, the Wigner-Dyson level
statistics stems from constructive interference between peri-
odic paths related by a time translation. This time-translation
argument has also been employed in studies of Floquet quan-
tum circuits [31–37], periodically kicked interacting spin
and fermionic chains [2,38,39], and the Sachdev-Ye-Kitaev
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(SYK) model [40]. An alternative method widely used in
the investigation of spectral statistics of chaotic systems is a
field theoretical technique known as the nonlinear σ model,
in supersymmetric [41–44], replica [45–47], and Keldysh
[48] frameworks. This method allows the calculation of
single-particle spectral correlations, but generalization to a
microscopic analysis of many-body level statistics of interact-
ing models [49–51] remains a challenge.

In this Letter, we show that the emergence of many-
body quantum chaos from the noninteracting (single-particle
chaotic) model can be generally understood in terms of
dephasing of single-particle trajectories mediated by interac-
tions. This dephasing mechanism has some parallels with the
Altshuler-Aronov-Khmelnitskii dephasing [52] in the weak
localization (WL) theory of disordered metals [53,54], but
with the characteristic energy level separation [∼t−1 in the
SFF, K (t )] playing the role of the temperature T in the context
of WL. Specifically, we show that just like in the theory of
WL, the behavior of the SFF is governed by a collective
diffuson-like mode, which acquires an infrared cutoff in the
presence of interactions as follows:

D0(�τ )
interactions−−−−−−−−→ e−Fφ (�τ ) D0(�τ ). (1)

Here D0 represents a gapless collective mode in the non-
interacting case, which in the Fourier space has the form
D0(ω, q) ∝ (−iω + Dq2)−1 in the case of a disordered metal
(D is the diffusion coefficient) and D0(ω) ∝ 1/ω in the RMT
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case of “zero-dimensional diffuson.” �τ , ω, and q are the
time, frequency, and momentum coordinates, respectively.
The extra factor e−Fφ (�τ ) acquired by the interacting collective
mode represents the exponential suppression in time stem-
ming from the dephasing processes [the dephasing function
Fφ (�τ → ∞) = +∞]. The specific form of the dephasing
function Fφ depends on the dimension and other details
[55,56].

Below, we provide a brief qualitative review of the theory
of WL and periodic-orbit theory of chaos and describe heuris-
tic arguments underlying our main result. The second part of
the paper is devoted to a microscopic σ -model analysis of
an interacting many-body model, where we demonstrate the
appearance of a dephasing cutoff of the relevant collective
modes in the ergodic regime and the absence thereof in the
integrable limit.

In a weakly disordered metal, the probability for a particle
to diffuse from one point to another in the semiclassical limit
can be expressed as [53,54]

P =
∣∣∣∣∣
∑

p

Ape
i
h̄ Sp

∣∣∣∣∣
2

=
∑

pq

ApA∗
qe

i
h̄ Sp− i

h̄ Sq , (2)

where the summation runs over all classical paths, labeled by
p, connecting these two points. Sp and Ap represent, respec-
tively, the action and amplitude of the path p. In Eq. (2), the
diagonal terms (p = q) contribute to the classical probability
and are associated with the Drude conductivity, while the
off-diagonal terms (p �= q) correspond to the quantum inter-
ference correction. The interference between a generic pair
of paths vanishes after disorder averaging due to the strong
sensitivity of the action Sp to the impurity potential. However,
there exist pairs of coherent paths, such as the self-intersecting
ones in Fig. 1(a), whose actions are identical in the absence
of magnetic field, spin-orbit interactions, and particle-particle
interactions. Their interference can no longer be neglected,
and results in the WL correction to the conductivity. The WL
correction to the conductivity is related to the probability of
finding such self-intersecting paths [53,54]

δσWL ∝ −
∫ ∞

τel

dτC(r, r; τ ) ∝ −
∫ ∞

τel

dτ
1

(Dτ )d/2
. (3)

Here C(r, r′; τ ) represents the Cooperon (or the diffuson in
the particle-particle channel), which is the Green function of
the diffusion equation. Specifically, C(r, r; τ ) measures the
return probability of a diffusing particle that starts at and
returns to the same point r in time τ . τel indicates the elastic
scattering time and d is the dimension of the system. At
this level, WL represents a single-particle effect and formally
diverges in d � 2.

