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Optimal control of quantum thermal machines using machine learning
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We develop a deep learning (DL) framework assisted by differentiable programming for discovery of optimal
quantum control protocols under hard constraints. To that end, we use neural network representations to our
protocols, whose learning process is done with exact gradients. We find high-quality solutions to the optimization
problem of finite-time thermodynamical process in a quantum thermal machine. Using this DL algorithm,
we show that a previously employed, intuitive energetic cost of the thermal machine driving suffers from a
fundamental flaw, which we resolve with an alternative construction for the cost function. Our DL-quantum
control framework can be utilized to solve other quantum dynamics and thermodynamics problems.
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I. INTRODUCTION

Many problems in physics are formulated as optimization
tasks by identifying a cost function that must be minimized.
Prime examples are Hamilton’s principle of least action in La-
grangian mechanics [1], Fermat’s law of least time in classical
optics [2], and more recently, variational algorithms in quan-
tum computing [3]. Similarly, since its inception, thermody-
namics has been concerned with performance optimization by
identifying constrains and bounds on energy conversion pro-
cesses. The ideal Carnot engine is designed to reach the max-
imal efficiency. However, this upper bound is theoretically
obtained for arbitrarily slow, quasistatic processes; thus, the
extracted power reduces to zero. Quasistatic processes are de-
scribed using the framework of equilibrium thermodynamics.
In contrast, real thermal devices operate on finite-time cycles,
and they are naturally described in terms of finite-time ther-
modynamics [4,5]. This theory is concerned with, e.g., how
the efficiency of thermal machines erodes when heat-to-work
conversion processes take place in finite-time cycles [6,7].

In this paper, we propose a general framework for quantum
control of driven quantum systems. This approach differs from
traditional methods that rely on specific type of control inputs,
e.g., bang-bang control [8–10], numeric [11], or analytical
approximations [12]. Instead, a field of machine learning
(ML)-assisted quantum control is rising [13–18]. Specifically,
reinforcement learning (RL) is used to study optimal con-
trol in the quantum domain and shows promising results
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[16,19,20]. Here, we harness state-of-the-art ML techniques
and use a general variational ansatz that relies on a neural
network (NN), which we advance to treat hard-constrained
problems. Building on exact gradients [21] and the full repre-
sentability of NNs [22], our approach allows for unbiased and
exact discovery of protocols in driven quantum systems. Our
ML-quantum control approach is general and can be used to
design and optimize a large variety of problems that require
modifying the time-dependent, spatial, or interaction form
of potentials [16,23–29]. Bringing ML and quantum control
techniques to quantum thermal machines opens the door for
various avenues such as device characterization, protocol dis-
covery, and process optimizations.

Quantum thermal machines, in which, e.g., quantum co-
herences, correlations, and quantum statistics play a decisive
role, cater fundamental understanding of thermodynamics at
the nano and atomistic scale [30,31]. Beyond fundamental
interest, quantum thermal machines promise compact, fast,
and efficient work extraction and refrigeration schemes for
quantum devices. It remains, however, a challenge to harness
such effects and achieve a quantum advantage in thermal
machines [32–36].

Optimizing the performance of nanoscale, quantum ther-
mal machines is a central problem in the rapidly emerging
field of quantum thermodynamics. Techniques such as short-
cut to adiabaticity (STA) allow the design of finite-time proto-
cols, which reproduce the same final state of an adiabatic time
evolution yet at a price of supplemental work on the system
[37–42]. Much theoretical and experimental effort [38,43–
50] has been made to realize and characterize these systems.
Here, we focus on a specific class of STA protocols—local
counterdiabatic driving (LCD)—which is advantageous to the
realization of quantum engines since it only requires the ap-
plication of local time-dependent potentials.

