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We develop a theory that accurately evaluates quantum phases with any large-scale emergent structures,
including incommensurate density waves or topological textures without a priori knowing their periodicity.
We spatially deform a real-space mean-field Hamiltonian on a finite-size cluster using a sine-squared envelope
function with zero energy at system edges. The wave functions become insensitive to the misfit of the lattice and
ordering periods. We successfully extract the ordering wave vectors by our deformed Fourier transformation,
updating the previous results for hole-doped and spin-orbit-coupled Mott insulators. The method further enables
the evaluation of a charge gap beyond the mean-field level.
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Introduction. How to detect and describe a variety of
ordered quantum phases having a long period or a large-
scale structure in crystalline solids is one of the major
theoretical challenges. Over the last decades, the condensed
matter field has focused on these emergent phases with
spatially extended periods that exhibit extraordinary proper-
ties due to topology. Examples include magnetic skyrmions
with swirling spin structures in two dimensions [1–4] and
a chiral soliton lattice in quasi-one-dimension (1D) [5–9].
These incommensurate spin textures originate from spin-
orbit coupling (SOC) or competing local interactions due
to geometric frustration and serve as the potential platform
of next-generation memory devices and topological trans-
port phenomena [10,11]. More generally, the electron/hole
doping often induces charge-density-wave (CDW) and spin-
density-wave (SDW) orders, which are considered as the key
to understanding high-temperature superconductivity [12,13]
and colossal magnetoresistance [14,15]. Moiré graphene has a
long-wavelength electronic state engineered by a misfit of two
layers, and there is an urgent demand to understand the origin
of its unconventional superconductivity [16].

The theoretical difficulty in dealing with incommensurate
orders in quantum many-body systems lies in that they have
exceptionally large unit cells whose periods depend sensi-
tively on the parameters of the Hamiltonian. In methods that
rely on the reciprocal lattice representation such as a mean-
field calculation, the candidate period needs to be known
a priori. Cluster-based methods such as the cluster dynam-
ical mean-field theory [17–20] or the cluster perturbation
theory [21,22] have crucial problems, since the orders with
periods that match the cluster size are energetically favored
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by accident. In calculating quantum many-body states on
finite clusters, such as exact diagonalization, density matrix
renormalization group (DMRG) [23–25], and tensor network
methods [26–28], the results often depend sensitively on the
boundary conditions [29], size, and shape of the clusters
[30,31]. This becomes serious in dealing with incommensu-
rate orders, since the mismatch of the period between an order
and size of the clusters excludes the true orders from the
lowest-energy-state candidates. This can also be a problem
for variational Monte Carlo methods [32–36] and quantum
Monte Carlo (QMC) methods [37,38], which can deal with
large system size when several orderings compete with each
other. Notice that such a problem does not occur for classical
systems since the thermal equilibrium state does not require
a coherence throughout the system, unlike the wave functions
in quantum phases. In fact, the open or free-boundary condi-
tions can offer a proper evaluation of large-scale skyrmions in
classical Monte Carlo simulations [39].

In this Letter we develop a sine-square deformed mean-
field theory (SSDMF), a protocol that can accurately evaluate
the lowest-energy quantum state having an incommensurate
order without knowing it a priori. The sine-square defor-
mation (SSD) modifies a Hamiltonian H by an envelope
function fSSD(r) as HSSD = ∫

dr fSSD(r)H(r), where fSSD(r)
smoothly scales down from unity at the system center (r =
0) towards zero at the edges [40–42]. By now it is widely
used for quantum many-body ground states, dynamics, finite
temperature, and for field theories [43–53]. Deforming the
whole terms of the Hamiltonian is known to keep the na-
ture of the Hamiltonian unchanged [54–57], since it works
as a real-space renormalization [31]. At the same time, it
reduces the boundary effect and finite-size effects since the
edges have zero energies [29–31,58]. When applying the
SSD using the DMRG, even commensurate-incommensurate
quantum phase transitions are very accurately evaluated
[30]. Unfortunately, their wave vectors were inaccessible
for two reasons; the many-body wave functions do not
provide a meaningful spatial profile for the one-body quan-
tities as well as two-point correlations with the SSD. Even
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when the spatial structures were available, the standard
Fourier transformation is not applied to SSD systems which
break the translational symmetry. We resolve this issue
by developing a dubbed SSDMF and by introducing a
deformed Fourier transformation. The ordering wave vec-
tor is extracted accurately, even when the system size is
much smaller compared to the period of the order, and
the result does not change in extrapolating it to infinite
system size.