In the presence of interactions, the coherence between
the time-reversed paths is reduced through the emissions of
particle-hole pairs, and is completely destroyed when the
traverse time exceeds the dephasing time τφ . It has been
emphasized in Ref. [54–56] that the dephasing is dominated
by real inelastic collisions with energy transfer τ−1

φ 	 ω 	
T . Inelastic processes with energy transfer ω 
 T are not
allowed since quasiparticles with energy ε ∼ T measured
from the Fermi surface cannot lose energy ω 
 T due to the
Pauli blocking. When energy transfer ω 	 τ−1

φ , the action

FIG. 1. Qualitative picture of the dephasing mechanism for
(a) weak localization and (b) periodic-orbit theory of chaos. Panel
(a) depicts two self-intersecting paths p (black lines) and q (red
dashed line) of a particle moving in a disordered metal. The two
paths coincide everywhere except for the loop, which is traversed in
the opposite directions by them. The interference between such pair
of paths leads to the WL correction to conductivity. In the presence of
interactions, emissions of the electron-hole pairs (orange wavy line)
result in the destruction of the phase coherence between the pair of
paths and consequently a reduction in their quantum interference.
Panel (b) shows two periodic paths {p} and {q} of a many-body
system in a chaotic medium. The ith plane represents the phase space
of the ith particle, and the black solid and red dashed lines in that
plane describe the corresponding particle’s trajectories for periodic
paths pi and qi, respectively. Paths {p} and {q} are related by a
“individual time translation” and differ only in the starting positions
(denoted by black and red dots, respectively). In the noninteracting
case, the interference between such pair of paths is essential to the
exponential-in-t ramp in the SFF. In the presence of interactions,
particle-particle collisions (orange wavy line) destroy the coherence
unless the pair is related by a “global time translation”, leading to the
suppression of the exponential ramp.

difference between the time-reversed pair can be ignored and
therefore their coherence is preserved. Dephasing processes
result in the appearance of a mass term in the Cooperon (τ−1

φ ),
which cuts off the WL integral [Eq. (3)] in the infrared limit.

To understand the effect of dephasing on spectral statistics,
we now proceed with a sketch of the main idea of the periodic
orbit derivation of the RMT spectral form factor (SFF) in the
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context of single-particle quantum chaos, see Refs. [18,57] for
a more complete review. The SFF measures the correlation
between two energy levels and is defined as

K (t ) = 〈
Tre− i

h̄ Ht Tre
i
h̄ Ht

〉
, (4)

where H is the Hamiltonian of the system and the an-
gular bracket stands for the ensemble averaging. One can
write the analytically continued partition function Tre− i

h̄ Ht =∫
dd r 〈r| e− i

h̄ Ht |r〉 as an integral of quantum propagation
amplitude over the real space position r. The propagation
amplitude, in the semiclassical limit, can be approximated
as a summation over all classical paths that start and end at
the same point r in time t . Integration over r further restricts
the summation to be over those paths whose initial and final
momenta are also identical. As a result, only periodic paths
that return to its starting point in the phase space in fixed time
t need to be retained. Grouping together all periodic paths that
follow the same orbit and differ only in the starting points,
Tre− i

h̄ Ht can be represented by a sum over periodic orbits of
period t [18]:

Tre− i
h̄ Ht =

∑
P

APe
i
h̄ SP , (5)

with AP and SP being the amplitude and action of the orbit
P, respectively. Here orbits that transverse the primitive orbit
different numbers of times are considered as distinct, and the
ones with multiple traversals will be ignored due to exponen-
tial proliferation of the primitive orbits [58]. We emphasize
that each term in Eq. (5) represents the contribution from an
infinite group of periodic paths that are related to each other
by a time translation and share the same amplitude and action.
As a result, the orbit’s amplitude AP contains a factor of t
originating from the integration over all possible time shifts.
Inserting Eq. (5) into the definition of the SFF [Eq. (4)], one
obtains

