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Cooper triples in attractive three-component fermions: Implication for hadron-quark crossover

Hiroyuki Tajima ,1 Shoichiro Tsutsui,2 Takahiro M. Doi,3,4 and Kei Iida 1

1Department of Mathematics and Physics, Kochi University, Kochi 780-8520, Japan
2Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

3Research Center for Nuclear Physics (RCNP), Osaka University, 567-0047, Japan
4RIKEN iTHEMS, Wako, Saitama 351-0198, Japan

(Received 7 December 2020; revised 1 March 2021; accepted 24 January 2022; published 18 February 2022)

We investigate many-body properties of equally populated three-component fermions with attractive three-
body contact interaction in one dimension. A diagrammatic approach suggests the possible occurrence of Cooper
triples at low temperature, which are three-body counterparts of Cooper pairs with a two-body attraction. We
develop a minimal framework that bridges the crossover from tightly bound trimers to Cooper triples with
increasing chemical potential and show how the formation of Cooper triples occurs in the grand-canonical phase
diagram. Moreover, we argue that this nontrivial crossover is similar to the hadron-quark crossover proposed
in dense matter. A coexistence of medium-induced triples and the underlying Fermi sea at positive chemical
potential is analogous to quarkyonic matter consisting of baryonic excitations and the underlying quark Fermi
sea. The comparison with the existing quantum Monte Carlo results implies that the emergence of these kinds of
three-body states can be a microscopic origin of the peak of the sound velocity along the crossover.
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Introduction—The Cooper problem, where two-component
fermions with a two-body attraction undergo an instability
toward superconductivity, brought about a significant break-
through in condensed matter and particle physics [1]. On the
other hand, three-body and higher-body interactions occurring
among particles with internal degrees of freedom play a sig-
nificant role in cold atomic and nuclear physics [2–6].

In ultracold atoms, the importance of the residual three-
body interaction in a one-dimensional (1D) system [7,8]
and resulting trimer formation [9] have been pointed out.
Moreover, not only the realization of non-negligible multi-
body interactions [10–13], but also various related phenomena
have been proposed [14–19]. Recently, the conditions for
attractive and repulsive three-body interactions [20] and the
Bose-Fermi duality including three-body forces have been
discussed [21–23].

Other interesting aspects of the three-body interaction
are the emergences of a quantum scale anomaly and an
asymptotic freedom in nonrelativistic 1D three-component
fermions [24]. In fact, such a system possesses scale in-
variance classically [25,26], while this scale invariance is
broken by the presence of three-body quantum bound states.
This anomaly is associated with the asymptotic freedom ac-
cording to which the running coupling constant becomes
progressively weaker in a high-energy regime as in quan-
tum chromodynamics (QCD) [27]. The same anomaly also
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emerges in two-dimensional (2D) fermions with two-body
attraction [28–35]. At low density, the molecular bosonic con-
densate has been observed in the 2D system [36], while a gas
of Fermi degenerate trimers is expected to be realized in the
1D system [24,37–40]. Even at high density, the 2D system
undergoes a Cooper-pair condensation. In the 1D system,
however, the three-body counterparts of Cooper pairs remain
to be explored. A candidate is a Cooper triple (see Fig. 1)
predicted in three-dimensional (3D) three-component Fermi
gases with two-body attraction [41,42]. It is important to see
the stability of such an exotic state, given that the medium
effect on Efimov trimer states is non-negligible [41–47].

In dense QCD, moreover, Cooper triples might be rele-
vant to the hadron-quark continuity [48,49] because quarks
are three-component fermions in color space. So far, vari-
ous scenarios have been discussed in connection with recent
astrophysical observations. One of the intriguing state is
quarkyonic matter [50], which has been proposed to describe
the intermediate-density regime as a state in which quark
and baryonic degrees of freedom coexist in the course of
the hadron-quark crossover [48,49] where typical energy-
scale separations occur among the Debye screening mass mD,
QCD energy scale �QCD, and quark chemical potential μq as
mD � �QCD � μq [50,51]. Another interesting picture called
percolation has also been proposed, where quark deconfine-
ment starts with formation of a percolation network [5,6].
While such states have been investigated phenomenologically
and the resulting equation of state is consistent with recent
astrophysical observations of neutron stars [6,52–54], a mi-
croscopic mechanism of these many-body phenomena is not
obvious even at a qualitative level. Thus, it will be interesting
if there is a connection between baryonic excitations in dense
QCD and possible color Cooper triples.
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FIG. 1. Schematic figures for the Cooper triple phase in mo-
mentum space. The system exhibits a coexistence of the underlying
Fermi sea and loosely bound trimers, that is, Cooper triples, near
the Fermi surface with the small width of the energy shell typically
given by the in-medium trimer binding energy EM