Advances in diverse research topics, such as image recog-
nition and natural language processing have led physicists
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FIG. 1. Scheme of the Otto refrigerator in the energy-frequency
domain. A cycle includes a compression stroke (AB) of duration τ ,
an instant isochoric stroke (BC) with the system coupled to a hot
bath, an expansion stroke (CD) of duration τ , and another instant
isochoric stroke with a cold bath (DA). Refrigeration corresponds to
the withdrawal of heat 〈Q4〉 from the cold bath. The energetic cost of
the cycle is the sum of the work contributions 〈W1〉 and 〈W3〉, along
with the energetic cost of the shortcut-to-adiabaticity (STA) driving,
〈CAB〉 and 〈CCD〉.

to exploit ML in quantum dynamics and many-body physics
[51]. Here, we adopt differentiable programming (DP) [52,53]
to find optimal refrigeration schemes for the quantum Otto
cycle under STA conditions (as depicted in Fig. 1). Like an
RL perspective, in which an agent plays a game, the time-
dependent frequency ω(t ) of the harmonic oscillator acting as
the working medium of the refrigerator can be varied in the
time interval t ∈ [0, τ ]. For each attempted strategy ω(t ), the
agent receives a reward designed to minimize the energetic
cost of the protocol while subjected to the physical constraints
imposed by the LCD condition (both aspects are elaborated
later in this paper). In our deep learning (DL)-based scheme,
we optimize the devised strategies by using exact gradients
with respect to the variational parameters. The driving profiles
that are discovered by this scheme, exemplified in Fig. 2,
are superior to previously proposed protocols [54,55]. Fur-
thermore, the ML approach helps uncover a fundamental
problem with a previously suggested energetic cost metric,
which under some conditions violates basic physical princi-
ples (Carnot bound). We show a systematic optimization path
based on state-of-the-art ML tools, which permits a search
in a large multidimensional variational parameter space; the
space consists of all functions fulfilling STA conditions. The
advantage of the DP-ML scheme is derived in using the exact
gradients of the quantity of interest with respect to variational
parameters, hence reducing the number of required iterations
to reach an extremum [51,56].

II. QUANTUM OTTO REFRIGERATORS

Prime examples of thermal machines are heat engines and
refrigerators [9,43,57–59]. While the first performs work by
utilizing heat current from a hot reservoir, refrigerators extract
heat from a cold bath using external work. As a thermo-
dynamic process, refrigerators attain their maximal (Carnot)
cooling efficiency εC = T1

T2−T1
(with T1,2 as the temperatures

of the cold and hot reservoirs, respectively) for an infinitely
slow (adiabatic) process. However, for such processes, the
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FIG. 2. (a) Examples of frequency profiles ω(t ) (appearing in
blue, green, and red), discovered by the differentiable programming
(DP) machine learning (ML) scheme normalized by the compression
or expansion stroke duration τ . The gray dashed-dotted line displays
the polynomial ansatz, Eq. (7). The solid lines are the neural net-
work results. The inset displays the first and second derivatives of
ω(t ) for one realization, showing compliance with the shortcut-to-
adiabaticity (STA) conditions, Eq. (2). The fact that both derivatives
approximately follow each other allows for the minimization of the
energetic cost of the STA process (see Fig. 4). (b) The function �(t )
corresponding to the frequency of the effective counterdiabatically
driven harmonic oscillator. Parameters are ω1 = 0.1, ω2 = 0.5, β1 =
1, and β2 = 0.75.

power output, defined as the extracted heat over cycle time
Jc = 〈Q4〉

2τ
, is null due to the infinitely long cycle time τ → ∞.

For a finite-time cycle, the efficiency decreases, and the power
output increases. Therefore, the core question of finite-time
thermodynamics is: What is the optimal cycle for a figure of
merit given by the cooling efficiency times output power?

The quantum Otto refrigerator is depicted in Fig. 1. We
choose a working medium consisting of a harmonic oscillator
governed by the time-dependent Hamiltonian [12]:

H0(t ) = 1

2m
p2 + mω(t )2

2
x2. (1)

The cycle consists of an isothermal compression stroke where
the frequency ω(t ) increases from ω1 at t = 0 to ω2 at t = τ .
Then the engine thermalizes with a hot bath in an isochoric
stroke, followed by an isothermal expansion of duration τ

back to the frequency ω1 and an isochoric stroke in which heat
〈Q4〉 is extracted from a cold bath. The thermalization strokes
are assumed instantaneous.

