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We present a unified framework, based on quantum metrology concepts, for defining and quantifying deter-
ministic noiseless quantum amplification of parameter-dependent processes, which plays an important role in
increasing the precision of quantum sensing. Recent experiments [Burd et al., Science 364, 1163 (2019)] can
be encompassed by this concept, which also leads to new suggestions of experimental work. The unified view
presented here allows the identification of the basic steps for quantum amplification and of the measurements that
lead to the best possible precision, beyond the quantum standard limit, in the estimation of parameters involved
in the process. This is applied to the estimation of displacements of trapped ions and of the phase in SU(1,1)
optical interferometers and atomic interferometry.
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I. INTRODUCTION

Quantum linear phase-preserving amplifiers necessarily in-
troduce noise [1,2], which can be seen as a consequence of the
no-cloning theorem [3,4]. Based on ideas from probabilistic
quantum cloning [5], nondeterministic noiseless amplification
[6,7] has been proposed to circumvent this restriction. On the
other hand, it is possible to have noiseless deterministic phase-
sensitive quantum amplification [2,8], which may play an
important role in space communication [9]. Another instance
of noiseless deterministic quantum amplification is the magni-
fication of parameters involved in dynamical processes, such
as the displacement of an ion [10], due to an applied force, the
phase in an optical or atomic interferometer [11], or the ampli-
tude of a small microwave field injected into a cavity [12]. In
this case, the deterministic and noiseless amplification allows
the estimation of parameters that can be otherwise too small
to be detected. Here we present a unified framework, based
on quantum metrology concepts, for defining and quantifying
deterministic noiseless quantum amplification of parameter-
dependent processes. Recent experiments can be analyzed
within this framework, which also leads to new suggestions
of experimental work, through the identification of the basic
steps for quantum amplification and of the measurements that
lead to the best possible precision in the estimation of the
relevant parameters. The amplification process is an important
tool for quantum advantage in parameter estimation. We apply
these ideas to the estimation of the displacement of a trapped
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ion and of the phase in a SU(1,1) interferometer, as well as to
atomic interferometry.

The increase in precision in the estimation of parameters
in the last few years has led to sophisticated technological
and scientific achievements, exemplified by the amazing de-
tection of gravitational waves at LIGO [13], involving the
estimation of a change in the lengths of the arms of an inter-
ferometer of the order of 1/10 000 of the radius of a proton;
new portable quantum gravimeters [14], which use atomic
interference of matter waves to measure the local value of
gravitational acceleration, achieving sensitivities of the or-
der of one-trillionth of the Earth surface gravity; quantum
accelerometers and speedometers [15], allowing GPS-free
navigation; atomic clocks with accuracy at the 10−18 level
[16]; and the measurement of very weak electric fields, which,
with increasing precision, should enable the use of trapped
ions in the search for dark matter [17].

Quantum metrology involves the use of quantum states to
increase the precision in the estimation of parameters that
characterize physical processes. It allows for the precise quan-
tification of the uncertainty in the estimation of parameters,
through a sequence of steps that involve (i) the preparation
of a probe in a suitable initial state, (ii) the interaction of
the probe with the process under investigation, (iii) a suitable
measurement of the final state of the probe, and (iv) the asso-
ciation of each experimental result with an estimator, which
leads to the quantification of the uncertainty. Identification of
the best state of the incoming probe and the best measurement
procedure is usually a tough challenge. For unitary evolution,
it is possible to find analytical solutions [18–20], which are,
however, not available in general for open systems, except for
some specific examples [21–25], while numerical solutions,
although useful, become cumbersome for high-dimensional
Hilbert spaces. It is known, in fact, that preferred states for
estimating parameters may become practically useless when
losses are present [26].
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The basic machinery for tackling parameter estimation was
formulated, within the classical framework, by Fisher [27],
Cramér [28], and Rao [29]: For a complete set of experimental
results { j}, obtained through measurements on a probe that
carries information about the parameter x to be estimated,
and for unbiased estimators, so that the estimation of the
parameter, averaged over all experimental results, 〈x〉, coin-
cides with the true value of x and d〈x〉/dx = 1 (implying that
the average also coincides with the value of the parameter
in an infinitesimal neighborhood of x), the lower bound for
the standard deviation in the estimation of x is given by the
Cramér-Rao expression,

�x � 1√
NF (x)

, (1)

where N is the number of repetitions of the experiment and
F (x) is the Fisher information, given by

F (x) =
∑

j

1

Pj (x)

[
dPj (x)

dx

]2

, (2)

with Pj (x) being the probability of getting the experimental
result j if the value of the parameter is x. Fisher showed that
under some general conditions (which are those for the appli-
cability of the central limit theorem), this bound is achievable
in the limit N → ∞. This expression can be immediately
generalized to quantum mechanics by expressing the proba-
bilities Pj (x) in terms of a positive operator-valued measure
(POVM) {Ê j}, with

∑
j Ê j = 1, so that Pj (x) = Tr[ρ̂(x)Ê j],

where ρ̂(x) is the density operator corresponding to the out-
going probe. The ultimate precision limit, for a given initial
state of the probe, is obtained by maximizing F (x) over all
possible measurements, which leads to the quantum Fisher
information FQ(x). For a parameter-dependent unitary evo-
lution Û (x) of the probe, FQ(x) = 4(�Ĝ)2, where (�Ĝ)2 is
the variance, in the initial state of the probe, of the operator
Ĝ ≡ i[dÛ †(x)/dx]Û (x).