SSDMF. Let us consider a generalized Hubbard
Hamiltonian, Ĥ = Ĥ0 + ĤU , with

Ĥ0 =
N∑

i, j=1

∑
σ=↑,↓

f
( ri + r j

2

)
tσ
i, j ĉ

†
i,σ ĉ j,σ − μ

N∑
i=1

f (ri )n̂i, (1)

ĤU = U
N∑

i=1

f (ri )n̂i,↑n̂i,↓, (2)

where N is the number of sites (N = L × L for the square
lattice), tσ

i, j = (tσ
j,i )

∗ is the directed transfer integral from site

j to i with spin σ , μ is the chemical potential, ĉ†
i,σ /ĉi,σ is

the creation/annihilation operator of a fermion with particle
density n̂i,σ = ĉ†

i,σ ĉi,σ , and n̂i = ∑
σ n̂i,σ . We take the origin

of the positional vector ri at the center of the system. The
envelope function for a periodic boundary condition (PBC)
is f (r) = fPBC(r) = 1 and for SSD is [31]

f (r) = fSSD(r) = 1

2

{
1 + cos

(
π |r|

R

)}
, (3)

with a radius R = R0 + 1/2, where R0 is the distance of the
farthest site from the origin. This function smoothly modifies
the energy scale of the Hamiltonian from fSSD(r) ∼ 1 at the
center to ∼0 at the edges.

Originally the eigenstates are characterized by their wave
number k. However, the deformation-induced term ∝ [1/2 −
fSSD(r)] introduces a moderate scattering between these
k-indexed states and generates a basis of localized wave pack-
ets [30,31]. Each wave packet has a major contribution to the
eigenstate of Ĥ with the eigenenergy that matches the energy
scale of its location. Since wave packets are localized, the
finite-size effect is suppressed and the excitation energy scales
with system size L as ∝ 1/L2 [31]. The wave packets at the
edges have zero energy and serve as a reservoir, while a set of
states that contribute to the center reproduce intrinsic ground-
state properties of the original Hamiltonian. The number of
particles is automatically adjusted between them for a given
value of μ/tσ

i, j and U/tσ
i, j .

Our mean-field Hamiltonian for the SSD is given by

ĤMF = Ĥ0 + U
N∑

i=1

f (ri )

( 〈n̂i〉
2

n̂i − 2 〈Ŝi〉 · Ŝi

)
+ Ec, (4)

with Ec =−U
∑N

i=1 f (ri ){〈n̂i〉2/4 − 〈Ŝi〉2}. Here, 〈n̂i〉 and 〈Ŝi〉
are the order parameters representing the particle and spin
densities, respectively, which are determined self-consistently.
The spin operator is defined as Ŝi = (Ŝx

i , Ŝy
i , Ŝz

i ) with Ŝμ
i =

(1/2)
∑

σ,σ ′ ĉ†
i,σ τ

μ

σ,σ ′ ĉi,σ ′ , where τμ (μ = x, y, z) is the Pauli
matrix. The mean fields serve as internal SSD fields and are
self-consistently determined by minimizing the energy.

FIG. 1. (a) Schematic illustration of the 1D Hubbard model with
the SSD. (b) Noninteracting band ε(k) = −2t cos k and nesting vec-
tor Q = πnf . The hole doping nf < 1 shifts the nesting vector off π .
(c, d) Spatial distribution of the particle density and spin density at
U = 2.0, μ = 0.5 with N = 30 and 60. The inset in (d) shows the
size dependence of the particle density nf obtained by Eq. (5).

