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Universality of breath figures on two-dimensional surfaces: An experimental study
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Droplet condensation on surfaces produces patterns, called breath figures. Their evolution into self-similar
structures is a classical example of self-organization. It is described by a scaling theory with scaling functions
whose universality has recently been challenged by numerical work. Here, we provide thorough experimental
testing, where we inspect substrates with vastly different chemical properties, stiffness, and condensation rates.
We critically survey the size distributions and the related time-asymptotic scaling of droplet number and surface
coverage. In the time-asymptotic regime, they admit a data collapse: the data for all substrates and condensation
rates lie on universal scaling functions.
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Breath figures are droplets patterns formed by a super-
saturated vapour flux condensing on a substrate [1]. They
appear in nature, for example when dew deposits on leaves,
spider nets and vegetable fibers. They also have an appeal-
ing potential for technological purposes. Possible applications
include dew harvesting devices for water collection [2–4],
heat exchangers with increased efficiency [5–8], and patterned
surfaces production [9–13]. Breath figure self-assembly has
been exploited to fabricate porous bead-on-string fibers [13].
Droplets have been used as a template to produce ordered
porous materials for membrane manufacturing [14], as well
as to introduce desired materials inside textiles by means of
three-dimensional porous microstructures [15]. Recent studies
have shown that droplet patterns on surfaces can also give
origin to structural colors [16]. In all these applications, under-
standing the droplet formation process and the evolution of the
condensation patterns is a crucial step towards controllability
and further technological development.

The theory of breath figures is based on scaling arguments
[17–22]. The condensation process leading to the forma-
tion of a droplet pattern develops in several phases [23],
corresponding to different time and length scales character-
izing the phenomenon. A first nucleation of droplets (primary
nucleation) is followed by their initial growth as a monodis-
perse population. After some time, the droplets start to merge,
releasing space on the substrate, which is used for further
nucleation (secondary nucleation). The distribution continues
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to evolve, becoming polydisperse and eventually self-similar
[17,18,24,25]. Scaling concepts, closely related to fractals
theory, can be used to describe the evolution of the droplet
distribution [25,26]. Experiments [17,26–29] and simulations
[19,26,30,31] have shown that, in the late-time regime, the
droplet size distribution is bimodal, with two well-separated
parts. In particular, it features a bell-shaped peak, correspond-
ing to the monodisperse population of the largest hence oldest
droplets, and a power law distribution of smaller droplets,
which is terminated by a cutoff function at the nucleation
length scale. Scaling manifests itself in a data collapse of
droplet distributions taken at different times, and in the time
dependence of the moments of the distribution. In the long-
time regime, they approach power laws with exponents that
can be expressed in terms of a single nontrivial exponent,
denoted as “polydispersity exponent τ .” In particular, the
asymptotic time decay of the droplet number and the porosity
(ratio between nonwetted area and total substrate area) are de-
scribed by the same exponent. It was widely expected that the
polydispersity exponent is a universal number, depending only
on the dimensionality of the system [17–22,32,33]. Its value
was calculated [33] by assuming universality [34]. However,
the exponents found in recent numerical simulations [26,31]
differ clearly from the prediction. This calls for experimental
studies. So far experimental studies have mostly addressed
the early stages of the droplet nucleation [23,27,35], and the
initial phases of the polydisperse transient regime [36,37],
with noticeable exceptions in [8,26]. The impact of surface
properties and condensation rates has not been examined.

Here, we present extensive experimental data for breath
figures on a range of substrates with different stiffness, surface
chemistry, and temperature. The different regimes of surface
coverage are discussed with an emphasis on the self-similar
phase. We observe the predicted scaling and critically survey
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FIG. 1. Time evolution of the droplets condensation pattern on
a silicone substrate with elastic modulus E = 2 MPa. Images are
taken (a) 1 sec, (b) 10 sec, (c) 100 sec, (d) 15 min, (e) 250 min, and
(f) 300 min after the beginning of the condensation process.

the predicted data collapse for all data of all experimental
settings. The conclusion, that there are universal scaling func-
tions, is substantiated by kinetic Monte Carlo simulations.