B . Although we
work in one dimension, we show higher dimensional configurations
for visibility. Note that the Cooper triple phase has been predicted in
three dimensions [41,42].

In this work, as a quantum simulator of the hadron-
quark crossover, we address many-body properties of three-
component fermions with a three-body attraction. Specif-
ically, we consider the 1D system where a baryonlike
three-body bound state is allowed to occur in vacuum even
for an infinitesimally small three-body coupling by the scale
anomaly. Moreover, a quantum Monte Carlo (QMC) simula-
tion has been performed in 1D recently [40]. As we shall see,
the Cooper triple phase occurs at sufficiently large fermion
chemical potential, i.e., μ >∼EB with the in-vacuum trimer
binding energy EB, to ensure the coexistence of the Fermi sea
and loosely bound triple states, which is distinct from a simple
large-trimer gas conjectured in Ref. [24]. Although mesons
have lighter masses (� 140 MeV) than baryonic ones (� 940
MeV), dense quark (or quarkyonic) matter is dominated by
quark and baryonic degrees of freedom due to the Pauli
blocking being effective at sufficiently large μq, leading to a
similarity to the present model with the three-body attraction.
Moreover, the existence of three-quark attraction has been
revealed by the lattice QCD [55,56] and associated Y-shaped
color-flux distributions have also been found [57,58].

Short summary—Analyzing three-body spectra, we con-
struct the grand-canonical phase diagram as shown in Fig. 2.
We demonstrate that while the Mott temperature T ∗ for the
in-medium three-body state is suppressed by thermal agita-
tion [45] around μ = 0, it linearly increases with the chemical
potential in the high-density regime, indicating the impor-
tance of the Fermi surface effect. Such different tendencies
between the two regimes lead to the nontrivial crossover
from the tightly bound trimer state to Cooper triple phase,
which is a three-body counterpart of the BCS to Bose-
Einstein condensation (BEC) crossover in two-component
Fermi gases [59–62]. The Cooper triple phase is characterized
by three-body correlations near the atomic Fermi surface,
which is analogous to baryonic excitations in quarkyonic
matter. Although the present system does not involve gauge
fields, the crossover from bound trimers to Cooper triples is
reminiscent of the hadron-quark crossover in QCD.

Formalism—We start from a Hamiltonian H for nonrela-
tivistic three-component fermions with a three-body force in

FIG. 2. Grand-canonical phase diagram of one-dimensional
three-component fermions with a three-body attraction. T ∗ is the
Mott temperature where the in-medium trimer binding energy EM

B

disappears. μ = −EB/3 at T = 0 is a trivial quantum critical
point (QCP) for the transition from a zero-density (vacuum) to
nonzero-density state. The purple squares show the points where the
isothermal compressibility exhibits a minimum as a function of μ in
the QMC results [40].
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where γ = r, g, b denote the internal degrees of freedom of
fermions, ξp,γ = p2/(2mγ ) − μγ is the kinetic energy of a
fermion with momentum p and mass mγ , measured with re-
spect to the chemical potential μγ , and c(†)

p,γ is the fermionic
annihilation (creation) operator. The second term in Eq. (1)
denotes the three-body interaction with a contact-type cou-
pling constant g3, taken to be negative here. We note that the
manipulation of g3 has theoretically been proposed in cold
atomic [10–13,63] and in Rydberg atomic systems [64,65].
In the Supplemental Material S1 [66] we present one of the
possibilities of experimentally realizing this interaction in an
atom-trimer resonance model by analogy with the optical
Feshbach resonance [67] in connection with a closed-channel
trimer state [68–71] and optical control methods [72–76]. For
example, applying such a method to an existing mixture (e.g.,
173Yb) with negligibly small two-body interactions away from
the Feshbach resonance enables us to obtain a system with the
dominant three-body interaction.