III. STA AND COUNTERDIABATIC DRIVING

The goal of the STA driving is to speed up the compression
and expansion strokes, thus enhancing the figure of merit. By
adding the nonadiabatic driving HSTA(t ) to Eq. (1), the final
state of the system after a time evolution from t = 0 to τ

exactly matches the outcome of an adiabatic approximation-
based time evolution of H0(t ) [54,60]. A further canonical
transformation of HSTA(t ) leads to the LCD Hamiltonian of a
harmonic oscillator [61,62] with frequency �(t )2 ≡ ω(t )2 −
3ω̇(t )2

4ω(t )2 + ω̈(t )
2ω(t ) [61]. This modified driving should fulfill the

following conditions [54]:

ω(0) = ω1, ω̇(0) = 0, ω̈(0) = 0,

ω(τ ) = ω2, ω̇(τ ) = 0, ω̈(τ ) = 0, (2)
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which ensure that the final state of the system is identical
(phase included) to the state resulting from an adiabatic time
evolution of H0(t ).

During compression (AB) and expansion (CD) strokes
(Fig. 1), the system is thermally isolated, and work is ap-
plied. Using the adiabatic solution of the time-dependent
Schrödinger equation [63,64], the mean value of work is

〈W1〉 = h̄ω2

2

(
1 − ω1

ω2

)
coth

(
β1h̄ω1

2

)
, (3)

and similarly for 〈W3〉 by replacing 1 ↔ 2. Furthermore, the
mean heat extracted during the DA stroke is [12]

〈Q4〉 = h̄ω1

2

[
coth

(
β1h̄ω1

2

)
− coth

(
β2h̄ω2

2

)]
. (4)

We estimate the energetic cost of the STA driving with the
time-averaged Schmidt norm of HSTA(t ) [65,66]:

〈CAB〉 = coth

(
β1h̄ω1

2

)
h̄
√

3

4τ

∫ τ

0
dt

× 1

ω(t )

∣∣∣∣− 3ω̇2
t

4ω(t )2
+ ω̈t

2ω(t )

∣∣∣∣. (5)

Here, 〈CCD〉 is obtained by switching the temperature and
frequency β1, ω1 to β2, ω2, respectively, see Fig. 1. Our
derivation of Eq. (5) is included in Ref. [61]. Below, we show
that the energetic cost, Eq. (5), preserves the physical (Carnot)
bound, which is missed by other suggested cost metrics.

IV. OPTIMIZATION PROCEDURE

Our goal is to enhance the figure of merit χ defined as the
product of the cooling efficiency ε with the heat extracted per
cycle Jc:

χ ≡ εJc = 〈Q4〉
〈W1〉 + 〈W3〉 + 〈CAB〉 + 〈CCD〉

〈Q4〉
2τ

. (6)

Motivated by Ref. [54], a possible way to boost the figure of
merit could be by using a polynomial ansatz, which by con-
struction satisfies the initial conditions of Eq. (2):

ω(t ) = ω1 + �ω

Nmax∑
n=3

αn

( t

τ

)n

. (7)

Here, �ω = ω2 − ω1. A widely used ansatz which satisfies
Eq. (2) consists of (α3, α4, α5) = (10,−15, 6) and all the
other α = 0, depicted as the dashed-dotted line in Fig. 2. We
use it throughout this paper as a benchmark.

The only quantity that depends on the transient values
of ω(t ) is the energetic cost function. Therefore, once the
physical parameters (βi, ωi) are set, the optimal cooling pro-
tocol minimizes the energetic cost 〈Ci〉 [Eq. (5)]. Thus, we
devise a cost function that includes 〈Ci〉, along with penalties
for deviating from the STA constraints, Eq. (2). Details are
given in Ref. [61]. For generality, we represent ω(t ) as a NN
whose parameters are optimized using automatic differentia-
tion (AD), which allows us to compute exact gradients with
respect to the parameters of the NN. We use ADAM [67], a
first-order gradient-based optimization algorithm, to optimize
our objective function. This process is performed for a large
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FIG. 3. Figure of merit of the Otto refrigerator χ , Eq. (6), de-
picted as a function of the expansion or compression stroke times
τ for the frequency ramps ω(t ) of Fig. 2. The gray dashed-dotted
line displays the polynomial ansatz, Eq. (7). Solid lines repre-
sent neural network (NN) results. For comparison, the nonadiabatic
sudden-frequency change χNA is plotted in light orange. The NN op-
timization scheme almost doubles the figure of merit compared with
the polynomial ansatz. The inset shows the corresponding cooling
efficiency and the ideal adiabatic limit εad. The optimal NN strate-
gies approach the adiabatic efficiency faster than the polynomial
benchmark.

ensemble of 1000 initial conditions for the NN, out of which
the optimal strategies are selected.