Evolution of droplet patterns. We induce the nucleation
and growth of water droplets on substrates consisting of a
glass cover slip either coated with a 30 μm layer of silicone
(Dow Corning Sylgard 184) or silanized with tridecafluoro–
1,1,2,2–tetrahydrooctyl trichlorosilane (SiHCl3) or hexam-
etildisilazane (HMDS). The upper side of the substrates is
exposed to a steady flux of air saturated with water at
room temperature. On the bottom, they are in contact with a
temperature-controlled plate at a set-point temperature T ∗

p of
5 ◦C. We image the droplets from the top with a dissecting mi-
croscope (Nikon SMZ80N). The smallest measured droplets
have a radius of about 15 μm, the largest about 2.5 mm. In
each image, we identify the center and radius of each droplet.
We acquire images of the droplets over logarithmically spaced
time intervals between 0.1 sec and 10 h, from the moment the
first visually resolvable droplets appear. Using silicone sub-
strates allows us to reduce the stiffness, and hence the number
of nucleation sites respect to glass [38]. The static contact
angle θc is measured via side imaging, with a CMOS camera
(Thorlabs, DCC3240M) and LED back-illumination, with a
precision of 2◦. On all substrates droplets can be considered
hemispherical (θc ∼ 90◦) except on HMDS-glass (θc = 67◦).
Full details on the experimental setup, data acquisition, and
analysis are given in Secs. A– C of Ref. [39].

Representative snapshots of droplet nucleation, growth,
and coalescence on a silicone substrate with elastic modulus
E = 2 MPa are shown in Fig. 1. After an initial burst of
nucleation [Fig. 1(a)], the droplets grow with roughly uniform
size [Fig. 1(b)] . After about one minute, the droplets start
to come into contact and coalesce [Fig. 1(c)]. New droplets
nucleate in the gaps between larger ones, and the range of
droplet sizes grows [Figs. 1(d)–1(f)].

Four stages of the condensation process emerge clearly
when we plot the total number of droplets per unit area as
a function of time, N (t ), as shown in Fig. 2(a) (black line,
left vertical axis). The nucleation stage lasts for the first sec-
ond. It is characterized by a rapid increase in the number

FIG. 2. Stages of growth. (a) Time evolution of the number of
droplets per unit area (black, left vertical axis) and porosity (grey,
red online, right vertical axis). (b) Time evolution of the maximum
(black) and average (grey, red online) radius of a droplets popula-
tion condensing on a silicone substrate (E = 1 MPa). (c) Frequency
histograms of the radii r of the droplet population at different times:
1 (red), 15 (yellow), and 95 min (blue) from the beginning of the
condensation process.

of droplets and it is labeled (i) in Fig. 2(a). In the uniform
growth stage, labeled (ii) in Fig. 2(a), the number of droplets
remains essentially fixed and the mean and maximum droplet
radii increase, as shown in Fig. 2(b). Throughout the nucle-
ation and growth stages, the droplet size distribution remains
unimodal, as shown by the red histogram in Fig. 2(c). In the
early coalescence stage, labeled (iii), the number of droplets
per unit area steadily decreases [Fig. 2(a)], the droplets growth
accelerates, as shown in Fig. 2(b), and the size distribution be-
comes bimodal, as shown by the yellow histogram in Fig. 2(c).
In the late coalescence stage, starting after about 103 sec,
labeled (iv), the number of droplets decays more slowly than
before [Fig. 2(a)], while the spread between the maximum and
mean droplet radii widens, as shown in Fig. 2(b), reflecting
the broadening of the underlying size distribution [Fig. 2(c),
blue histogram). As the droplets distribution grows, the free
area on the substrate decreases. This decay is quantified by
the porosity,

p(t ) = 1 −
∑

i

Ai(t )

Atot
, (1)

where the index i labels the ith droplet, Ai = πR2
i is its wet-

ted area, with Ri its time-dependent radius, and Atot is the
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FIG. 3. Rescaled droplet number density as a function of the size
s/�, where s = r3, � = max s and θ = 5/3 (a) from simulations and
(b) from experiments, at different times, indicated in the legend. The
dashed lines represent the theoretical prediction for the polydisper-
sity exponent τ � = 19/12.

total substrate area.1 Experimentally, the porosity is calculated
from the droplet coordinates and radii. Prior to the nucleation
of droplets, for an empty surface, the porosity is equal to one.
As the area covered by droplets grows in time, the porosity
decays, as shown in Fig. 2(a) (grey line, red online, right
vertical axis).

Scaling of the droplet number density. We now evaluate
the droplet size distributions. The probability density function
n(s, t ) represents the number of droplets of size s per substrate
unit area, per unit size. The “size,” proportional to the droplets
mass, is defined as s = r3, where r is the radius and n has
units of m−5. During the late-stage scaling regime, n should
adopt a scaling form. In particular, it is expected [18,19] that
the intermediate portion of the distribution, excluding the tails
of the smallest and the largest droplets, scales as n(s, t ) ∼
[s/�(t )]−τ�(t )−θ , where θ is a trivial exponent, depending
on the dimensionality of the system, τ is the polydispersity
exponent and �(t ) is the maximum droplet size at time t .
The exponent θ must take the value 5/3 for three-dimensional
droplets on a two-dimensional substrate, such that the dimen-
sions of n and the scaling expression match. The exponent
τ is expected to take a value of 19/12 [33]. The resulting
power laws are indicated by dashed lines in the plots of our
data. Further discussion is provided in Sec. E of Ref. [39]. We
analyze n both for experiments and simulations. In particular,
we perform kinetic Monte Carlo simulations [40–43] on a
1200 × 1200 square lattice with periodic boundary conditions

1Note that the porosity is an instantaneous measure of the area not
covered by droplets at a certain time, thus, it differs from the “visited
area” [44], which is the area that has been occupied by droplets at
any previous time.