Many-body effects are incorporated via the in-medium
three-body T -matrix T MB

3 (P, i�n), where P is the center-
of-mass momentum and �n = (2n + 1)πT is the fermion
Matsubara frequency with n ∈ Z. The explicit form of
T MB

3 (P, i�n) reads

T MB
3 (P, i�n) =

[
1

g3
− �(P, i�n)

]−1

, (2)
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where

�(P, i�n) =
∑
k,q

F (k, q, P)

i�n − ξ P
3 +k− q

2 ,r − ξ P
3 +q,g − ξ P

3 −k− q
2 ,b

. (3)

The statistical factor F (k, q, P) in Eq. (3) is given by

F (k, q, P) = f̄ P
3 +k− q

2 ,r f̄ P
3 +q,g f̄ P

3 −k− q
2 ,b

+ f P
3 +k− q

2 ,r f P
3 +q,g f P

3 −k− q
2 ,b, (4)

with the Fermi-Dirac distribution function fk,γ = (eξk,γ /T +
1)−1 and f̄k,γ = 1 − fk,γ . While preceding works allow for
the Pauli-blocking effect for the two-body sector [41] only
via the first term in Eq. (4) that has the Fermi momentum kF

introduced as a momentum cutoff at T = 0, the second term,
which represents three-hole excitations, is also important at
finite temperature [45,77]. By taking F (k, q, P) = 1, one can
reproduce the in-vacuum three-body T -matrix T3(P,�+) that
appears in a three-body problem. We note that the resum-
mation of specific ladder diagrams for attractive interactions
works well even in 1D at finite temperature [78].

We are interested in the conditions that allow a trimer
to appear in a medium. The in-vacuum three-body bind-

ing energy EB = �2

m e
2
√

3π
mg3 corresponds to the negative energy

pole � = −EB of the in-vacuum three-body T -matrix T3(P =
0,�+) [79] (see also the Supplemental Material S2 [66]),
where �+ = � + iδ involves an infinitesimally small imag-
inary part iδ with δ > 0. Note that binding energy per particle
is given by EB/3. Similarly, the in-medium binding energy EM

B
measured from the bottom of the continuum (i.e., the lowest
kinetic energy of three particles at P = 0) can be obtained
from

1

g3
− �(P = 0,� = −EM

B − 3μ) = 0. (5)

Note that a Cooper triple can be defined as a state in which
the corresponding pole energy � + 3μ = −EM

B is negative at
positive μ and its absolute value is also smaller than 3μ. This
is why the regime EM

B � μ is consistent with the presence of
Cooper triples.

Results and discussions—Let us focus hereafter on sym-
metric three-component fermions (m ≡ mr = mg = mb and
μ ≡ μr = μg = μb) in one dimension. We determine the
Mott temperature T ∗ [80,81] where EM

B disappears; the re-
sult is shown in Fig. 2. Although T ∗ does not imply the
presence of any kind of phase transition, it is still worth know-
ing. Indeed, T ∗ is qualitatively equivalent to the mean-field
critical temperature that can be regarded in the context of
the BCS-BEC crossover as the temperature where preformed
Cooper pairs appear incoherently due to the strong two-body
attraction [59–62]. In the numerical calculation we take EM

B =
10−2EB and δ = 10−3EB since � = 0 has a singularity due to
the edge of continuum. We confirmed that our estimate of T ∗
is practically unchanged for smaller δ.

