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Recent experiments have demonstrated strong light–matter coupling between electromagnetic nanoresonators
and pristine sheets of two-dimensional semiconductors, and it has been speculated whether these systems can
enter the quantum regime operating at the few-polariton level. To address this question, we present a microscopic
quantum theory for the interaction between excitons in a sheet of two-dimensional material and a localized
electromagnetic resonator. We find that the light–matter interaction breaks the symmetry of the otherwise
translation-invariant system and thereby effectively generates a localized exciton mode, which is coupled to
an environment of residual exciton modes. This dissipative coupling increases with tighter lateral confinement,
and our analysis reveals this to be a potential challenge in realizing nonlinear exciton-exciton interaction.
Nonetheless, we predict that polariton blockade due to nonlinear exciton-exciton interactions is well within
reach for nanoresonators coupled to transition-metal dichalcogenides, provided that the lateral confinement can
be sufficiently tight to make the nonlinearity overcome the polariton dephasing caused by phonon interactions.
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Interfacing an electromagnetic resonator with the spatially
extended excitons in a pristine sheet of two-dimensional
(2D) semiconductor has recently been demonstrated as a way
of obtaining very large Rabi splittings, up to the order of
100 meV [1–8]. These strong interactions are of great interest
due to the prospect of realizing polaritonic devices [9] such
as squeezed-light sources [10,11], polariton lasers [12], and
polariton blockade which, in turn, enables the construction
of single-photon sources [13–16] and few-photon logic gates
[17–19]. Despite a growing interest in these systems, there is
a lack of microscopic modeling of the experiments, which are
colloquially analysed by use of phenomenological coupled-
oscillator models. Even if these models can be well fitted to
experimental data, the lack of a microscopic foundation limits
their ability to predict quantum optical figures of merit of
practical interest, such as second-order correlation functions.

In this Letter, we develop a microscopic quantum theory
of 2D semiconductors coupled to electromagnetic resonators,
which consistently links important dynamical quantities—
such as the exciton–resonator coupling strength and effective
nonlinear exciton-exciton interaction—to fundamental ma-
terial parameters. The theory applies equally to plasmonic
resonators [1–8] and dielectric nanocavities [20–22], includ-
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ing a new generation of dielectric cavities with extreme
confinement of light [23–25]. Our approach is based on 2D
Wannier-Mott excitons with discrete translation invariance
broken only by interactions with the localized electromag-
netic resonator, as illustrated in Fig. 1(a). We find that
the symmetry-breaking light–matter interaction generates
a collective localized exciton mode—an exciton reaction
coordinate—defined by the profile of the resonant electric
field. The exciton reaction coordinate, in turn, is coupled to
an environment of residual exciton modes with a spectral
density that depends on the lateral extent of the resonant
field. Coupling to the residual exciton modes is pronounced
only for very tight lateral confinement of the electric field
and can be neglected for confinement lengths above a few
nanometers in realistic systems, as illustrated Fig. 1(b). The
effective nonlinear exciton-exciton interaction strength in
the reaction coordinate also increases with decreasing lat-
eral mode area, thereby making structures with tight lateral
confinement crucial for realizing polaritonic devices. Intrigu-
ingly, we find that there exists a regime where the lateral
confinement is tight enough to enable polariton blockade op-
eration, yet sufficiently large to avoid coupling to residual
excitons. In this regime, therefore, one can unambiguously
interpret the dynamics in terms of nonlinear multiexciton
interactions within the single reaction coordinate. As a main
result, we predict that polariton blockade can be reached us-
ing a monolayer transition-metal dichalcogenide coupled to
an electromagnetic resonator, since the nonlinearity can ex-
ceed the dephasing caused by thermal phonon interactions. In
contrast to earlier work in the context of quantum wells [13]
and 2D materials [26], the present microscopic model is based
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FIG. 1. (a) Illustration of an electromagnetic resonator coupled
to a sheet of 2D material. (b) Exciton–resonator coupling G0, non-
linear exciton-exciton interaction W ′

0 and decay rate into residual
exciton modes �res as a function of the lateral confinement L of the
electromagnetic field, as well as the exciton dephasing from phonon
scattering, γ ′

x, in WS2 at a temperature of 300 K. Yellow shading
marks the regime where L is large enough that the residual excitons
can be ignored and small enough that W ′

0 exceeds the polariton
dephasing, such that polariton blockade is possible. Blue shading
marks the regime where the residual excitons have a non-negligible
impact on the dynamics.

on extended exciton momentum-states, thereby connecting all
model parameters directly to measurable material properties
and identifying the regime where the influence of the residual
excitons cannot be neglected. The model accounts for general
electromagnetic resonators with nontrivial field distributions,
which extends the applicability beyond state-of-the-art work
based on ab initio methods [27]. We also note that recent theo-
retical work has analyzed the possibility of obtaining polariton
blockade [28] with trions in two-dimensional semiconductors,
although without considering any dephasing mechanisms,
which we find to be the most important limitation for polariton
blockade in realistic systems.