In the following, we apply these concepts in order to de-
termine the best possible precision and the best measurement
procedure for parameter estimation through quantum deter-
ministic and noiseless amplification of parameter-dependent
processes.

II. ESTIMATING MECHANICAL OSCILLATOR MOTION
THROUGH QUANTUM AMPLIFICATION

Here we consider the quantum amplification of mechanical
oscillator motion, as described in [10], which demonstrates
a technique for amplifying coherent displacements of a me-
chanical oscillator with initial magnitudes well below the
zero-point fluctuations. The protocol, applied to a trapped-ion
mechanical oscillator, involved applying two squeezing oper-
ations, one before and the other after a small displacement
of the ion, with the second operation undoing the squeezing
implemented by the first one.

This sequence of operations, applied to the ground state of
the oscillator, can be described by the equation

|ψ〉 = Ŝ−1(ξ )D̂(α)Ŝ(ξ )|0〉, (3)

FIG. 1. Circuit for quantum amplification of the displacement of
an ion, initially in the ground state, as described in [10]. The initial
ground state is squeezed and then displaced. Everything to the right
of the dashed line is considered as part of the measurement process.
Final detection, after the second squeezing transformation, is done by
transferring the information on the displacement to internal degrees
of freedom of the ion. The state after the inverse squeezing operator
is also a coherent state, with amplified amplitude, so noise is not
increased in the process.

where D̂(α) is the displacement operator,

D̂(α) = exp(αâ† − α∗â), (4)

with α = |α| exp(iφ) being the displacement, and

Ŝ(ξ ) = exp[(ξ ∗â2 − ξ â†2)/2] (5)

is the squeezing operator, with squeezing parameter ξ (r, θ ) =
r exp(iθ ). It follows that |ψ〉 in (3) is also a coher-
ent state |α f 〉, with α f = |α|{exp(iφ) cosh(r) + exp[i(θ −
φ)] sinh(r)}. Maximum amplification is obtained when φ =
θ = 0, that is, the displacement is along the squeezed axis.
One then has

|α f 〉 = |Gα〉, G = er, (6)

where G is the amplification factor. Since the final state is also
a coherent state, as is the initial state, there is no increase in the
quantum noise, which corresponds to the width of the initial
ground state. The corresponding quantum circuit is shown in
Fig. 1.

In the experiment reported in [10], the information on the
motional state of the ion is transferred to a couple of its inter-
nal states (denoted by |↑〉 and |↓〉) within the 2S1/2 electronic
ground-state hyperfine manifold, using a phase-sensitive red-
sideband method. The ion is initialized in the electronic and
motional ground state |↓〉|0〉, and the qubit state can be manip-
ulated with a microwave carrier pulse using a magnetic dipole
transition. The population of the state |↓〉 is then measured
by applying a laser resonant with the 2S1/2 ↔ 2P3/2 cycling
transition and detecting state-dependent ion fluorescence. The
probability of measuring the state |↓〉 is then

P↓ = 1
2 [1 − C(|α f |) cos φ], (7)

where φ is the phase of the carrier π/2 pulse, which follows
the red-sideband mapping pulse, and C(|α f |) is the signal
contrast, defined as

C ≡ P↓,max − P↓,min, (8)

where P↓,max and P↓,min are the maximum and minimum,
respectively, of the fringes obtained by varying the phase φ,
and attained for φ = π (maximum) and φ = 0 (minimum).
Neglecting decoherence, one has [10]

C(|α f |) = 2|α f | f (|α f |), (9)

where

f (|α f |) =
∞∑

n=0

e−|α f |2 |α f |2n

n!

[
cos

(
π
2

√
n
)

sin
(

π
2

√
n + 1

)
√

n + 1

]
.

(10)
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For Gα � 1, C(|α f |) ≈ 2|α f | = 2G|α|. In [10], the signal-to-
noise ratio (SNR) is calculated as

SNR = C(Gα)/σ [C(Gα), (11)

where σ [C(Gα)] is obtained, for G|α| � 1, from projection
noise considerations, which lead to σ ∼ 1/

√
N , with N being

the total number of measurements. In this limit, the state of the
final coherent state can be written, up to terms linear in Gα, as
|α f 〉 ≈ |0〉 + Gα|1〉, which can be considered as a qubit. The
SNR is then given by

SNR = 2G|α|
√
N . (12)

This expression displays the amplification of the signal-to-
noise ratio, due to the sequence of operations implemented on
the initial ground state, which amounts to doing a squeezing
transformation and then undoing it, after the displacement. It
is indeed a noiseless amplification since the noise comes from
the measurement procedure, which involves the transference
of the information on the motional state to a couple of internal
states of the ion and the following detection of the population
of the lower state. In the Appendix, we show how σ can be
obtained from quantum optics methods.