Let us turn to in-medium three-body properties at low
temperature. In Fig. 3 we display the three-body spectral
function A3(P,�) = −ImT MB

3 (P, i�n → �+) calculated at
T/EB = 0.1. Naturally, the medium effect is not significant
at low density [82,83]. In fact, as depicted in Fig. 3(a) for
a typical dilute condition like μ/EB = −1, A3(P,�) has a

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8

(Ω
 +

 3
μ)

/E
B

0 0.2 0.4 0.6 0.8 1
P/√2mEB

P2/(6m)-EB

P2/(6m)

A3(P,Ω) 0.01 100
(a) (b)

FIG. 3. Three-body spectral functions A3(P,�) calculated at
(a) μ/EB = −1 and (b) μ/EB = 2. The temperature is set at T/EB =
0.1 in each panel.

strong intensity around the dispersion of a tightly bound
trimer given by � = P2/(6m) − EB − 3μ, as well as a con-
tinuum above � = P2/(6m) − 3μ. The higher the density,
the stronger the medium effect. Consequently, as shown in
Fig. 3(b), the bound-state peak in A3(P,�) is strongly sup-
pressed at μ/EB = 2. This suppressed peak, however, does
not merge into the continuum at sufficiently low temperature.
Instead, the P = 0 bound-state pole � = −EM

B − 3μ remains
just below � = −3μ, which implies the existence of an in-
medium trimer near the Fermi surface (0 < EM

B � μ), that is,
a Cooper triple.

We remark that while a molecular state competes with a
Cooper triple state in the case of three-component Fermi gases
with two-body interactions at finite temperature [45], Cooper
triples are not suppressed by such an effect in our model with-
out two-body interactions. Even in the present case, however,
Cooper pairs may occur, e.g., due to the effective two-body
coupling geff

2 = g3ρr between fermions with γ = g and b (ργ

is the number density of γ component). This coupling, which
may involve a two-body bound state of binding energy E2b =
m(geff

2 )2/4 in 1D, is irrelevant for a large � since g3 and hence
geff

2 behave as ∼1/ ln(mEB/�2). We remark in passing that in
the case of finite-range three-body interactions, irrespective
of whether attractive or repulsive [84], geff

2 can be finite and
plays a significant role for the interplay between two-body and
three-body correlations.

We also note that while a trimer-trimer pairing state used
to be invoked as one of the possible ground states in Ref. [24],
the trimer-trimer interaction, which was later found to be
repulsive [39], would keep Cooper triples unpaired. The repul-
sive trimer-trimer interaction may lead to the trimer Luttinger
liquid (TLL) in the low-density regime at sufficiently low tem-
perature [85]. Our results imply the crossover from the gapless
excitation in TLL to the collective mode of Cooper triples with
increasing μ. Indeed, a similar crossover of the sound mode
has been reported in the 1D BCS-BEC crossover [86]. Finally,
we emphasize that our prediction of T ∗ properly allows for
thermal agitation, to which the TLL picture is in turn suscep-
tible. From the recent study on finite-temperature Luttinger
liquids [87], one may expect the crossover from TLL to the
normal trimer or Cooper triple phase with increasing T below
T ∗.
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FIG. 4. Temperature dependence of the three-body spectral func-
tions A3(P = 0, ω) at (a) μ/EB = 1, (b) μ/EB = 0, and (c) μ/EB =
−1. (d) The in-medium trimer binding energy EM

B as a function of μ

at T/EB = 0.01 and T/EB = 0.1.

Figures 4(a)–4(c) show the three-body spectral func-
tions A3(P = 0,�) = −ImT MB

3 (P = 0, i�n → �+) at dif-
ferent temperatures. Even in the case of positive chemical
potential μ/EB = 1 depicted in Fig. 4(a), a bound-state peak
occurs just below � + 3μ = 0 at T/EB = 0.1. With increas-
ing temperature, the bound state pole approaches zero energy
and eventually merges with the continuum at T = T ∗, which
amounts to ∼0.5EB at μ/EB = 1. At μ/EB = 0, as shown in
Fig. 4(b), the bound-state peak at T/EB = 0.1 is located at a
lower energy and also enhanced as compared to the case of
positive μ depicted in Fig. 4(a). At higher temperature, how-
ever, the pole at μ/EB = 0 is vulnerable to thermal agitation
and hence T ∗ has a minimum around μ = 0. At sufficiently
low density, μ/EB becomes negative. For example, in the
case of μ/EB = −1 depicted in Fig. 4(c), the bound-state
pole reduces to −EB at sufficiently low temperature, a be-
havior consistent with Fig. 3(a). This is a clear evidence of
the presence of tightly bound trimers. When the temperature
increases, the bound-state pole approaches zero energy again
and finally disappears even in such a low-density regime.
Since the system does not form the Fermi surface at negative
μ, such a reduction of the trimer binding energy has to be
associated with thermal agitation [45].