The excitons in a sheet of 2D semiconductor can be
approximated as interacting bosons with annihilation oper-
ators b̂k, labeled by the lateral center-of-mass momentum
k = (kx, ky) [29–32]. We approximate the excitonic wave
function φ(q) as the Wannier-Mott type [33,34], having a
form corresponding to the hydrogen ground state with exciton
Bohr radius aB; this approach has previously been demon-
strated to agree well with detailed numerical calculations
[35]. The Hamiltonian of the excitons and the electromag-
netic field is split into three parts as Ĥ = Ĥc + Ĥx + ĤI.
The first term, Ĥc = h̄ωcâ†

c âc, represents the free evolution
of the electromagnetic field with resonance frequency ωc

and bosonic annihilation operator âc [36]. The second term,
Ĥx = ∑

k h̄ωkb̂†
kb̂k + Ŵ , is the exciton Hamiltonian with en-

ergies h̄ωk = h̄2k2/(2M ) + h̄ω0, where M = me + mh is the
total exciton mass (me and mh denote the effective electron
and hole masses) and h̄ω0 is the exciton energy gap, ac-
counting for the exciton binding energy and the bare band
gap. The operator Ŵ = ∑

kk′q h̄Wkk′qb̂†
k+qb̂†

k′−qb̂k′ b̂k accounts
for Coulomb-induced exciton–exciton interaction with matrix
elements Wkk′q [31,32]. The third term is the light–matter
interaction Hamiltonian, ĤI = ∑

k h̄(g∗
kâ†

c b̂k + gkâcb̂†
k ), with

coupling strengths [37]

h̄gk = − e0

m0

√
h̄

πε0ωca2
BS

∫
d2re−ik·rF̃c(r, z0) · pcv, (1)

(a)

(c)

(b)

FIG. 2. (a) The localized resonant field (âc, orange dot) is
coupled to a continuum of exciton modes with momentum k.
(b) Through a linear transformation, the light–matter interaction can
be described as a coupling between the resonant field and a single,
collective exciton reaction coordinate (B̂0) which, in turn, is coupled
to an environment of residual exciton modes ( ˆ̃Bi). (c) Exciton spectral
density (blue) and residual spectral density (green) for an electro-
magnetic field with lateral Gaussian confinement corresponding to
Eq. (4). The exciton reaction coordinate frequency, �0, is indicated
with a dashed black line. The inset shows the Gaussian lateral field
profile.

where e0 is the elementary charge, m0 is the free electron
mass, S is the surface area of the 2D material sheet located
at z = z0, and r = (x, y) is the lateral position. F̃c(x, y, z) is
the field profile of the resonant electric field, and pcv is the
momentum Bloch matrix element. We also include in the
formalism the possibility that the fundamental exciton mode
is degenerate, as in transition metal dichalcogenides [37].

Through Eq. (1), the interaction Hamiltonian defines the
coupling between the resonant electromagnetic field and each
of the free excitons, as illustrated in Fig. 2(a). To simplify this
model, we can perform a change of basis by defining the col-
lective exciton reaction coordinate with bosonic annihilation
operator B̂0 = G−1

0

∑
k g∗

kb̂k, where G0 = (
∑

k |gk|2)
1/2

. In
this way, we can write the light–matter interaction compactly
as ĤI = h̄G0(B̂†

0âc + B̂0â†
c ). The collective coupling strength

is related to the electric field profile as

G2
0 = e2

0

π h̄ε0m2
0ωca2

B

∫
d2r|F̃c(r, z0) · pcv|2. (2)

Importantly, this coupling strength depends on the field
intensity integrated over the entire 2D-material surface.
Therefore, in contrast to what one would expect in the dipole
approximation [38], tightening the electromagnetic confine-
ment in the lateral direction does not lead to an increased
coupling strength, as seen by the horizontal black solid
line in Fig. 1, where separability of the field in the lat-
eral and out-of-plane coordinates was assumed. Instead, the
overall field strength in the plane of the 2D-material can
be quantified through the out-of-plane confinement length
scale, Lz = (