Hole-doped 1D Hubbard model. We first consider the
hole-doped 1D Hubbard model with the PBC and SSD
[Fig. 1(a)] by setting tσ

i, j = −1 uniform and only between
nearest-neighbor sites. The hole doping shifts the nesting
vector Q 
= π , as shown in Fig. 1(b), and yields an incom-
mensurate SDW of wave number Q and CDW of 2Q at the
mean-field level [59]. The coexistence is allowed since the
latter is the higher harmonics of the former [59,60]. Although
the Bethe-ansatz solutions indicate the absence of any long-
range orders [61,62], the mean-field approximation can still
capture the dominant wave number that should appear in its
correlation functions. It also provides a good description for
actual materials where a finite interchain coupling is relevant.
We will show how the SSDMF eliminates the finite-size ef-
fects arising from the long-period CDW/SDW order.

We consider U = 2.0 and μ = 0.5, which is less than half-
filling, and set the initial value of the mean fields to those
with a U(1) spin-rotational symmetry about the z axis, which
can describe the CDW/SDW order. Figures 1(c) and 1(d)
show the spatial distribution of particle and spin densities for
N = 30 and N = 60, respectively. The PBC system does not
exhibit any spatial structure for N = 30, while the SSD system
shows a clear modulation of the particle density by optimizing
their particle and spin densities using the edges as a reservoir.
For N � 60, both the SSD and PBC show features of CDW
and SDW orderings. To quantitatively evaluate the results, we
extract the particle density by the following formula [40]:

n f =
∑N

i=1 f (xi ) 〈n̂i〉∑N
i=1 f (xi )

, (5)

which is reduced to the standard average particle density for
the PBC. Indeed, the PBC still has a translationally symmetric
wave function for periods larger than the lattice spacings in
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FIG. 2. (a, b) Absolute value of the standard Fourier component
of the (a) particle-density deviation | 〈δn̂q〉 | and (b) z component
of the spin density | 〈Ŝz

q〉 | as a function of wave number q for the
hole-doped 1D Hubbard model with N = 60. The purple line denotes
the ordering wave number in the thermodynamic limit. In the SSD,
there are large background contributions mainly from the edge sites.
(c, d) Deformed Fourier component | 〈δn̂(deform)

q 〉 | and | 〈(Ŝz
q )(deform)〉 |

obtained by Eq. (6). Although q is taken as continuous in equivalently
adopting Eq. (6) to PBC and SSD, for PBC it is meaningful for q =
2π/N×(integer), which are peak positions. Insets: 1/N dependence
of the ordering wave number Q extracted from the peak position in
the main panels.

the mean-field solution. However, for the SSD such a sym-
metry largely deteriorates at the edges, and simply averaging
the whole particle density gives a physically meaningless
result. Equation (5) extracts the contribution near the center
by smoothly suppressing the contribution closer to the edges.
As shown in the inset of Fig. 1(d), the extracted n f for the
SSD is almost N independent; we find the value at the ther-
modynamic limit n f � 0.88 already at N = 20, whereas the
one obtained by the PBC shows a large oscillation, even at
around N ∼ 100.

Next we show that the ordering wave numbers can be accu-
rately evaluated. We subtract the uniform component from the
particle density as δn̂i = n̂i − n f . We first demonstrate that the
standard Fourier transformation, ôq = (1/N )

∑N
j=1 ô je−iqx j ,

for local operator ôi and wave number q = 2nπ/N (n ∈ Z),
does not give meaningful results. In Figs. 2(a) and 2(b) these
Fourier components, | 〈δn̂q〉 | and | 〈Ŝz

q〉 |, are shown as the
function of q. Those for the SSD have the significantly large
contribution from the edge, and although we find spikes in
the SSD data, their positions are not equal to the PBC ones
nor to those at the thermodynamic limit, making it hard to
understand their physical implication. To resolve this issue,
we define a deformed Fourier transformation as