K (t ) =
〈∑

P,Q

APA∗
Qe

i
h̄ SP− i

h̄ SQ

〉
. (6)

In the absence of any symmetry, the off-diagonal terms (P �=
Q) in Eq. (6) vanishes upon ensemble averaging because of
the highly oscillatory nature of the phases [19]. One can
therefore keep only the diagonal terms (P = Q), whose to-
tal contribution can be obtained using the Hannay-Ozorido
de Almeida sum rule [58] K (t ) = 〈∑P |AP|2〉 
 t/tH , valid
for t larger than the ergodic time but smaller than the
Heisenberg time tH . This leads to the linear ramp of the SFF
as predicted by RMT.

We emphasize that, unlike the diagonal term in Eq. (2),
which is only responsible for the classical probability, the
diagonal contribution to the SFF in Eq. (6) takes into account
the quantum interference between periodic paths connected
by a time translation. More specifically, for each periodic path
p, one has to consider its interference with any path q that is
related to the original one by xq(t ′) = xp(t ′ + �) for arbitrary
time shift � ∈ (0, t ). Here xp(t ′) denotes the phase-space
coordinate at time t ′ for the periodic path p, which obeys
xp(t ) = xp(0). The factor of t in the SFF originates from
the integration over all possible time shifts

∫ t
0 d� = t . We

can therefore see that the universal behavior of the spectral
properties of quantum chaotic systems originates not from

the specific details of the periodic orbits but from the quan-
tum interference between periodic paths related by a time
translation. For integrable systems, Eq. (6) can still be used
to express the SFF except now the family of periodic paths
contributing to each term in Eq. (5) stay on a high dimensional
torus instead of a closed curve in the chaotic case. These
periodic paths are not necessary related by a time translation,
and the above argument, which relies on the integration over
time shift is no longer applicable.

The semiclassical representation of the SFF Eq. (6) can
also be generalized to many-body systems with well-defined
semiclassical limit, and the summation in this case runs over
periodic orbits (or tori for integrable cases) in the many-
body phase space. Before moving to many-body quantum
chaos, let us now consider a system of noninteracting particles
whose single-particle dynamics is chaotic. In the following,
for an illustrative purpose, we ignore exchange statistics (in-
distinguishability of particles) and use a higher dimensional
vector X{p}(t ′) = [x(1)

p1
(t ′), x(2)

p2
(t ′), ..., x(N0 )

pN0
(t ′)] to character-

ize the periodic path in the many-body phase space, where
{p} represents the group of path indices for all particles. Its
element is the individual particle coordinate x(i)

pi
(t ′) in its own

phase space at time t ′, with i being the particle index and N0

the total number of particles. The family of periodic paths
belonging to the same periodic torus can be generated by
individually time translate each single-particle path: x(i)

qi
(t ′) =

x(i)
pi

(t ′ + �(i) ), where each time shift �(i) can take different
value within the regime [0, t ). The special translation where
all time shifts �(i) are identical will be called “global time
translation”. All these periodic paths connected by “individual
time translation” share the same amplitude and action, and as
a result, it is essential to take into account the quantum inter-
ference between all of them, see Fig. 1(b). Counting the total
number of periodic paths within the same torus, one would
estimate that the SFF becomes a polynomial in t at order
N0 instead. This is consistent with the previous study, which
evaluates the SFF of a system of noninteracting fermions pop-
ulating the single-particle energy levels of a N × N random
matrix from a Gaussian unitary ensemble (GUE), and finds a
fast growing exponential-in-t ramp [59,60]. As explained in
the Supplemental Material [60], this exponential ramp is an
approximation to a �N/2� order polynomial in the large N
limit. Based on the periodic orbit discussion above, one can
deduce that the contribution to the SFF is of the order of tN0

(tN−N0 ) when the number of fermions is N0 � �N/2� (N0 >

�N/2�). Taking into account all possible configurations, we
arrive at a polynomial of the form

∑�N/2�
n=1 cntn, consistent

with the analytical result [59,60]. See also Refs. [61,62] for
a calculation of the SFF of an noninteracting Floquet model
whose single-particle evolution over one period is governed
by a Haar random unitary matrix.

