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Intrinsic finite-energy Cooper pairing in j = 3/2 superconductors
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We show that Cooper pairing can occur intrinsically away from the Fermi surface in j = 3/2 superconductors
with strong spin-orbit coupling and equally curved bands in the normal state. In contrast to conventional pairing
between spin-1/2 electrons, we derive that pairing can happen between interband electrons having different
magnetic quantum numbers, for instance, mj = 1/2 and mj = 3/2. Such superconducting correlations manifest
themselves by a pair of indirect gaplike structures at finite excitation energies. An observable signature of this
exotic pairing is the emergence of a pair of symmetric superconducting coherence peaks in the density of states
at finite energies. Moreover, the angular-momentum-resolved density of states in the presence of a perturbative
Zeeman field reflects the mj composition of the Cooper pairs. We argue that such finite-energy pairing is a
generic feature of j = 3/2 superconductors, both in the presence and absence of inversion symmetry.

DOI: 10.1103/PhysRevResearch.4.L012017

Introduction. Since the discovery of the Bardeen-Cooper-
Schrieffer theory for superconductivity [1], extensive efforts
of theoretical and experimental research have been carried out
to understand the pairing mechanism [2,3]. In most cases,
superconductivity can be described by the pairing of spin-
1/2 electrons at the Fermi surface. However, it has been
shown theoretically that the pairing of electrons with a higher
total angular momentum is also possible [4–6]. This has
triggered attempts to formulate a general theory of high an-
gular momentum superconductivity [7–10] and to identify
typical physical observables [11–22]. Prominent candidate
materials for high angular momentum superconductivity are
half-Heusler compounds whose Fermi surface lies close to
the �8 band with a total angular momentum quantum number
j = 3/2 [23–41]. These materials can be categorized into
two distinct groups with inverted [23–36,38–42] and normal
[31,37,38,41] band structures, respectively. In the inverted
case, only a single pair of �8 bands with identical components
of total angular momentum cross the Fermi energy [6,42–
45]. Despite the j = 3/2 nature of the electrons, the pairing
mechanism in this case can be captured within the formalism
for (pseudo)spin-1/2 electrons at low energies [6]. In contrast,
in the group with a normal band structure, density functional
theory calculations predict that all �8 bands bend downward
near the Fermi energy [24,25,41,43–45]. This band struc-
ture applies, for instance, to RPdBi with R ∈ {Y, Dy, Tb, Sm}
[31,37,38,41,46]. We demonstrate below that such a configu-
ration of energy bands in combination with superconductivity
allow us to observe Cooper pairing composed by electrons
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with nonidentical magnetic quantum numbers mj at finite
excitation energies (FEEs).

The pairing of spin-1/2 electrons with different orbitals
at FEEs has been proposed for iron pnictides in the absence
of spin-orbit coupling [47]. Recently, it has been argued that
Ising superconductors may realize the finite-energy pairing
of spin-1/2 electrons by applying external in-plane magnetic
fields [48].

Hence, the question we address in this Letter is whether
it is possible to observe intrinsic finite-energy Cooper pair-
ing composed by electrons with different magnetic quantum
numbers in the absence of any fields. We show below that the
interplay of strong spin-orbit coupling and superconductivity
allows for such pairing accompanied by a pair of indirect
gaplike structures (GLSs) away from the Fermi energy. The
electrons responsible for the finite-energy pairing originate
from energy bands with different band indices. Our results
suggest that such behavior is a generic feature of multi-
band superconductors when the j = 3/2 electrons of the �8

band contribute to pairing. In experiments, the GLSs manifest
themselves by the appearance of a pair of symmetric super-
conducting coherence peaks at FEEs of the density of states
(DOS). To elucidate that such Cooper pairing is a generic phe-
nomenon of multiband superconductors preserving (breaking)
inversion symmetry, we systematically analyze the role of
j = 3/2 pairing valid for cubic point group symmetry Oh (Td )
based on the Luttinger-Kohn model.