In Fig. 4(d) we show how EM
B evolves from the tightly

bound trimer phase to the Cooper triple phase at T/EB = 0.01
and 0.1. One can see a dramatic drop of EM

B around μ = 0,
indicating the change of the system’s properties. Both at such
low temperatures, EM

B continuously changes from EB to the
Cooper triple energy ECT/EB � 0.04 with increasing μ. Here
we note that at exactly zero temperature there is a trivial quan-
tum critical point at μ/EB = −1/3 for the transition from a
zero-density (vacuum) to nonzero-density state. Note that this
critical point is characterized by the effective fugacity zeff =
e(3μ+EB )/T of a bound trimer [88], as zeff becomes exactly
zero at T = 0 when 3μ < −EB. In the absence of EB, this
transition would occur at μ = 0. From comparison between

the results of T/EB = 0.01 and T/EB = 0.1, one can see that
thermal agitation becomes significant around μ/EB = −1/3
to 0. All these low-temperature properties reflect the fact that
while the competition between the three-body binding and the
thermal agitation, which is characterized by the ratio T/EB,
manifests itself in the low-density regime (μ <∼0), the forma-
tion of Cooper triples in the high-density regime (μ � EB) is
robust against the thermal agitation due to the Fermi surface
effect. The Cooper triple phase in the high-density regime can
be identified by a typical energy separation EM

B � EB <∼μ,
which is analogous to that in quarkyonic matter. In the low-
density regime, see the Supplemental Material S3 [66].

We finally revisit the μ dependence of T ∗ shown in Fig. 2.
In the high-density regime, T ∗ linearly increases with increas-
ing μ. Indeed, this behavior is well fitted by the linear function
T ∗ = 0.384μ + 0.095EB. Such a scale-invariant behavior of
T ∗ ∝ μ implies that three-body correlations are still alive in
the high-density regime. For comparison, in Fig. 2 we plot
the points where the QMC result [40] for the isothermal com-
pressibility κ normalized by the ideal-gas value κ0 is minimal
with respect to μ. Interestingly, these points coincide well
with the T ∗-μ relation at low temperature. In QCD, the sound
velocity, which is proportional to κ−1/2 at T = 0, is predicted
to be peaked in the hadron-quark crossover regime [48,49].
Thus, our results suggest that such macroscopic behavior
manifests the emergence of Cooper triples in both systems (for
details see the Supplemental Material S4 [66]).

Conclusion—We have clarified the conditions of temper-
ature and chemical potential that allow Cooper triples and
trimers to occur in the 1D equilibrated system of three-
component fermions with three-body attraction. We have
found a nontrivial crossover from the tightly bound trimer
phase to the Cooper triple phase with increasing chemical
potential, which is analogous to the hadron-quark crossover in
QCD. The Mott temperature T ∗ of Cooper triples agrees well
with the compressibility minima of the QMC result in this
1D system, implying that the hadron-quark crossover is ac-
companied by the emergence of quark Cooper triples. Indeed,
this scenario is physically analogous to the McLerran-Reddy
model for quarkyonic matter [53].

For future perspectives, the comparison of the compress-
ibility between our diagrammatic approach and the existing
QMC result would be helpful to confirm the relevance
of Cooper triples. Since the deconfined phase near the
T ∗ minimum is dominated by strong fluctuations [45], the
compressibility anomaly could not be understood by usual
quasiparticle pictures. It is also interesting to address quartet
condensation [89–92], dual bosonic systems [21,22], higher
dimensions [63], effects of two-body interactions [41,42], and
lattice systems [93–95]. Moreover, the three-body loss can be
a useful probe for the emergence of Cooper triples as in the
case of Efimov effects [42,96].
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