ô(deform)
q =

∑N
j=1 f (x j )ô je−iqx j∑N

j=1 f (x j )
, (6)

and we take q as a continuous variable. Equation (6) is
regarded as a generalization of the Fourier transformation

applied to systems with spatial variation and has several
advantages over the standard transformation. First, the aver-
age particle density corresponds to the q = 0 component as
〈n̂(deform)

q=0 〉 = n f and is reduced to the standard Fourier trans-
formation when we use fPBC(x j ). Second, the finite-size effect
that usually appears due to the discretization of q is formally
smeared out. Figures 2(c) and 2(d) show | 〈δn̂(deform)

q 〉 | and
| 〈(Ŝz

q)(deform)〉 | as the function of continuous q. For the PBC,
although the peak position does not change from Figs. 2(a)
and 2(b), some additional peaks appear. For the SSD, our
transformation completely suppresses the background contri-
bution and the clear peak structure appears, whose position
is close to that of the thermodynamic limit. The insets in
Figs. 2(c) and 2(d) show the size dependence of the wave
number extracted from the peak. Again, the ones from the
SSD have no significant size dependence, and the peak po-
sition already reaches the thermodynamic limit at N � 60.
Therefore the SSDMF can efficiently describe incommensu-
rate orders even when the system size is small, and more
importantly, there is no artifact from the mismatch of the
period between the order and lattice; by minimizing the total
energy of the system the excess/deficient particles and spins
are automatically removed from the system center, using the
almost zero-energy edge sites as a reservoir.

Square-lattice Hubbard model with SOC. We consider a
square-lattice Hubbard model at half-filling with SOC which
manifests in a spin-dependent transfer integral λ that rotates
the spin about the z axis, as shown in Fig. 3(a); the nearest-
neighbor transfer integrals are t↑

i, j = −t − iλ and t↓
i, j = −t +

iλ when propagating in the +x or +y direction. This form is
realized by the combination of Rashba and Dresselhaus SOC
with equal amplitudes and is known to host persistent spin
helix states [63,64]. It is convenient to rewrite the first term in
Eq. (1) using an SU(2) gauge field as

∑
σ

tσ
i, j ĉ

†
i,σ ĉ j,σ = −teff ĉ

†
i ei(θ/2)σ z

ĉ j, (7)

where ĉi = (ĉi,↑, ĉi,↓)T , teff = √
t2 + λ2, and θ =

2arctan(λ/t ). We take teff = 1 in the following.
The Fermi surfaces of the noninteracting bands are shown

in Fig. 3(b). There are two vectors, Qθ = (π − θ, π − θ ) and
Qπ = (π, π ), that perfectly nest the Fermi surfaces and drive
the system to an insulator at infinitesimal U . This Hamiltonian
provides a prototype example that the numerical calculations
mislead the conclusions about the incommensurate orderings:
a recent mean-field study [65] reports the existence of CDW
and incommensurate SDW orders. However, such a possibility
is excluded by the following analytical argument.

Let us perform a local unitary transformation using
the operator Û = ⊗N

i=1 exp[−iθ (xi + yi )Ŝz
i ] that rotates the

spin quantization axis. SOC in Eq. (7) disappears as
Û ĉ†

i ei(θ/2)σ z
ĉ jÛ† = ∑

σ ĉ†
i,σ ĉ j,σ , and the Hamiltonian is trans-

formed to the SU(2) symmetric Hubbard model, which shows
a standard antiferromagnetic ordering. In addition, there is a
rigorous proof that the CDW order is absent [66]. By trans-
forming back the antiferromagnetic ordering of the rotating
frame to the original frame, we obtain a spiral ordering. There-
fore the reported CDW/SDW orderings [65] are determinably
the artifact of the standard mean-field framework.
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FIG. 3. (a) Schematic illustration of the SSD square-lattice
Hubbard model with SOC. (b) Fermi surfaces of the noninteract-
ing up (red line) and down (blue line) spin bands with nesting
vectors Qθ = (π − θ, π − θ ) and Qπ = (π, π ), and that of the dou-
bly degenerate bands (black). Finite SOC λ = teff sin(θ/2) induces
the incommensurate spiral order characterized by | 〈Ŝ(deform)

q 〉 | as
a function of q = (qx, qy ). The results for U = 2.0, μ = 1.0 are
shown along the symmetric line in the Brillouin zone [inset of (c)],
for (c) L = 8, θ = π/

√
10 and (d) L = 28, θ = π/30. The purple

dashed line denotes the ordering wave number in the thermodynamic
limit. The bottom panels show the size dependence of the peak
position Q = (Q, Q). The (π, π ) peak for PBC is a size effect that
approaches the true Q at N → ∞.