V. RESULTS

Examples of optimal expansion profiles ω(t ) are depicted
in Fig. 2; the compression stroke is a time-reversed version
of it ω(τ − t ). We note that, during our optimization process,
which penalizes for deviations from the initial and final-time
conditions, one finds local minima in which the latter are
not met. To satisfy those, frequency profiles were stretched,
in addition to being smoothened to become physically real-
izable [61]. In Fig. 2(a), we observe that optimal strategies
share a similar feature of a late-bloomer; hence, they are very
different from the polynomial ansatz of Eq. (7) depicted as
a dashed-dotted line in Fig. 2. The inset shows the first and
second derivatives of one of these profiles. The two deriva-
tives rise together, which results in the minimization of the
energetic cost function, as we discuss in the next section.
Figure 2(b) displays the corresponding frequency ramp �(t ),
see text above Eq. (2). This frequency would have to be
followed to get the same final state as would be achieved by
an adiabatic driving, which follows ω(t ).

In Fig. 3, we compare the figure of merit χ , Eq. (6), from
the different strategies. Overall, we find an almost twofold
improvement of NN profiles over the benchmark. The peak
for the NN-based strategies occurs earlier than for the poly-
nomial, at ∼τ = 6. Further, we compare these performances
with the nonadiabatic step function strategy [68]. As expected,
the latter strategy could be beneficial for short stroke times
τ < 2 because the energetic cost of maintaining STA is high.
However, it is inferior at longer cycles. We further plot the
cooling efficiency ε as a function of stroke duration (inset).
The black dashed line is the ideal adiabatic efficiency εad,
where the heat 〈Q4〉 and work 〈W1〉, 〈W3〉 attain their adiabatic
values and the associated driving energetic cost is neglected
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FIG. 4. Mean instantaneous energetic cost of the shortcut-to-
adiabaticity (STA) driving as a function of time ∂t 〈C〉, defined by the
Schmidt norm of HSTA(t ), Eq. (5). The dashed line corresponds to the
polynomial ansatz, Eq. (7). Solid lines correspond to the optimized
neural network (NN) of Figs. 2 and 3 with τ = 5. The NN optimiza-
tion can reduce the energetic cost by a factor of two compared with
the benchmark:

∫ τ

0 ∂t 〈CAB,Polynomial〉dt/
∫ τ

0 ∂t 〈CAB,NN〉dt = 2.05.

(note that the relation to the Carnot cooling efficiency is
εC � εad). NN-based strategies can obtain a higher efficiency,
and in turn, like the polynomial benchmark, they approach
the adiabatic limit at large τ . The cooling protocols minimize
the cost metric. In Fig. 4, we show the mean instantaneous
energetic cost of the STA drive as a function of time ∂t 〈CAB〉.
The NN optimization can reduce the energetic cost by a factor
of two compared with the polynomial ansatz. Recall that,
in Eq. (5), the first and second derivative terms appear with
opposite signs. Hence, to reduce the energetic cost, one should
envisage functions in which both derivatives follow similar
temporal features. This is where the power of NN-based op-
timization techniques comes into play. The DP-ML method
greatly reduces the instantaneous cost by realizing functions
with this property [see inset in Fig. 2(a)].

Next, we discuss different energetic cost metrics and their
adherence to thermodynamical principles. While we em-
ployed Eq. (5), previous studies suggested the time average
of the mean STA driving 〈HSTA〉 = 1/τ

∫ τ

0 dt〈HSTA(t )〉 as the
energetic cost of STA [69–71]. We show that this expression
can lead to unphysical results: The system is a refrigerator
〈Q4〉 > 0, yet the total work plus associated STA cost is
negative 〈W1 + W3〉 + 〈HSTA〉 < 0, thus yielding a negative
efficiency.