Let us now introduce a generic type of interactions be-
tween the particles, which leads to a transition to many-body
quantum chaos. In this case, interactions destroy the phase
coherence between the periodic paths connected by “indi-
vidual time translation” but not those related by “global
time-translation,” which simply implies conservation of total
energy. The dephasing mechanism in this case is analogous
to that in the theory of WL, and the coherence between the
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periodic paths connected by “individual time translation” is
destroyed through the inelastic collisions between particles.
However, the energy transfer ω of the dephasing processes
are no longer required to be much smaller than T (as one
considers now the statistical properties of entire spectrum
and the notion of temperature does not appear in the theory).
Since the number of coherent paths pairs is now significantly
reduced due to the dephasing processes, the exponential ramp
of the noninteracting model is suppressed to a linear one.
As in the case of WL, the destruction of phase coherence is
reflected by a mass acquired by the “inter-replica” diffuson—
the correlator of a particle and a hole governed by the forward
and backward time-evolution operator e−iHt and eiHt , respec-
tively. The presence of the mass in the “inter-replica” diffuson
suppresses its contribution to the SFF.

Focusing on the dephasing mechanism, we compare the
level statistics of an ensemble of chaotic systems with that
of integrable systems, both of which are described by the
following complex SYK2 + SYK2

2 Hamiltonian:

H =
N∑

i, j=1

ψ
†
i hi jψ j + U

2

(
N∑

i, j=1

ψ
†
i Vi jψ j

)2

. (7)

For the chaotic ensemble, h and V are N × N random Hermi-
tian matrices drawn independently from the Gaussian unitary
ensemble (GUE) with the same distribution function

P(M ) ∝ exp
(
− N

2J2
TrM2

)
, M = h,V. (8)

For the integrable case, h = V for each system in the ensemble
and is a N × N GUE matrix that also follows the distribu-
tion function Eq. (8). We consider weak enough interaction
strength U and perform a perturbative calculation in U .

In a previous study [59], we investigated the SFF of the
noninteracting model (U = 0) and found an exponential-in-t
ramp. The eigenenergy E0 of the noninteracting model is sim-
ply related to the eigenenergy E of the interacting integrable
model [Eq. (7) with h = V ] by

E (n) = E (n)
0 + U

2

(
E (n)

0

)2
, (9)

where the superscript n labels the energy level. In the case of
h = V , if one transforms to the basis where the single-particle
Hamiltonian h is diagonal, the many-body Hamiltonian then
acquires the simple form

H =
N∑

i=1

ψ
†
i ξiψi + U

2

(
N∑

i=1

ψ
†
i ξiψi

)2

, (10)

with ξi being the ith eigenvalue of the matrix h. One can see
that the occupation number of each single-particle level is a
conserved quantity, and the h = V case is integrable. The two-
body interactions of the current model is of the SYK2

2 form
and different from that of a previous work by the authors [63].
This explicit form is chosen so that the interactions can be
Hubbard-Stratonovich decoupled via a scalar field (see details
below), in an attempt to simplify the calculation. Moreover,
it allows us to study in parallel the chaotic and integrable
ensembles described by the same Hamiltonian Eq. (7).

We start from the following fermionic path integral repre-
sentation of the SFF [Eq. (4)] of the two ensembles described
by Eq. (7):

K (t ) =
〈∫

D(ψ̄, ψ ) exp

{
i
∑
a=±

∫ t a

0
dt ′[ψ̄a

i (t ′)i∂t ′ψa
i (t ′)

− ζaψ̄
a
i (t ′)hi jψ

a
j (t ′) − ζa

U

2

(
ψ̄a

i (t ′)Vi jψ
a
j (t ′)

)2

]}〉
.