FIG. 4. Late-time evolution of porosity (grey, red online, right
vertical axis) and number of droplets per unit area (black, left vertical
axis), averaged over six experiments. The error bars represent the
standard deviation.

and a constant water flux impinging onto the surface. The
simulations account for droplet nucleation and growth as well
as for merging events. A full description is provided in Sec. I
of Ref. [39].

To compare our findings to the theoretical predictions, we
plot the rescaled droplet number density, n(s, t )�θ , in Fig. 3.
In this plot, the droplet sizes are normalized by the maximum
droplet size observed at that time point, �(t ). Thus, large
droplet peaks line up at s/� ≈ 1 for all times. As time pro-
gresses, the small droplet peak becomes broader and has a
maximum value close to the smallest resolvable size.

At large times, the distribution presents three distinct fea-
tures: an intermediate self-similar range where n ∼ (s/�)−τ ,
a monodisperse bump describing the large droplets, and a tail
describing the small droplets. Such features clearly appear in
both our numerical and experimental results (Fig. 3). For all
data, the large-droplet cutoff emerges for s/� � 10−2. The
simulations show a power law over around four decades, in
the intermediate scaling range, for 10−6 < s/� < 10−2. In
contrast, for the experimental data, the scaling range is limited
to at most two decades, 10−4 < s/� < 10−2, even for our
latest time t = 1.47 × 104 sec. The small-droplet cutoff is
much broader for the experiments and it covers roughly three
decades, with the cross-over at s/� ≈ 10−4. The experiments
cannot be further extended in time, since gravitational effects
impact the droplet shape when the large droplets approach the
capillary length,

√
γ /ρg ≈ 2.6 mm.

Porosity and droplet number. The scaling form of the
distribution entails that the porosity and the droplet number
exhibit a power-law decay [18,19]. According to the theory,
in the scaling regime, the radius of the largest droplets should
scale as R ∼ tν with exponent ν = 1, and both the number of
droplet per unit surface N , and the porosity p should evolve as
a power law N ∼ p ∼ t−k [18,19], with exponent

k = 3ν(θ − τ ). (2)

The derivations are provided in Sec. F– H of Ref. [39]. For
θ = 5/3 and Blackman’s prediction τ = τ ∗ = 19/12 [33],
we expect that k = k∗ = 1/4, where the asterisks denote the
specific theoretical values.

The temporal growth of the maximum droplet radius is
shown in Fig. 2(b). In the last time decade of the experi-
ment, it follows the predicted power law with exponent ν = 1.
Figure 4 shows the average of the porosity (grey, red online,
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right vertical axis) and number of droplets per unit area
(black, left vertical axis) averaged over 6 experiments. The
error bars represent the standard deviation at each instant.
Within the error bars, the decay rate of both the porosity and
droplets number are compatible with the theoretical exponent
−1/4 (dashed line), but deviations up to 20% remain possible
[31,33]. Note that the exponent k is extremely sensitive to any
variation of the exponent τ . A deviation 
τ from the theoret-
ical prediction τ ∗, would be enhanced by a factor of three in
the deviation from k∗, thus resulting in a twentyfold increase
of relative deviations, 
k/k∗ = 3
τ/(1/4) = 12τ ∗
τ/τ ∗ =
19
τ/τ ∗. Moreover, the integral quantities of porosity and
droplet number are easier to evaluate than the full droplet
distribution.

Condensation for different surfaces and water fluxes. In
view of its robust scaling in the late time regime, we now use
the porosity time decay to compare condensation for different
surfaces and condensation fluxes. For the porosity, the theory
predicts that

p(t ) =
(

sp

xp �(t )

)θ−τ

with �(t ) = R3
max =

(
π�

3α
t

)3

.

