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Moiré flat Chern bands and correlated quantum anomalous Hall states generated by spin-orbit
couplings in twisted homobilayer MoS2
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We predict that in a twisted homobilayer of transition-metal dichalcogenide MoS2, spin-orbit coupling in the
conduction band states from ±K valleys, can give rise to moiré flat bands with nonzero Chern numbers in each
valley. The nontrivial band topology originates from a unique combination of angular twist and local mirror
symmetry breaking in each individual layer, which results in unusual skyrmionic spin textures in momentum
space with skyrmion number S = ±2. Our Hartree-Fock analysis further suggests that density-density interac-
tions generically drive the system at 1/2-filling into a valley-polarized state, which realizes a correlated quantum
anomalous Hall state with Chern number C = ±2. Effects of displacement fields are discussed with comparison
to nontrivial topology from layer-pseudospin magnetic fields.
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Introduction. The discovery of possible correlated insulat-
ing states [1] and superconductivity [2] in magic-angle twisted
bilayer graphene has paved a new avenue toward engineer-
ing electronic structures where interactions play a decisive
role [3–19]. Lately, nontrivial topological properties brought
about by the moiré patterns were also unveiled [20,21]. Un-
der appropriate symmetry breaking conditions, flat bands in
twisted graphene acquire nonzero Chern numbers [22–25],
which manifest experimentally as quantum anomalous Hall
(QAH) states when spin or valley degeneracies are lifted
spontaneously through electronic correlations [26–28]. The
interplay between correlation and topology uncovered in these
systems indicates possibilities for novel topological phases
beyond conventional noninteracting theories.

Motivated by advances in twisted graphene systems,
explorations into moiré superlattices formed by other two-
dimensional materials, such as transition-metal dichalco-
genides (TMDs) [29–35] and copper oxides [36,37], have
also seen rapid progress recently. In particular, moiré flat
bands in a twisted homobilayer TMD formed by the valence
band (VB) states in each K valley were shown to carry
nonzero Chern numbers [29]. The nontrivial band topology
arises from combined effects of moiré potential and interlayer
coupling, which act together as a layer-pseudospin magnetic
field and create skyrmionic pseudospin textures in superlattice
cells. The strong spin-valley locking due to giant Ising-type
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spin-orbit coupling (SOC) of order ∼100 meV [38,39] further
entails a possible quantum spin Hall state.

While flat bands from VB states have enjoyed wide inter-
est, moiré physics arising from conduction band (CB) states
in twisted TMDs remains largely unexplored. One possible
complication lies in the relatively weak SOC in the conduction
bands on the scale of a few to tens of meV [39,40], which
may cause crossings between spin-up and spin-down moiré
bands. Recent works on untwisted TMDs, on the other hand,
revealed that the small spin-orbit splitting in CB states, when
combined with Rashba SOC introduced by mirror symmetry
breaking, can lead to nontrivial Berry phase effects [41–43].
Notably, upon assembling two identical TMD layers into a
twisted bilayer, the mirror symmetry is broken locally in each
layer [Figs. 1(a) and 1(b)] and Rashba SOC is expected to
arise. How this SOC would affect the band topology of twisted
TMDs is an outstanding question.

In this Letter we establish a novel topological phase gen-
erated by SOC in CB moiré bands in twisted TMDs, which is
essentially different from those in twisted graphene [20–25]
where SOC is negligible, and those in the VB moiré bands
of twisted TMDs where SOC plays no essential role in cre-
ating nonzero Chern numbers [29]. Focusing on the specific
case of a twisted homobilayer MoS2 we predict that an in-
terplay among angular twist, local symmetry breaking, and
spin-orbit coupling in the CB states creates moiré flat bands
with nonzero Chern numbers C = ±2, and density-density
interactions generically drive the system at 1/2-filling into a
valley-polarized correlated QAH state. We further show that
the Chern bands generated by SOC stay robust against dis-
placement fields which would otherwise destroy the nontrivial
topology from layer pseudospins [29].