Model. Low-energy j = 3/2 electrons within the �8 bands
can be described by the k · p Luttinger-Kohn model [49,50],
H0 = ∑

k ĉ†
kĤ0(k)ĉk, where

Ĥ0(k) = αk2 Î4 + β
∑

i

k2
i Ĵ2

i + γ
∑
i �= j

kik j ĴiĴ j − μÎ4, (1)

and the basis is ĉk = (ck,3/2, ck,1/2, ck,−1/2, ck,−3/2)T . We
denote k = (kx, ky, kz ) as the three-dimensional (3D) momen-
tum, k = |k|, Ĵi with i ∈ {x, y, z} as the 4 × 4 total angular
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FIG. 1. BdG spectra along the [0,0,1] direction in absence of
pairing for (a) β = 0 and (b) β = 0.2|α|, respectively. The spectra
are independent of γ . BdG spectrum in the (c) [0,0,1] and (d) [1,1,0]
(i.e., kx = ky = k1) directions for γ = β in the presence of septet
pairing with amplitude �/E0a = 4.15. The color denotes the proba-
bility of electronic states |�e|2 in both (c) and (d). Other parameters
are μ/E0 = −5, k0 = 10−2a−1, E0 = 10−3|α|a−2, and α = −20. a
is the lattice constant in a tight-binding version of the continuum
model.

momentum matrices in the j = 3/2 representation, and Î4 as
the 4 × 4 identity matrix. The material-dependent parame-
ters α and β (γ ) control the kinetic energy and symmetric
spin-orbit coupling, respectively; μ is the Fermi energy. The
doubly degenerate eigenenergies of Ĥ0(k), protected by a
combination of inversion and time-reversal symmetries, are
given by

E±
k =

(
α+5

4
β

)
k2 ± β

√∑
i

[
k4

i +
(

3γ 2

β2
− 1

)
k2

i k2
i+1

]
− μ,

(2)
where i + 1 = y if i = x (notation used throughout this Let-
ter). To investigate the properties of the excitation spectrum
of Eq. (1) in the presence of high angular momentum Cooper
pairing in Oh symmetry, we introduce the full supercon-
ducting Hamiltonian given by H = ∑

k ψ̂
†
kĤBdG(k)ψ̂k, where

ψ̂k = (ĉk, ĉ†T
−k )T is the Nambu spinor. The Bogoliubov–de

Gennes (BdG) Hamiltonian takes the form

ĤBdG(k) =
( Ĥ0(k) ĤJ,S,L

η (k)[
ĤJ,S,L

η (k)
]† −ĤT

0 (−k)

)
, (3)

where ĤJ,S,L
η (k) is the pairing Hamiltonian in channel

(η, J, S, L) with η being the relative basis label of the cubic
irreducible representation (IR) [51,52]. The channel of insta-
bility is named by Cooper pair quantum numbers with a total
angular momentum J combining intrinsic spin S and orbital L
angular momenta [8,9,53].

To shed light on finite-energy pairing, the BdG excita-
tion spectrum along the [0,0,1] direction in the absence of
spin-orbit coupling and pairing is plotted in Fig. 1(a). The
fourfold degenerate electron bands (solid line) cross their
hole counterparts (dashed line) at kF = √

μ/α. A finite β

accounting for spin-orbit coupling splits the energy bands hav-
ing different magnetic quantum numbers. Increasing β, this
moves the crossings at the Fermi surface E = 0 and at FEEs
(red circles), as shown in Fig. 1(b). The low-energy mj split
Fermi momenta consist of mj = 1/2 states (green) and mj =
3/2 states (black) located at k−

F = 2
√

μ/(4α + β ) and k+
F =

2
√

μ/(4α + 9β ), respectively. Moreover, the finite-energy
crossing appears at k̃ = 2

√
μ/(4α + 5β ) incorporating mj =

3/2 electron (hole) and mj = 1/2 hole (electron) states at
positive (negative) excitation energies. In the superconduct-
ing state, the pairing mechanism occurs not only at E = 0
but also at FEEs [Figs. 1(c) and 1(d)]. Notably, the finite-
energy pairing can be present when the low-energy intraband
states exhibit nodal [Fig. 1(c)] or gapped excitation spectra
[Fig. 1(d)].

Finite-energy effective theory. To better understand the
finite-energy pairing, we develop an effective theory close to
the FEE. We start by obtaining the band basis representation
of the BdG Hamiltonian through the basis transformation
ĉk = V̂ +

k f̂ +
k + V̂ −

k f̂ −
k , where V̂ ±

k is a 4 × 2 matrix contain-
ing the eigenvectors corresponding to E±

k . Note that f̂ ±
k =

( f ±
k,↑, f ±

k,↓)T and f ±
k,s ( f ±†

k,s ) annihilates (creates) a state with
pseudospin degrees of freedom s ∈ {↑,↓} in the band ba-
sis labeled by ± in Eq. (2). To capture the interband
superconducting Hamiltonian, we choose our basis set as
ϕ̂k = (ϕ̂+−

k , ϕ̂−+
k )T with ϕ̂+−

k = ( f̂ +
k , ( f̂ −†

−k )T )T denoting the
electron-hole subspace basis with band index (+,−) and
ϕ̂−+