∫
d2r|F̃c(r, z0)|2)−1. Indeed, Lz defines an up-

per bound of the coupling strength through the inequality
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G2
0 � e2

0|pcv|2/[π h̄ε0m2
0ωca2

BLz], which becomes an equality
when the polarization of F̃c(r, z0) is aligned with pcv. In order
to implement the change of basis and benefit from the simpler
form of ĤI, we must reformulate the noninteracting exciton
Hamiltonian Ĥx,0 := ∑

k h̄ωkb̂†
kb̂k by defining a new set of

exciton modes with bosonic operators ˆ̃Bi and frequencies �̃i

(i > 0), such that it can be written as

Ĥx,0 = h̄�0B̂†
0B̂0 +

∑
i>0

[h̄�̃i
ˆ̃B†

i
ˆ̃Bi + (h̄λ̃iB̂

†
0

ˆ̃Bi + H.c.)],

where �0 = ∑
k |gk|2ωk/G2

0 is the reaction coordinate fre-
quency, and where the operators fulfill canonical commutation
relations, [ ˆ̃Bi,

ˆ̃B†
j ] = δi j and [B̂0,

ˆ̃B†
i ] = 0. Such a transfor-

mation is described within the theory of reaction coordinate
mappings [39–43]. This form of Ĥx describes the interaction
of the exciton reaction coordinate B̂0 with an environment of
residual exciton modes ˆ̃Bi through the coupling coefficients
λ̃i, as depicted in Fig. 2(b). By identifying the residual exci-
ton modes, we can calculate the decay rate into the residual
environment in the Markovian limit and assess the condi-
tions under which the excitons can be described in terms of
a single reaction coordinate. The properties of the residual
environment are contained in the residual spectral density,
Jres(ω) = ∑

i>0 |λ̃i|2δ(ω − �̃i ), which is related to the exciton
spectral density J (ω) = ∑

k |gk|2δ(ω − ωk ) as [44,45]

Jres(ω) = G2
0J (ω)

�2(ω) + π2J2(ω)
, (3)

where �(ω) = lim�→0+
∫ ∞
ω0

dzJ (z) ω−z
(ω−z)2+�2 .

To quantify the impact of the optical confinement geom-
etry, we now assume that the electromagnetic field profile
is separable in the lateral and out-of-plane coordinates and
that the field is uniformly polarized with polarization vector
n, such that F̃c(r, z) = nFz(z)F‖(r). In this case, the out-
of-plane confinement length takes the intuitive form Lz =
εeff

∫
dz|Fz(z)|2/|Fz(z0)|2, where εeff is an effective dielec-

tric constant accounting for the dielectric environment. In
this way, Lz can be formally separated from the lateral field
distribution. Furthermore, when taking the in-plane field dis-
tribution to be Gaussian with confinement length L; F‖(r) =
e−r2/(2L2 )/

√
πL2, we can evaluate the spectral densities ana-

lytically as [37]

J (ω) = (ω − ω0)J0e−(ω−ω0 )/ξ ,

Jres(ω) = (ω − ω0)ξe(ω−ω0 )/ξ {Ei2[(ω − ω0)/ξ ] + π2}−1,

(4)

where  is the Heaviside function, ξ = h̄/(2ML2) is a cutoff
frequency, J0 = G2

0/ξ determines the overall magnitude of the
spectral density and Ei denotes the exponential integral; these
spectral densities are shown in Fig. 2(c). The overall scaling of
the residual spectral density is determined by ξ ∝ L−2, which
shows that the residual excitons are most important when the
lateral confinement length is small.

To assess the limits of the model based on a single reaction
coordinate, we investigate the conditions for neglecting the
residual excitons. To this end, we study the linear response
limit, where the nonlinear interactions Ŵ can be ignored and

FIG. 3. (a) Exact time evolution of resonator excitation number,
〈â†

c âc〉 (black solid lines), compared with the Markovian theory (or-
ange dashed lines) and with the residual excitons ignored (red dotted
lines) for a separable field profile with Gaussian in-plane distribu-
tions and different lateral confinement lengths, L. The 2D material
was taken to be WS2, and Lz = 150 nm, ωc = �0, h̄γc = 5 meV,
and |n · pcv|/pcv = 0.5. The light–matter coupling with these param-
eters is h̄G0 = 22 meV.