Continuum model for twisted homobilayer MoS2. Stacking
two monolayers of MoS2 with a small relative twist angle
θ0 results in a moiré superlattice with lattice constant aM =
a/θ0, where a is the lattice constant of each monolayer. The
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FIG. 1. Schematic crystal structure of twisted bilayer MoS2 with (a) top view and (b) side view. Electrons in different layers experience
opposite effective electric fields due to local lack of mirror symmetry. (c) Moiré Brillouin zone (MBZ) formed by twisting hexagonal Brillouin
zones of each layer. The in-plane spinor field exhibits opposite vorticities at Km,+ and Km,− of MBZ due to layer-dependent Rashba effects.

system has a symmetry group of D3 ⊗ {Uv (1), T }, where
Uv (1) stands for valley conservation, T is for time-reversal
symmetry, and the point group D3 is generated by the three-
fold rotation about the z axis (C3z) and a twofold rotation
about the y axis (C2y) [Fig. 1(a)]. For an aligned bilayer at
θ0 = 0, the mirror symmetry Mz about the horizontal 2D
mirror plane, which is respected in a monolayer, is broken
locally on each layer. This generates uniform electric fields
of opposite signs in different layers, which remain effective
upon a small angular twist with θ0 ∼ 1◦ [Fig. 1(b)]. Based
on models of monolayer MoS2 with broken Mz [41–43], the
effective Hamiltonian for CB minima at ±K valleys of two
twisted isolated layers can be written as

Hξ

0,l =
∑

k,αβ

c†
k,l,αhξ

l,αβ
(k)ck,l,β ,

hξ

l (k) = h̄2(k − ξK l )2

2m∗ − μ + ξβsoσz

+ (−1)lαso[(k − ξK l ) × σ] · ẑ, (1)

where ξ = ± denotes the valley index, l = 1(2) labels the
top (bottom) layer, and α, β label the spin indices with the
σ matrices representing the usual Pauli matrices for spins.
K1 ≡ Km,+ and K2 ≡ Km,− are the shifted +K points on
layer 1 and layer 2 [Fig. 1(c)] due to the angular twist of
θ0 equivalent to rotating the top (bottom) layer by an angle
θ0/2 (−θ0/2) about the z axis. In Eq. (1), m∗ ≈ 0.5me is the
CB effective mass at K , and μ is the Fermi energy measured
from band minima. The αso term and βso term account for the
Rashba SOC and the Ising SOC, respectively. The Ising SOC
has a valley-dependent sign due to time-reversal symmetry
and causes a splitting of �so = 2|βso| in the spin-up and spin-
down CB states. The Rashba SOC has a layer-dependent sign
imposed by C2y which swaps the two layers. Spatial variations
of αso are discussed in the Supplemental Material (SM) [44].

Spatial modulations due to the formation of moiré
pattern can be captured by introducing coupling terms be-
tween states at k and k + GM, j [23,29], where GM, j =
− 4π√

3aM
(cos ( j−1)π

3 , sin ( j−1)π
3 ) are the reciprocal vectors of the

moiré superlattice. The momentum-space moiré potential is
given by

HM =
∑

k

6∑

j=1

∑

l=1,2

∑

α=↑,↓
c†

k,l,αVl,GM, j ck+GM, j ,l,α, (2)

where Vl,GM, j = VM[cos ψ − i(−1) j l sin ψ] are complex cou-
pling parameters with amplitude VM and phase ψ .

The effective interlayer tunneling for states at K valleys is
modeled following the general recipe of two-center approxi-
mation [4,29], which can be written as

Hξ
T = −w0

∑

k

c†
k,1(ck,2 + ck+ξGM,2,2 + ck+ξGM,3,2) + H.c.,

(3)

where w0 denotes the effective interlayer tunneling amplitude
near K , which is extrapolated to be w0 ≈ 10 meV using a
combined approach of empirical models and Slater-Koster
methods (see the Supplemental Material [44] for details).
The total noninteracting continuum model thus reads: H0 =∑

ξ=±
∑

l=1,2 H
ξ

0,l + Hξ
T + HM with parameters tabulated in

Table I.
Moiré flat Chern bands and skyrmionic spin textures. From

general considerations, level spacings among the lowest moiré
bands correspond roughly to the quantization energy �E ∼
h̄2π2/(2m∗a2

M ) of an electron confined in a superlattice cell
with size a2

M = a2/θ2
0 . For θ0 ∼ 1◦–2◦, �E ∼ 1–10 meV in

twisted MoS2, which is comparable to the spin-orbit splitting
�so ≡ 2|βso| = 3 meV caused by the Ising SOC [39]. If spin
is conserved (e.g., in the absence of Rashba SOC), spin-up
and spin-down moiré bands are expected to cross in general.