k = ( f̂ −
k , ( f̂ +†

−k )T )T . Thus, we rewrite the superconducting
Hamiltonian in the band basis as H = ∑

k ϕ̂
†
kĥ(k)ϕ̂k with

ĥ(k) =

⎛
⎜⎜⎜⎜⎜⎝

E+
k �̂+−

k 0 �̂++
k

(�̂+−
k )† −E−

k (�̂−−
k )† 0

0 �̂−−
k E−

k �̂−+
k

(�̂++
k )† 0 (�̂−+

k )† −E+
k

⎞
⎟⎟⎟⎟⎟⎠, (4)

where �̂+−
k is the projection of the pairing instability onto the

interband basis given by �̂+−
k = V̂ +†

k ĤJ,S,L
η (k)(V̂ −†

−k )T . Treat-
ing the off-diagonal blocks, corresponding to the intraband
pairing denoted by �̂νν

k with ν ∈ {+,−}, as a perturbation to
the interband diagonal block and employing the folding down
approach [54], we arrive at the effective Hamiltonian valid in
the vicinity of the GLSs,

H+−
eff (k) =

(
E+

k + ε̂++
k �̂+−

eff (k)

[�̂+−
eff (k)]† −E−

k + ε̂−−
k

)
. (5)

The second term on the diagonal in Eq. (5) is a pseudospin
energy shift induced by the pairing of intraband quasiparti-
cles, given by ε̂νν

k = �̂νν
k (�̂νν

k )†/(ω + νE ν
k ). Notably, Eq. (5)

is different from a typical BdG Hamiltonian. The effective
particle-hole symmetry is broken due to the presence of
nonidentical diagonal entries arising from the nature of two
different energy bands. The interband pairing of the effective
Hamiltonian takes the form

�̂+−
eff (k) = �̂+−

k + ε−1
k �̂++

k (�̂−+
k )†�̂−−

k , (6)

where εk = (ω + E+
k )(ω − E−

k ) [55]. In the weak-pairing
limit, the second term is small close to the GLSs and can be
neglected. The spectrum for the FEE reads

E±(k) = εk,1 + εk,2 ±
√

(εk,1 − εk,2)2 + δ̊(k), (7)

where

δ̊(k) = 1
2 Tr{�̂+−

eff (k)[�̂+−
eff (k)]†} (8)
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TABLE I. Absence/presence of finite-energy Cooper pairing.
The first column shows the IR of Oh (Td ) point groups with η

denoting the basis label of the IR. The third column corresponds to
the pairing multiplets of the relative IR. The last two columns indi-
cate the presence � (absence ×) of finite-energy Cooper pairing in
the entire momentum space in the absence and presence of ASOC.
The superscript (*) means that δ̊(k) vanishes in all equivalent direc-
tions [62].

Oh (Td ) η (J, S, L) Without ASOC With ASOC

A1g (A1) I (0,0,0) × ×
A1u (A2) f (r) (0,1,1) × [1, 1, 1]∗

T1u (T2) z (1,1,1) [0,0,1] [0,0,1]
Eg (E ) 3z2 − r2 (2,2,0) [0,0,1] �

x2 − y2 (2,2,0) � �
Eu (E ) 3z2 − r2 (2,1,1) [0, 0, 1]∗, kz = 0 �

3z2 − r2 (2,3,1) [0,0,1] �
x2 − y2 (2,1,1) [0, 0, 1]∗ [0,0,1]
x2 − y2 (2,3,1) � �

A2u (A1) xyz (3,3,1) [1, 1, 1]∗ [1, 1, 1]∗

is the magnitude of the GLS indicating superconducting
hybridization between interband states [56], i.e., pairing of
mj = 3/2 with mj = 1/2 states; Tr stands for the trace
of the matrix; εk,1 = (1/2)E+

k + (1/4)Tr(ε̂++
k ) and εk,2 =

−(1/2)E−
k + (1/4)Tr(ε̂−−

k ). The width of the GLSs around
the finite-energy crossing momentum [57] is |E+(k̃) −
E−(k̃)| = 2[δ̊(k̃)]1/2. Note that the matrix form of �̂+−

eff (k) de-
pends on the choice of basis while δ̊(k) is a basis-independent
observable.