(3)

Here, � is the constant water flux, i.e., the water volume
deposited on the substrate per unit surface per unit time,
α = (π/3)(2 + cos θc)(1 − cos θc)2/(sin θc)3 is a geometrical
factor accounting for the contact angle θc, measured through
the liquid phase, sp/xp�(t ) is the width of the scale separation
between smallest and largest droplets; the nondimensional
sizes sp/�(t ) and xp, where sp and xp are constants, represent
indeed the cutoffs for small and large droplets, respectively.
Full details are provided in Sec. G of Ref. [39]. For this
discussion, we note that, due to the small exponent θ − τ =
1/12, the ratio (sp/xp)θ−τ in Eq. (3) can change by at most
30%, even for sp/xp differing by two orders of magnitude for
two vastly different materials. Hence, it remains practically
unvaried, and the impact of �/α on the time evolution of �(t )
is expected to be the only noticeable parameter influencing the
asymptotic evolution of the porosity.

Figure 5(a) shows the time evolution of the porosity for
three different surfaces with the same temperature of the
cooling plate, T ∗

p = 5 ◦C, and the same contact angle up to
experimental precision. The light and dark grey curves (red
and blue online) correspond to 1 and 2 MPa silicone surfaces,
respectively, while the black curve shows the porosity for
fluor-silane coated glass. The two silicone surfaces behave
similarly, with a monotonic decrease in the porosity. However,
the softer surface (E = 1 MPa) is populated at a slower rate.
Hence the drop in porosity occurs later, as one can observe for
times around 100 s. The silanized glass surface behaves very
differently in the early stages of condensation. It has a very
high nucleation rate and is covered by tiny droplets almost
immediately, such that the porosity drops to a very small
value. Initially, the droplets are so small and so densely packed
that they cannot be individually resolved (Fig. S5 in Ref. [39]).
Between 10 and 100 s, the droplets start to merge such that
the areas in between can be discerned, and the porosity rises
towards the values observed for the silicone surfaces. In the
late-time scaling regime, the surface is entirely covered by
water droplets, and the flux � onto the droplets is solely

FIG. 5. Evolution of porosity (a) as a function of time for differ-
ent rigid surfaces with T ∗

p = 5 ◦C: fluor-silanized glass (black) and
silicone with E = 2 MPa (dark grey, blue online) and E = 1 MPa
(light grey, red online) (b) as a function of maximum droplet radius,
for different contact angles θc and vapour fluxes, regulated by chang-
ing the plate temperature T ∗

p . The substrates are HDMS-silanized
glass (θc = 67◦) with T ∗

p = 5 ◦C (green asterisks), fluor-silanized
glass (θc = 92.2◦) with T ∗

p = 5 ◦C (black filled diamonds), 2 MPa
silicone substrate (θc = 94.3◦) with T ∗

p = 5 ◦C (blue filled squares),
1 MPa silicone substrate (θc = 95.5◦) with T ∗

p = 5 ◦C (red filled
circles), and T ∗

p = 10 ◦C (red empty circles).

determined by the cooling plate temperature, such that Eq. (3)
predicts the same power law for the three systems. Despite
dramatic difference in initial droplet nucleation and growth,
at late times, t � 1000 s, all data fall exactly on top of each
other. The three surfaces do not only share the same scaling
exponent, but also the same prefactor of the power law.

In Fig. 5(b), we compare condensation on four different
types of substrates with different stiffness and contact an-
gle θc, and we also vary the vapour flux � by changing
the temperature of the cooling plate T ∗

p . The porosity of
all data falls on a single scaling function when plotted as
function of the maximum droplet radius. We interpret this
very good, parameter-free data collapse as strong evidence for
universality.

Conclusion. We present a series of experiments and sim-
ulations where a time-constant uniform water vapour flux
condenses on rigid cold surfaces. The emerging droplets
patterns undergo four stages on their way to organize into
a self-similar arrangement whose number densities feature
nonequilibrium scaling (see Fig. 2): (i) a first wave of nu-
cleation of droplets, (ii) uniform growth of roughly equally
spaced and monodisperse droplets, (iii) early coalescence,
releasing surface area formerly occupied by the first gener-
ation of droplets, and (iv) re-population of the gaps between
droplets and emergence of a self-similar droplet pattern. In the

L012019-4



UNIVERSALITY OF BREATH FIGURES ON … PHYSICAL REVIEW RESEARCH 4, L012019 (2022)

self-similar regime, the droplet number densities at different
times admit a data collapse, Fig. 3. The scaling of the number
densities implies a power law decay of the droplet number and
the porosity, i.e., the area not covered by droplets. We showed
here that substrates with vastly different surface properties
evolve towards identical power laws with matching exponents
and pre-factors, where different surface fluxes are fully ac-
counted for by adopting the maximum droplet radius as a
time variable [cf. Eq. (3)]. These findings provide compelling
evidence for universal scaling of the asymptotic self-similar
regime of breath figures.
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