consider the time evolution of a single resonator excitation.
The excitation number 〈â†

c (t )âc(t )〉 can be calculated exactly
through the equation for the resonator amplitude φc(t ) [46],

dφc(t )

dt
= −

∫ t

0
K (t − t ′)φc(t ′)dt ′ − γcφc(t ), (5)

where K (τ ) = (τ )
∫

dωJ (ω)e−i(ω−ωc )τ is a memory kernel,
which fully accounts for interactions with the excitons, and
γc is the decay rate of the electromagnetic field. The excita-
tion number of the resonator is then given by 〈â†

c (t )âc(t )〉 =
|φc(t )|2. This time evolution is shown in Fig. 3 (black
solid). As an alternative approach, we have derived a master
equation for the reduced density operator of the resonant
field and exciton reaction coordinate, in which the effect
of the residual excitons is approximated by a Markovian
decay with rate �res = 2πJres(ω+), where ω+ = [ωc + �0 +√

4G2
0 + (ωc − �0)2]/2 is the frequency of the upper polari-

ton [37]. The residual decay rate is shown in Fig. 1(b) for
ωc = �0, and the time evolution generated by this master
equation is shown in Fig. 3 (orange dashed) along with the
result obtained when ignoring the residual excitons entirely
(red dotted). This shows that the residual exciton environment
starts to play a role for L below ∼4 nm, and that it is well
approximated by the Markovian theory [37].

We now proceed to study the impact of the nonlinear
exciton-exciton interactions and the prospects for reaching the
polariton blockade regime. To do so, we assume that the resid-
ual exciton modes, ˆ̃Bi, are weakly populated, such that the
exciton–exciton interaction, Ŵ , is only significant within the
reaction coordinate. This assumption is reasonable in the limit
where the exciton reaction coordinate is decoupled from the
residual exciton modes and therefore is the only exciton mode
with appreciable population. The interaction is thus approxi-
mated as Ŵ ≈ Ŵ0 := h̄W ′

0 B̂†
0B̂†

0B̂0B̂0. Assuming L  aB, we
can neglect the momentum dependence of the matrix ele-
ment Wkk′q [31], such that the interaction strength within the
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reaction coordinate becomes W ′
0 � SW000ηn[

∫
d2r|F̃c(r, z0) ·

pcv|2]−2
∫

d2r|F̃c(r, z0) · pcv|4 [13,37]. This quantity deter-
mines the nonlinear energy shift of the exciton reaction
coordinate. Here, the polarization-dependent prefactor ηn
takes values between 1/2 (reached in the limit of a linearly
polarized resonator mode) and 1 (reached in the limit of a
circularly polarized resonator mode) [37]. In the calculations
presented here, we take ηn = 1, corresponding to a circularly
polarized mode.

The zero-momentum interaction matrix element has previ-
ously been found to be well approximated from the binding
energy (Eb) and Bohr radius as h̄W000 � αEba2

B/S. Using
α = 2.07 for WS2 [47], this leads to h̄SW000 � 2.04 eVnm2.
For the Gaussian field we find h̄W ′

0 = αEba2
B/(2πL2), which

scales as the inverse mode area. In contrast to the case of
a laterally nanostructured 2D material [48,49], the nonlinear
interaction strength here is entirely determined by the lateral
confinement of the resonant field and the exciton Coulomb
interaction strength. Within the master equation formalism,
we can account for nonradiative exciton decay and dephasing
due to phonon interactions [50] through a nonradiative exciton
decay rate γx, and dephasing rate γ ′

x, which both increase with
temperature [37,51].

To investigate polariton blockade and single-photon non-
linearities, we consider the second-order correlation function
g(2)(τ ) = 〈â†

c â†
c (τ )âc(τ )âc〉/〈â†

c âc〉2 [52], evaluated with re-
spect to the steady-state density operator. Zero-delay values
of g(2)(0) < 1 are a signature of polariton blockade, and
g(2)(0) reaches 0 in the case of perfect blockade [13,53]. It
has previously been shown that in the absence of dephasing,
near-zero values of g(2)(0) can be reached, even in the limit
of a small nonlinear interaction, W ′

0 � γx [54,55]. This is an
unconventional polariton blockade effect, which arises due to
destructive interference between the excitation paths leading
to excitation of multiple polaritons [56]. We note that the
original theoretical descriptions of unconventional polariton
blockade [54,56] found the effect in a system of two coupled
electromagnetic resonators, with at least one of them being
nonlinear. In contrast, the two coupled modes in the present
situation are constituted by the resonator and the exciton re-
action coordinate, where only the latter is nonlinear. We use
the Markovian master equation to evaluate the minimal value
of g(2)(0) that can be reached for a given lateral confinement
length L, of the resonator with a Gaussian electromagnetic
field profile, driven by a continuous-wave laser field with
frequency ωd and amplitude F . This driving is described by
adding the term Fe+iωdt âc + F ∗e−iωdt â†

c to Ĥc. The nonlinear
interaction is accounted for within the exciton reaction co-
ordinate through the Hamiltonian contribution Ŵ0. We then
numerically minimize g(2)(0) with respect to ωd and ωc for
each parameter setting.