By setting αso = 0 in H0, we find that for ξ = +, the
first spin-down and the second spin-up moiré bands cross
each other for θ0 ∈ (1.25◦, 1.5◦). As a specific example, spin-
resolved moiré bands at θ0 = 1.4◦ with αso = 0 are shown in
Fig. 2(a). With spin conservation in this case, the spin Chern
number is well defined, and the spin-up and spin-down bands
involved in the level crossing have Chern numbers (C1,↓ =
+1, C2,↑ = −1) which originate from the layer-pseudospin
magnetic fields as in moiré bands from VB states [29]. Upon
turning on αso, crossing points are gapped out by the layer-
dependent Rashba SOC which mix the spin-up and spin-down

TABLE I. Parameters used in H0 for twisted homobilayer MoS2

with monolayer lattice constant a = 3.16 Å.

μ αso βso VM ψ w0

0 meV 80 meV Å −1.5 meV 10 meV −89.6◦ 10 meV
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FIG. 2. Moiré bands of valley ξ = + formed by CB states of
twisted homobilayer MoS2 at θ0 = 1.4◦ with (a) αso = 0 and (b)
αso �= 0. The color bars indicate the out-of-plane spin expectation
value 〈Sz〉 in units of h̄/2. (c) Momentum-space profile of Berry
curvature 
z in units of Å2 in the second moiré band in (b). Large

z of order 104Å2 emerges as a result of the nontrivial gap induced
by SOC. (d) Momentum-space spin texture of the second moiré
band in (b). White arrows indicate the in-plane spinor field, which
has opposite vorticities at Km,+ and Km,− and leads to a nontrivial
skyrmion number S = +2. Parameters used are presented in Table I.

species [Fig. 2(b)]. As a result of this mixing, the original
C1,↓ and C2,↑ from layer pseudospins annihilate each other;
meanwhile, a new pair of flat bands [second and third bands in
Fig. 2(b)] with Chern numbers C = ±2 emerge (see SM [44]
for details on Chern number calculations). The nontrivial gap
induced by Rashba SOCs is further signified by giant Berry
curvatures of order 104Å2 in the MBZ [Fig. 2(c)].

The unusual Chern numbers C = ±2 arise from a unique
combination of angular twist and local mirror-symmetry
breaking: as moiré bands at opposite Km,+ and Km,− points
originate from states in different layers [Fig. 1(c)], the layer-
dependent Rashba SOCs [Eq. (1)] create an in-plane spinor
field with opposite vorticities at Km,+ and Km,− in the MBZ.
This unusual pattern causes the in-plane spin to wind twice
as one goes around a loop enclosing the �m point in the MBZ
[Fig. 2(d)]. As we confirm numerically, the spin textures of the
second and third moiré bands are characterized by nonzero
skyrmion numbers S = ∫

d2kn̂k · (∂kx n̂k × ∂ky n̂k)/4π = ±2
(n̂k: spin orientation of state at k), and these two bands de-
scribe a two-level system with one-to-one correspondence
between Chern numbers C and skyrmion number S [45].

Correlated QAH state at 1/2-filling. Given the narrow
bandwidth W ≈ 1 meV of moiré Chern bands [Fig. 2(b)],
the characteristic Coulomb energy scale gC � e2/εaM ≈ 10
meV overwhelms the kinetic energy and correlation physics
is expected to arise (assuming θ0 = 1.4◦ and dielectric con-
stant ε = 10 [35]). Motivated by the observation that twisted
graphene at 3/4-filling can behave as an SU(4)-quantum Hall
ferromagnet [23,26–28], and the fact that all CB moiré bands
in Fig. 2(b) involves only a twofold valley degeneracy [note
that spin SU(2) symmetry is already broken by SOC], we
examine correlation effects when the second moiré band is

half-filled. For simplicity we drop the band index n in the
following.