Symmetry properties. Interestingly, the symmetry prop-
erties of the finite-energy pairing are different from their
low-energy counterpart. For instance, we may witness even
(odd)-parity pseudospin triplet (singlet) pairing at FEE. This
is a direct consequence of the Pauli exclusion principle taking
into account the exchange of band indices in addition to the
exchange of magnetic quantum numbers, i.e.,

�̂+−
eff (−k) = −[�̂−+

eff (k)]T . (9)

In this sense, we can span �̂+−
eff (k) in the interband basis

as �̂+−
eff (k) = g+−(k) · τ, where the four-component vec-

tor g+− = (g+−
0 , g+−

x , g+−
y , g+−

z ) is a complex momentum-
dependent function, τ = (τ0, τx, τy, τz ) with τx,y,z being the
Pauli matrices and τ0 the 2 × 2 identity matrix in the interband
basis. Thus, we obtain the symmetry relations

g+−
0,x,z(−k) = −g−+

0,x,z(k), g+−
y (−k) = g−+

y (k). (10)

This enables us to directly derive components of the �̂−+
eff (k).

The y component is even in momentum while the other com-
ponents are odd [58].

Pairing channels of Oh symmetry. We apply our theory to
all time-reversal symmetric stationary pairing states of cu-
bic point group symmetry up to the p-wave channel [9,59]
with the aim to identify interband pairing. To obtain analytic
relations for δ̊(k), we set γ = β [60]. Note that the pairing
states generate cubic anisotropy. The results are summarized
in Table I. Remarkably, interband pairing is present for a
variety of pairing channels.

First, we observe that the even- and odd-parity singlet
pairing states [61], corresponding to the instability channels
A1g and A1u, respectively, have vanishing interband pairing,
i.e., δ̊(k) = 0 [63]. Contrarily, the cubic triplet state T1u [9,64]
shows finite interband pairing δ̊(k) = �2(k2

x + k2
y ) with �

being the pairing strength. This indicates that the GLSs are
present within the whole momentum space except for the
[0,0,1] direction where interband pairing vanishes. Next, we
focus on pairing with quintet total angular momentum, i.e.,
J = 2. In this case, the pairing state is split by the cubic
field into Eg,u + T2g,u, where Eg,u (T2g,u) is a two (three)-
dimensional IR. Note that the pairing state Eg,u is a stationary
state of the free energy whereas T2g,u is not [9]. Hence, we
focus on Eg,u pairing in the following. The components of
Eg,u are denoted by η = (3z2 − r2, x2 − y2). In the j = 3/2
representation, we find two (four) symmetry allowed pair-
ing channels for even-parity (odd-parity) quintet pairing. For
even-parity states, the quantum number is (2,2,0), where the
pairing Hamiltonian is momentum independent due to the
s-wave nature of the channel. In this case, the GLSs of the
3z2 − r2 state are given by δ̊(k) = 3Δ2

k(k2
x + k2

y )(k2 + 3k2
z )

with Δk = �/2k2, showing nonvanishing GLSs except for
the twofold rotation axis [0,0,1]. Importantly, the x2 − y2 state
exhibits full GLSs within the entire momentum space.

The odd-parity quintet channel has four momentum-
dependent stationary pairing states due to L = 1. The first
two states correspond to the 3z2 − r2 basis having Cooper pair
quantum numbers (2,1,1) and (2,3,1). These states differ only
in the intrinsic spin quantum number where S = 1 and S = 3
denote spin dipole and octupole moments, respectively. The
GLS for the former state takes the form δ̊(k) = 27�2

k (k2
x +

k2
y )k2

z with �k = �/2k. It vanishes in the [0, 0, 1]∗ direction
[62] as well as the kz = 0 plane. For the S = 3 channel, the
GLS becomes

δ̊(k) = �2
k

∑
i

[
ζ

(1)
i k4

i + ζ
(2)
i k2

i k2
i+1

]
, (11)

with ζ (1) = (25, 25, 0) and ζ (2) = (50, 64, 64). In this case,
δ̊(k) is present in the entire momentum space except for the z
axis.

The GLS for the p-wave x2 − y2 state in both S = 1 (S =
3) channels can also be described by Eq. (11) with coefficients
ζ (1) = (0, 0, 0) and ζ (2) = (4, 1, 1) [ζ (1) = (25/4, 25/4, 25),
ζ (2) = (103/2, 41, 41)]. Hence, the S = 3 channel demon-
strates fully GLSs while the S = 1 channel exhibits vanishing
δ̊(k) along the [0, 0, 1]∗ direction.

Finally, we look at the septet state denoted by A2u. In this
case, the pairing of electrons with different quantum numbers
mj manifests itself by

δ̊(k) = 3Δ2
k

16

{∑
i

[
4k6

i − 3
(
k4

i k2
i+1 + k4

i k2
i+2

)] + 6k2
x k2

y k2
z

}
,

(12)

where i + 2 = z if i = x and the GLSs are present throughout
the momentum space except for the [1, 1, 1]∗ direction.