Figure 4(a) shows the minimum attainable g(2)(0) for WS2

as a function of L at cryogenic temperature (blue colors)
and room temperature (red colors), and for different exper-
imentally relevant resonator linewidths γc. In Fig. 4(b), we
show the nonlinear shift W ′

0 as a function of L and show
the total intrinsic exciton linewidth �x = γx + γ ′

x, for the two
temperature settings, along with the dephasing contribution
to the linewidth, γ ′

x. From these calculations, we observe the

(a)

(b)

(c)

FIG. 4. (a) Optimal antibunching vs lateral confinement, L, for
monolayer WS2 coupled to a resonant field with Gaussian in-
plane distribution at temperatures of 4 and 300 K and resonator
linewidths h̄γc of 25 and 50 meV. Parameters: Lz = 50 nm, F =
1.5 meV, |pcv · n|/pcv = 0.75, corresponding to h̄G0 = 57.5 meV.
(b) Nonlinear interaction strength W ′

0 vs L, compared to exciton
linewidth, �x = γx + γ ′

x, and exciton dephasing, γ ′
x. The thin vertical

lines in panels a and b mark the value of L where g(2)(0) drops below
1 for T = 300 K. (c) Delay-time dependence of steady-state second-
order correlation function for optimized parameters as in panel a, at a
lateral confinement length of L = 6.9 nm. Plot signatures correspond
to those in panel a.

important result that reductions in g(2)(0) below the classical
limit g(2)(0) < 1 become feasible when W ′

0 overcomes the
polariton dephasing γ ′

x, whereas it does not need to overcome
the total linewidth. This follows from the difference between
the behavior at the two temperatures. For T = 4 K, W ′

0 is
above γ ′

x for L � 75 nm and g(2)(0) increases smoothly from
near-zero values towards 1. At T = 300 K, W ′

0 exceeds γ ′
x for

L � 9 nm, at which point the optimal g(2)(0) starts to decrease
from unity abruptly, due to the steep increase in W ′

0 as L
is decreased (indicated with thin vertical lines in Figs. 4(a)
and 4(b). In this way, we identify excitonic dephasing as the
main challenge for reaching the blockade regime, and we
interpret this limitation as originating from a decoherence-
induced suppression of the destructive interference between
two-polariton exciton paths, which is responsible for polariton
blockade. In Fig. 4(c), we show the delay-time dependence
of g(2)(τ ), as calculated from the master equation using the
quantum regression theorem [57], which transitions from its
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minimal value at τ = 0 towards unity on a time scale on
the order of 1 ps. The antibunching appearing on this pi-
cosecond time scale should be observable with established
ultrafast detection techniques [58–60]. Due to a significant
detuning on the order of 100–300 meV between the reso-
nant field and the exciton in the two-frequency optimized
configuration, the signal does not exhibit Rabi oscillations
as reported in previous studies on unconventional polariton
blockade [54–56]. This significant detuning follows from
the fact that our optimization procedure does not impose
constraints on the frequencies ωc and ωd, whereas previous
studies have fixed one of these detunings in the optimization
procedure.

We have presented a microscopic theory of light–matter
interaction in electromagnetic resonators coupled to pristine
sheets of 2D semiconductor, whereby we unambiguously
and analytically identify all relevant dynamical parameters
in terms of fundamental material parameters. We find that
rather than the mode volume ∼L2Lz, it is the out-of plane
confinement length Lz that controls the light–matter interac-
tion, while the lateral length L determines both the nonlinear
interaction and coupling to residual modes. Using this the-
ory, we have identified a significant operational window of

lateral length scales, where the nonlinear exciton response
is large enough to enable a pronounced polariton blockade
while the coupling to residual modes can be neglected. Our
calculations show that lateral dimensions of the order of
40 nm or smaller are required to see significant antibunching,
g(2)(0) < 1/2, at cryogenic temperatures, whereas smaller di-
mensions of around 10 nm are required at room temperature.
Such dimensions are well within the limits of contempo-
rary nanofabrication [61] using either plasmonic resonators
[62,63] or optical cavities with extreme dielectric confinement
of light [64,65].
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