(11)

Here the fermionic field ψa
i carries a replica index a = ± (la-

bels the forward/backward evolution) and a flavor index i =
1, 2, ..., N . It is subject to the antiperiodic boundary condition
ψa(t a) = −ψa(0). ζa = ±1 for a = ±, and t a is defined as
t a = t ∓ iζa0+, where the infinitesimal imaginary increment
∓iζa0+ plays a key role selecting the appropriate saddle points
via spontaneous breaking of unitarity [63]. To focus on the
dephasing mechanism, the infinitesimal imaginary increment
in t a is ignored in the following. Through a standard derivation
[60], we obtain a σ−model representation of the SFF:

K (t ) = 1

Z

∫
Dφe−S0[φ]

∫
DQ exp (−S[Q, φ]),

S0[φ] = −
∑
a=±

iζa

2U

∫ t

0
dt ′(φa

t ′ )2
,

S[Q, φ] = N

2J2
Tr(QFQ) − NTr ln(iσ 3∂t + iFQ). (12)

Here, σ 3 denotes the third Pauli matrix in the replica space,
Z is the normalization constant [60]. The real bosonic field φ

is introduced to decouple the interactions and is subject to the
periodic boundary condition φa

t1+t = φa
t1 , while the Hermitian

matrix field Q decouples the ensemble-averaging generated
interactions and satisfies Qab

t1+t,t2 = −Qab
t1,t2 . F takes different

forms for the chaotic and integrable cases:

F ba,a′b′
t2t1,t ′

1t ′
2

=
{(

1 + φa
t1φ

b
t2

)
1ba,a′b′

t2t1,t ′
1t ′

2
, h �= V,(

1 + φa
t1

)(
1 + φb

t2

)
1ba,a′b′

t2t1,t ′
1t ′

2
, h = V.

(13)

We emphasize that the seemingly small difference in F be-
tween the chaotic and integrable models is responsible for the
strikingly contrasting behaviors of their SFFs.

In the integrable h = V case, one can perform a time
reparametrization:

Qab
t1t2 → Qab

τ a(t1 ),τ b(t2 ), τ a(t1) ≡
∫ t1

0
dt ′(1 + φa

t ′ ), (14)

after which the action becomes that of the noninteracting
theory S[Q, φ = 0] with shifted time t → t + φ̄±. Here φ̄±
is defined as φ̄± ≡ ∫ t

0 dt ′φ±
t ′ . The SFF of the integrable

model is now related to that of the noninteracting model H0

(U = 0) by

K (t ) =
∫
Dφe−S0[φ]〈Tre−iH0 (t+φ̄+ )Tre+iH0(t+φ̄− )〉∫

Dφe−S0[φ]
, (15)

and can be solved using the same approach employed in
Ref. [59].

In Fig. 2, we show the numerical results of the SFFs in the
integrable h = V case for various interaction strengths U . For
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FIG. 2. Numerical results of the SFF K (t ) for the complex SYK2

+ SYK2
2 model [Eq. (7)] in the integrable h = V case and chaotic

h �= V case (inset), plotted in the log-log scale. In both the main
panel and the inset, the noninteracting SFF (red curve) is plotted
for comparison. We set N = 10 and J = 1, and average over 1000
samples.

small interacting strength U , the SFF behaves similarly as its
noninteracting counterpart (red curve), and exhibits a slope,
an exponential ramp as well as a plateau that starts at time
tp ∼ N . At larger U , the exponential ramp disappears and the
SFF exhibits a nonuniversal slope approaching the plateau at
a later time. This late plateau time is due to the fact that the
nonuniversal slope contains a significant contribution from the
slowly decaying disconnected SFF. The SFF for the h �= V
chaotic case is plotted in the inset of Fig. 2. It exhibits a ramp,
which grows much slower and reaches the plateau at a much
later time. We note that, to see the linear in t dependence of
the ramp, a computation of a larger system size is required,
see for example Refs. [64,65] for numerical works studying
the level statistics of similar models.