Including density-density interactions, the low-energy ef-
fective Hamiltonian: Heff = H0,eff + HI,eff , where H0,eff =∑

k,ξ=± Eξ (k)c†
ξ (k)cξ (k) is the noninteracting part with band

energies Eξ (k), and the interacting Hamiltonian compatible
with Uv (1) and T reads

HI,eff =
∑

kk′q,ξξ ′

V (q)

A
�ξ (k + q, k)�ξ ′

(k′ − q, k′)

× c†
ξ (k + q)c†

ξ ′ (k′ − q)cξ ′ (k′)cξ (k), (4)

where V (q) is the Fourier transform of the two-body in-
teraction, A is the total area of the system, and �ξ (k +
q, k) ≡ 〈uξ,k+q|uξ,k〉 (|uξ,k〉: periodic part of the Bloch
states) are the form factors arising from projecting the
density-density interaction to active bands. The general trial
Hartree-Fock ground state at 1/2-filling has the form: |�〉 =∏

k∈MBZ[w+(k)c†
+(k) + w−(k)c†

−(k)] |�0〉, where |�0〉 is the
vacuum state with all lower-lying bands filled, and wξ (k) are
the variational parameters.

Minimizing E� ≡ 〈�|Heff |�〉 with mean-field approxi-
mations for Fock exchange terms (see SM [44]) leads to a set
of self-consistent equations:

�+ + �− = J0,

�+ − �− = J0

2N

∑

k

(�+ − �−) − δ(k)

D(k)
,

�+− = J1

2N

∑

k

�+−
D(k)

. (5)

Here J0 and J1 denote the mean-field intravalley and inter-
valley exchange coupling constants, �ξ = J0n̄ξ (n̄ξ : mean
occupancy for valley ξ ), and �+− are the intravalley and
intervalley order parameters, which characterize the average
energy gains from intravalley and intervalley exchange inter-
actions, respectively. δ(k) ≡ E+(k) − E−(k) denotes energy
difference between bands from two valleys ξ = ±, D(k) =√

�2
+− + [δ(k) − �M]2/4, where we introduce the valley

magnetic order �M ≡ �+ − �− = J0(n̄+ − n̄−).
Solutions of Eq. (5) are divided into two classes: (i) the

valley-polarized (VP) state [6,23], in which one out of the two
nearly degenerate moiré bands from two valleys is fully filled,
with spontaneous T -symmetry breaking: �M = ξJ0,�+− =
0,wξ (k) = 1. (ii) The intervalley coherent (IVC) state, in
which the Slater determinant is formed by coherent super-
positions of states from the two valleys, with spontaneous
Uv (1)-symmetry breaking [6,23,24]: �M = 0,�+− ≈ J1/2,
w+,−(k) �= 0. By comparing the energies of the VP and IVC
states, we obtain the mean-field J0-J1 phase diagram for the
range 0.3gC � J0, J1 � gC [Fig. 3(a)]. The IVC state is fa-
vored throughout the entire J1 � J0 regime, while the VP
phase takes up most of the J1 < J0 regime. By tuning J0/J1

across the phase boundary [green dashed line in Fig. 3(a)], a
first-order transition occurs at J0 � J1 [Fig. 3(b)].

It is worth noting that given a general repulsive inter-
action V (q) > 0, the inequality 2|�+(k′, k)||�−(k, k′)| �
|�+(k′, k)|2 + |�−(k, k′)|2 together with T symmetry leads
to J0 � J1, regardless of details of the form factors and the
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FIG. 3. (a) J0-J1 phase diagram of the system with the second
moiré band at 1/2-filling. Under repulsive density-density interac-
tions, only the J1 � J0 regime can be accessed [44], where the
valley-polarized (VP) state is generically favored and the system
becomes a correlated QAH insulator. (b) Evolutions of the order pa-
rameters �+− and �M ≡ �+ − �− as the ratio J0/J1 is tuned along
the line cut [green dashed line in (a)] across the phase boundary. A
first-order transition happens at the critical point J0 � J1.

microscopic interaction [44]. Thus, electron correlations most
likely drive the system at 1/2-filling into a T -broken VP state,
which realizes a correlated QAH state with C = ±2. The case
of general filling away from 1/2 is discussed in SM [44].

Effects of displacement fields and comparison with Chern
bands from layer pseudospins. As shown in Fig. 2(a), with
αso = 0, nonzero Chern numbers also arise in CB moiré bands
due to layer pseudospin magnetic fields, with the same origin
as those in VB moiré bands [29]. Thus, two different mech-
anisms for moiré Chern bands, one from layer pseudospin
and the other from SOCs, coexist in the CB moiré bands. In
contrast, the Rashba SOC is unimportant in the VB moiré
bands where spin-up and spin-down bands are separated by
100–400 meV [39], and the VB moiré band topology is gov-
erned by layer pseudospin alone.