We compare cost metrics in Fig. 5. We use parameters
close to the edge of the cooling window [determined by the
condition β1ω1 < β2ω2, see Eq. (4)]. This choice leads to
relatively small values of 〈Q4〉 and 〈W1 + W3〉 compared with
parameters used in Fig. 2, and it allows us to demonstrate
the incentive for devising a different energetic cost function
for STA protocols. NN optimization with the cost metric
〈HSTA〉 yields profiles that allow cooling, see Fig. 5(a) for
an example, yet give an overall negative energetic cost; in
Fig. 5(b), we show the instantaneous contribution ∂t 〈HSTA〉,
which is mostly negative. In contrast, the metric 〈C〉 of Eq. (5)
is positive throughout. The cooling efficiency for these param-
eters becomes negative for the 〈HSTA〉 energetic cost, which is
unphysical: By fine-tuning parameters while maintaining the
cooling condition, one can achieve an efficiency that exceeds
Carnot [72]. In contrast, the Schmidt norm-based definition

0.3

0.5

ω

(a)

0 1 2 3 4 5
t

−0.2

0.0

0.2

E
n
er

ge
ti

c
co

st

∂t〈CAB〉 ∂t〈HSTA〉

(b)

FIG. 5. Exemplifying the failure of the energetic cost definition
〈HSTA〉. (a) Frequency ramp profile ω(t ) optimized to minimize
〈HSTA〉. The initial frequency ω1 is set at 0.34 such that the sum of
the average work needed for the expansion and compression strokes
〈W1 + W3〉 is relatively small. (b) Instantaneous energetic cost as a
function of time ∂t 〈CAB〉 of Eq. (5) (light line) and 〈HSTA〉, which
is based on the time-averaged mean shortcut-to-adiabaticity (STA)
driving (dark line). For the latter, the overall input work plus en-
ergetic cost is negative, hence unphysical. In contrast, using 〈C(t )〉
as the energetic cost yields the cooling efficiency ε = 0.47 < εad �
εC = 3; τ = 4.8, ω1 = 0.34, ω2 = 0.5, β1 = 1, and β2 = 0.75.

recovers a positive value for the overall energetic cost and an
efficiency ε � εC , in compliance with thermodynamical laws.

VI. DISCUSSION

We demonstrated the potential and advantage of NN com-
bined with AD in the field of quantum control of finite-time
thermodynamics. Our method allowed us to discover driving
protocols of the strokes of an Otto engine that perform better
by a factor of 1.5 than previously conceived solutions. This
scheme could find a nontrivial family of functions in which
the first and second derivatives follow each other; from our
results, we conclude that it is a crucial property of the cost
function. In Ref. [61], we discuss an attempt to optimize a
simpler ansatz, which can mimic the late blooming strategy
of the NN. Our conclusion is that NN-based results are diffi-
cult to generate with a simple analytical form. Furthermore,
employing the DP-ML optimization scheme enabled us to
uncover a flaw in a previous definition for the cost of STA
driving. In contrast, our modified definition provided physical
results, which obeyed the Carnot bound on one hand and
reached the adiabatic limit on the other hand. We point out
that, among the plethora of energetic cost metrics suggested
in the literature [70,73–77], we do not aim here to find which
one is the most appropriate. However, ML optimization natu-
rally identified violations to thermodynamical laws. Since our
optimization method is general, it can be easily adapted to
optimize other cost functions and figures of merits with little
effort.

Our framework could be directly applied in other con-
trol problems, such as entropy reduction in closed systems
[78], dynamical decoherence control [16], steering chemi-
cal reactions [79], and for the design of quantum electronic
and thermal machines [44]. We paved the way for solving
hard-constrained problems using state-of-the-art ML tools by
orchestrating an objective as the minimum of a cost func-
tion. More generally, in this paper, we show that ML has an
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advantage over some standard theoretical tools in designing
quantum devices, thus making them favorable for an ex-
perimental realization. However, a benchmark against other
contemporary optimal control methods, e.g., CRAB [11,80],
is necessary to better understand the power of ML-based tools.
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