We emphasize that, for both the chaotic and integrable
ensembles, the action [Eq. (12)] remains invariant under the
aforementioned “global time translation”:

φa
t1 → φa

t1+�a , Qab
t1,t2 → Qab

t1+�a,t2+�b, (16)

where �a can take different values for different replica
index a. For the integrable case, the theory possesses a
larger symmetry group. Under any U (2) rotation applying to

[ Q̄++
nn /(t + φ̄+ ) Q̄+−

nm /
√

(t + φ̄+ )(t + φ̄− )
Q̄−+

mn /
√

(t + φ̄+ )(t + φ̄− ) Q̄−−
mm /(t + φ̄− )

], the reparametrized

action is invariant for any pair of energy indices n, m satisfy-
ing n+1/2

t+φ̄+ = −m+1/2
t+φ̄− .

We next perform a perturbative calculation for both the
chaotic and integrable models. We consider first the integra-
tion over the matrix field Q, in the presence of arbitrary φ. In
this case, the problem becomes similar to that of a quantum
dot in the presence of a time-dependent perturbation [66–69].
Because of the large overall factor N in the action S[Q, φ],
we approximate the integral with the contribution from saddle
points Qsp and the Gaussian fluctuations δQ around them.
Taking variation of the action with respect to Q, we find the
saddle point equation

Qsp = J2(σ 3∂t + FQsp)−1. (17)

The explicit expression for its solution up to order φ2 is
provided in the Supplemental Material [Eqs. (S38) and (S39)]
[60]. At φ0 order, the solution is the noninteracting saddle
point, which in the Matsubara frequency space is given by(

Q(0)
sp

)aa′

nn′ = δnn′δaa′
t

2
(iζaεn + sa

n

√
4J2 − (εn)2). (18)

Here εn = 2π (n + 1/2)/t is the fermionic Matsubara fre-
quency. sa

n can take values of +1 and −1 when |εn| � 2J ,
and for |εn| > 2J is determined by the fact that (Q(0)

sp )aa
nn → 0

in the limit J 	 |εn| [48,70]. There are various saddle points
corresponding to different choices of {sa

n} [63]. Note that here
we obtain an interacting saddle point Qsp in the presence of
arbitrary configuration of φ, in contrast to the noninteracting
saddle (with φ = 0) usually considered in the conventional
Finkel’stein NLσM calculation (e.g., Refs. [63,71]).

The action for the Gaussian fluctuations around any saddle
point Qsp can be expressed as

δS[δQ̃, φ] = N

2
Tr(δQ̃MδQ̃), (19)

where δQ̃ = FδQ [72]. See Eqs. (S58) and (S59) in the Sup-
plemental Material [60] for the explicit expressions for M for
various saddle points. The inverse of the kernel M is related
to the propagator of the Gaussian fluctuation:

Dba,a′b′
t2t1,t ′

1t ′
2
≡ N

〈
δQ̃ba

t2t1δQ̃a′b′
t ′
1t ′

2

〉 = (M−1)ba,a′b′
t2t1,t ′

1t ′
2
. (20)

The corresponding contribution from the Gaussian fluctua-
tions around Qsp to the SFF is proportional to∫

DδQ̃ exp

(
−N

2

∫
δQ̃MδQ̃

)
∝ exp (Tr lnD). (21)

In the following, we will focus on the inter-replica fluc-
tuations (δQab with a �= b) around a special saddle point
Q(±)

sp with sa
n = ±ζa (for |εn| � 2J), whose kernel M assumes

a simple form [60]. The fluctuations around other saddle
points can be examined in an analogous way (although not
as technically straightforward). In the noninteracting the-
ory, the inter-replica fluctuations around Q(±)

sp are massless,
while the intra-replica fluctuations, which contribute only
to the nonuniversal disconnected SFF, are massive. In the
presence of interactions, for the integrable case, the inter-
replica fluctuation propagator (0-dim diffuson) follows an
equation equivalent to that of the noninteracting theory:[ ∓1