The nontrivial topology from layer pseudopsin is shown
to be prone to displacement fields which can destroy the
skyrmionic pseudospin textures by polarizing the layer pseu-
dospins [29]. On the other hand, the SOC mechanism has
an independent origin in the avoided level crossings between
spin-up and spin-down bands and does not require nontrivial
layer pseudospin textures. Thus one would expect the non-
trivial band topology in the CB moiré bands to be more robust
against displacement fields than its VB counterpart.

To demonstrate the effects of displacement fields, we fol-
low Ref. [29] and introduce a layer-dependent potential VD,l =
(−1)lVz/2 (l = 1, 2) in H0. The moiré bands at θ0 = 1.4◦ un-
der finite Vz are shown in Fig. 4(a), where we set Vz = 4 meV
strong enough to destroy the nontrivial topology generated by
layer pseudospins [Fig. 4(b)]. Clearly the avoided level cross-
ings still occur and a pair of Chern bands with Chern numbers
(+1,−1) remain. The Chern number is reduced from C = ±2
to C = ±1 under Vz because the displacement field drives
a band inversion near Km,+ and mediates a Chern number
exchange �C = ±1 between the first and second moiré bands.

The topological phase diagram for CB moiré bands as a
function of θ0 and Vz is shown in Fig. 4(b). Due to the extra
mechanism from SOCs, the critical displacement field for the
nontrivial topological regime is enhanced to be V c2

z , which
is 2–4 times of the critical V c1

z (yellow dashed line) needed

FIG. 4. (a) CB Moiré bands for valley ξ = + of twisted bilayer
MoS2 at θ0 = 1.4◦ and Vz = 4 meV. Under finite Vz, spin-up and spin-
down bands still cross, and the avoided level crossing due to SOC
result in a pair of bands with C = ±1. (b) Topological phase diagram
of CB moiré bands as a function of θ0 and Vz, with an upper boundary
V c2

z of the entire topological regime. Yellow dashed line: Critical V c1
z

above which nontrivial topology generated by layer pseudospin is
destroyed. Values of V c1

z are similar to those found in VB moiré
bands [29]. Area enclosed by the red dashed lines: Regime with level
crossings between spin-up and spin-down CB moiré bands when
αso = 0. Area in orange: Topological regime where layer pseudospin
mechanism in Ref. [29] fails.

to destroy the layer pseudospin mechanism for θ0 ∼ 1◦ (V c1
z

obtained by setting αso = 0 in H0). Importantly, there is a
wide parameter regime in the phase diagram (depicted in
orange) where the layer pseudospin mechanism proposed in
Ref. [29] fails while the CB moiré bands remain topological,
which confirms that the CB states are more robust than VB
states against displacement fields.

Conclusion and discussions. While on-going activities in
twisted TMDs have focused mainly on VB moiré bands
[29–35], our proposal of moiré Chern bands generated by
SOC opens a new pathway into the largely unknown territory
of CB moiré physics. When these Chern bands are half-filled,
according to our predictions, electron interactions can lead to
a spontaneously T -broken VP phase and realize a correlated
QAH state, which will manifest itself through quantized Hall
conductance in transport measurements.

To realize the topological moiré bands generated by SOC,
any finite Rashba SOC which is allowed by the D3 symmetry
of the system would be sufficient, in principle, to induce a
nontrivial gap. Notably, as MoS2 is intrinsically semiconduct-
ing (with Fermi level ∼0.8 eV below the conduction band
edge) [38,39,46], it is necessary to gate the chemical potential
such that the CB moiré bands are filled in the first place.
With the dual-gate setup used widely in experiments [1,34],
local mirror symmetry breaking can be further enhanced by
interfacial contact with gating electrodes, which enhances the
SOC gap in the noninteracting bands. Due to the correlated
nature of the QAH state at 1/2-filling, the actual topological
gap to be manifested experimentally is not solely determined
by the SOC gap in the noninteracting bands; instead it should
be largely governed by the intravalley exchange coupling J0 ∼
10 meV for θ0 ∼ 1◦ [44]. This sizable correlation-induced
topological gap will reduce complications of disorder and
thermal effects in experimental detection of the predicted
correlated QAH state. However, as θ0 increases, correlation
effects become weaker and the moiré bands more dispersive,
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thus the predicted correlated QAH phase would be less robust
in the large twist angle regime.
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