Candidate systems with Td structure. It is worthwhile to
note that the half-Heusler compounds RPdBi have tetrahedral
Td symmetry (subgroup of Oh) without an inversion center.
Nevertheless, the formalism of describing the pairing is the
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FIG. 2. BdG spectra in (a) [0,0,1] and (b), (c) [1,0,1] (with kx =
kz = k2) directions for (a) (�/E0a, δ/E0a) = (3.5, 10), (b) (1.5,2.5),
and (c) (0.15,2.5), respectively. (a) and (b) correspond to septet
pairing, and (c) corresponds to A1g pairing. The corresponding den-
sity of states N normalized with respect to its maximum value are
presented in the right panel of each spectrum. γ = −0.05|α| and
other parameters are the same as those in Fig. 1.

same as for the Oh group but different IR labels apply (cf.
Table I). The noncentrosymmetry manifests itself by an anti-
symmetric spin-orbit coupling (ASOC) given by [6,65]

Ĥ ′(k) = δ
∑

i

ki(Ĵi+1ĴiĴi+1 − Ĵi+2ĴiĴi+2), (13)

where δ controls the strength of the ASOC and i ∈ {x, y, z}.
Projecting Ĥ ′(k) onto the intraband basis, this results in
splitting the energy band as E ν

k → E ν
k ± |gνν

k | with gνν
k ·

σ = V̂ ν†
k Ĥ ′(k)V̂ ν

k and ν = ±, as shown in Figs. 2(b) and
2(c) [66]. Here, gνν

k = (gνν
x , gνν

y , gνν
z ) and σ = (σ̂x, σ̂y, σ̂z ) are

momentum-dependent ASOC vector and Pauli matrices in the
intraband basis, respectively. The lack of inversion symme-
try allows the pairing state to be a mixture of even-parity
singlet Ĥ0,0,0

I (k) and odd-parity p-wave states [67]. In this
case, the most stable odd-parity pairing state with the largest
transition temperature may arise when its d vector aligns par-
allel to the ASOC vector [42,68]. Thus, by combining Ĥ ′(k)
with the Cooper pair symmetrization matrix R̂ = iσ̂x ⊗ σ̂y

in the j = 3/2 representation, we arrive at the septet pair-
ing state Ĥ3,3,1

xyz (k) = Ĥ ′(k)R̂ [6]. The interband crossing of

the mixed superconducting state Ĥ0,0,0
I (k) + Ĥ3,3,1

xyz (k) cannot
be hybridized by the inversion symmetry breaking ASOC.

Therefore, the emergence of finite-energy superconducting
coherence peaks in the DOS are strong indicators of septet
Cooper pairing of electrons with different quantum numbers
mj , as shown in Figs. 2(a) and 2(b). Note the difference from
singlet pairing, where the DOS exhibit a flat shape away from
the Fermi surface [cf. Fig. 2(c)]. Remarkably, both odd- and
even-parity channels of 3z2 − r2 turn into fully GLSs in the
presence of ASOC (cf. Table I). This also partially happens for
the A2 state and the (x2 − y2, 2, 1, 1) state. Therefore, a small
value of ASOC even enhances the likelihood of observing
GLSs in the DOS.

To observe the mj content of the pairing at FEE, we pro-
pose to apply a perturbative Zeeman field to the system where
the states acquire finite magnetization in terms of mj degrees
of freedom due to broken time-reversal symmetry [53]. Con-
sequently, the GLSs split into two different pairs of GLSs.
Each GLS corresponds to paired electrons with different mag-
netic quantum numbers signaled by simultaneous drops in the
mj-resolved DOS.

Conclusions. We have investigated Cooper pairing in j =
3/2 superconductors with cubic point group symmetry. The
multiband nature of the system with an identical bending
configuration allows for observing Cooper pairing away from
the Fermi surface in the weak pairing limit. This manifests
itself by a pair of indirect finite-energy anticrossings of BdG
bands signaling the pairing of electrons having different com-
ponents of total angular momentum. The phenomenon may
be experimentally detectable through tunneling spectroscopy
[69–72] and angle-resolved photoemission spectroscopy [73].

Note added. Recently, we became aware of a related pro-
posal of interband pairing away from the Fermi surface. This
proposal is about the emergence of anapole superconductivity
in the presence of competing pairing channels. Hence, the
physics is different from ours [74].
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