Our SSDMF correctly captures the spiral-ordered ground
state and its periodicity. We take U = 2.0, μ = 1.0 which
is half-filling, and an SOC with θ = π/

√
10 and θ = π/30.

We prepare the initial mean fields that allow the spiral order
in the xy plane, which is characterized by the wave vector
Qθ . Figures 3(c) and 3(d) show | 〈Ŝ(deform)

q 〉 | and the 1/L de-
pendence of peak positions Q = (Q, Q). Although Q/π takes
an irrational number for θ = π/

√
10, the SSDMF gives the

exact value for the system as small as L = 4. When θ = π/30,
the expected spiral order has a long periodicity of size 60 ×
60; the method even succeeds in accurately extracting this
period, Q = (0.967π, 0.967π ) (unchanged up to N → ∞),
which is much longer than the size of the cluster L ∼ 24.
We checked several different initial states, finding that they
converge to the spirals.

Charge gap. Finally, we show that the SSDMF yields an
accurate charge gap of the bulk Hubbard model beyond the
mean-field level. Since SSD systems have a gapless spectrum
by construction due to zero-energy edge modes, the standard
formula, 	c = [E (N + 2) + E (N − 2) − 2E (N )]/4, does not
give the appropriate charge gap, where E (Nf ) is the
Nf -particle ground-state energy. For the SSD, the intrinsic
filling factor observed as a particle density at the system center

FIG. 4. (a) Calculation scheme of the charge gap in the SSDMF.
The charge density at the center is determined by μ, while varying
Nf will vary the charge density at the edges for all cases. We plot
the charge density obtained by the SSD calculation for Nf close to
the ideal filling factor determined by μ close to μc. The two panels
have the same Nf , while μ is varied; at μ � μc, i.e., |μ − U/2| < 	c

(inside the Mott gap), the particles exceeding the filling are pushed
to the system edge. At μ > μc, the particles are trapped (doped) at
the system center and the critical value determines the charge gap
μc − U/2 = 	c. (b, c) Charge gap as a function of U for the (b) 1D
Hubbard model with N = 120 and (c) square-lattice Hubbard model
with L = 40. The SSDMF well reproduces the exact results, even at
the mean-field level.

is determined not by Nf but by μ, which is numerically proven
in the 1D Hubbard model using DMRG by comparing with the
Bethe-ansatz solution [30]. Varying Nf does not change the
center particle density if μ is unchanged. For μ in the gapless
region, if Nf is larger/smaller than the value expected, the
excess particles/holes concentrate on edges that are regarded
as baths. When μ is inside the gap, the center particle density
remains constant even when we change μ or Nf . At the point
where μ � μc starts to go outside the gap, the particles start
to be doped at around the center site [see Fig. 4(a)].

In our SSDMF, by varying μ for an appropriate choice
of Nf (not strict) and measuring the critical value μc, the
charge gap is evaluated as 	c = μc − U/2, where U/2 is the
chemical potential at half-filling. The initial mean fields
should be chosen carefully such that the final form of mean
fields is symmetric about the system center. Figures 4(b) and
4(c) show the charge gap for the 1D chain and square lattice.
Here the SOC is turned off while turning it on does not change
the result as proven by the local unitary transformation. The
PBC ones give the standard mean-field solutions, whereas our
SSDMF is close to the exact Bethe-ansatz solutions [61,62]
and highly accurate QMC results [67,68]. The correlation ef-
fect beyond the mean-field approximation is seemingly erased
by the SSD.

Conclusion. We proposed the SSDMF and the deformed
Fourier transformation that accurately characterize the in-
commensurate orderings in an unbiased manner without
knowing their spatial periods a priori. The SSDMF also
extracts the charge gap in high quality very close to the
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values of the Bethe-ansatz and QMC results in the bulk limit.
Therefore we conclude that the method provides decisive con-
clusions to many topics of modern condensed-matter physics
related to topology, where often the contradictory results
from different numerical solvers previously made the issue
controversial.
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