2J3
(∂t1 − ∂t2 )

]
Dba,a′b′

t2t1,t ′
1t ′

2
= 1ba,a′b′

t2t1,t ′
1t ′

2
, (22)

consistent with results from time-reparametrization [60]. By
contrast, for the chaotic case, the diffuson equation becomes[ ∓1

2J3
(∂t1 − ∂t2 ) + 1

2J2

(
φa

t1 − φb
t2

)2
]
Dba,a′b′

t2t1,t ′
1t ′

2
= 1ba,a′b′

t2t1,t ′
1t ′

2
. (23)

We emphasize the close resemblance of Eq. (23) to the
Cooperon equations for the interaction-induced dephasing of
WL in disordered systems [52,54,73–75] and perturbation-
induced dephasing of dynamical localization in driven quan-
tum dots [66,67].

While the inter-replica fluctuation remains massless for
the integrable case, it acquires a mass arising from the φ-
dependent term in Eq. (23) for the chaotic case. For simplicity,
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let us now consider the large t limit. The solution to Eq. (23)
can now be expressed as

Dba,a′b′
t2t1,t ′

1t ′
2
= exp (−SD[φ])(D0)ba,a′b′

t2t1,t ′
1t ′

2
,

SD[φ] = ∓J

2

∫ τ

τ ′
dv(φa(u + v/2) − φb(u − v/2))2,

(D0)ba,a′b′
t2t1,t ′

1t ′
2
= ∓s′J3�(s′(τ − τ ′))δ(u − u′)δaa′δbb′ , (24)

where t1,2 = u ± τ/2 and t ′
1,2 = u′ ± τ ′/2. D0 represents the

solution to the noninteracting diffuson equation [Eq. (22)],
and s′ = ∓1 is determined by the boundary condition that
D is nondivergent when |τ − τ ′| → ∞. We can therefore see
that, in contrast to the integrable case, the Gaussian fluctuation
propagator D in the chaotic case acquires an exponential
factor exp(−SD[φ]), which decays with increasing |τ − τ ′|
for almost all possible configurations of φ (except when φa

t ′
is time and replica index independent).

Substituting the Fourier transform of φ in SD[φ] [Eq. (24)],
we find

SD[φ] = ∓ J

2t2

∑
m

(|φa
m|2 + |φb

m|2 − 2φa
mφb

mei2ωmu
)
(τ − τ ′)

∓ J

t2

∑
m �=m′

1

iωm−m′

(
eiωm−m′ uφa

mφa
−m′ + e−iωm−m′ uφb

−mφb
m′

−eiωm+m′ u2φa
mφb

m′
)(

eiωm−m′ τ/2 − eiωm−m′ τ ′/2
)
. (25)

At large �τ = |τ − τ ′| and |u|, the dominant contribution to
SD comes from the nonoscillating term SD[φ] ≈ |τ − τ ′|/τφ ,

which therefore determines the dephasing function Fφ[�τ ] ≈
�τ/τφ from Eq. (1). The dephasing rate is as follows

τ−1
φ = J

2t2

[∑
m �=0

(|φ+
m |2 + |φ−

m |2) + (φ+
0 − φ−

0 )2

]
. (26)

From Eq. (21), we can see that the diffuson’s contribu-
tion to the SFF is suppressed due to the extra exponential
decaying factor e−SD[φ] acquired by the interacting diffuson
in the chaotic case. This decaying factor is a manifestation
of the dephasing effect due to interactions. The suppression
of the exponential ramp is a necessary prerequisite for the
expected transition from Poisson to RMT statistics, indicating
a significant role played by the dephasing in the emergence
of many-body quantum chaos. The detailed calculation of the
SFF for the chaotic model would require averaging det D over
the fluctuation of decoupling field φ, where det D arises from
integration over the Gaussian fluctuations [Eq. (21)]. This is
out of the scope of current study and is left to future work.
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