A natural question that arises from this analysis is what the
best possible measurement procedure would be for this kind of
amplification process. Here we explore the tools of quantum
metrology in order to answer this question.

A key element in this respect is to separate the preparation
(the resource state) and the measurement process, as shown
in Fig. 1. Clearly, if one wants to reduce the uncertainty in
the measurement of the displacement, a state squeezed in the
direction of the displacement should be used. This defines the
resource state—it is the squeezed state obtained by applying
the squeezing transformation (5) to the initial ground state,

|ξ 〉 ≡ |r, θ〉 = Ŝ(r, θ )|0〉. (13)

We consider, for simplicity, that α is real. It follows then that
the maximum amplification is obtained for φ = θ = 0, which
implies a phase-sensitive amplification. On the other hand, for
the displacement operator D̂ = exp[α(â† − â)], the quantum
Fisher information is given by four times the variance of
the operator Ĝ = i[dD̂(α)/dα]D̂†(α) = i(â† − â) in the state
(13), that is,

FQ(α) = 〈r|�2G|r〉 = 4G2, G ≡ er, (14)

where we have used the notation |r〉 ≡ |r, 0〉. This implies that
for N experimental realizations, the standard deviation in the
estimation of the displacement α is

�α/|α| = 1

2G|α|√N
. (15)

The inverse of this relation coincides with (12). This im-
plies that for G|α| � 1, the measurement procedure of first
squeezing the initial state, then displacing it and reversing the
squeezing, and, finally, detecting the qubit to which informa-
tion on the motional state was transferred attains the ultimate
precision limit derived from the quantum Fisher information.

This is not so, however, if the condition G|α| � 1 is
violated. The Fisher information corresponding to the mea-
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FIG. 2. Square root of the Fisher information corresponding to
the detection scheme in [10], as a function of the squeezing factor
G = er , for several values of α: 0.005 (solid line), 0.05 (dashed line),
and 0.1 (dotted line). For G|α| � 1, it coincides with the value given
by the quantum Fisher information:

√
FQ = 2G. This is not so, how-

ever, for higher values of G|α|: estimation of the displacement then
requires the measurement of the entire phonon-number distribution,
rather than measuring the qubit represented by two internal states of
the ion.

surement adopted in [10] can be calculated as

F (α) = 1

P↓,max

[
∂P↓,max

∂α

]2

+ 1

P↓,min

[
∂P↓,min

∂α

]2

= 1

P↓,max(1 − P↓,max)

[
∂P↓,max

∂α

]2

= G2[
1
2 + x f (x)

][
1
2 − x f (x)

]
{

∂

∂x
[x f (x)]

}2

, (16)

where, in the last line, x = Gα and we used that P↓,min =
1 − P↓,max. For N measurements, the corresponding Fisher
information becomes NF (α). One should note that the pro-
jection noise is automatically taken into account in the Fisher
information (see second line in the above expression), where,
for N measurements, P↓,max(1 − P↓,max)/N coincides with
σ 2 calculated in [10]. This expression is plotted in Fig. 2,
as a function of G, for several values of α. It is clear that
as long as G|α| � 1, the agreement with the quantum Fisher
information is excellent. This is due to the fact that for
G|α| � 1, the final coherent state can be represented by
the qubit |0〉 + Gα|1〉, implying that the transcription to the
internal atomic qubit does not lose information about the
displacement. For higher values of G|α|, however, the dis-
crepancy increases since the motional state cannot be reduced
to a qubit. Figure 2 shows that the Fisher information cor-
responding to the qubit measurement may actually vanish,
meaning that no information whatsoever is available on the
displacement at this point. In fact, it should not be expected
that the whole information about the displaced state could be
retrieved from a qubit.

This result should be compared with the one ob-
tained through phonon counting. After the second squeezing
transformation, the motional phonon-number distribution is

Pn(β ) = e−|β|2

n!
|β|2n, β = Gα. (17)
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The corresponding Fisher information is

F =
∞∑

n=0

1

Pn(α)

[
∂Pn(α)

∂α

]2

=G2
∞∑

n=0

1

Pn(β )

[
∂Pn(β )

∂β

]2

= 4G2,

(18)

which coincides with the quantum Fisher information for all
values of Gα. This implies that phonon counting allows max-
imal information on the displacement. One should note that
the phonon-number distribution is actually addressed in [10],
in order to characterize the squeezing operation. On the other
hand, the experimental strategy adopted in [10] for |Gα| � 1
seems to be less time consuming than the phonon-counting
measurement. However, phonon counting does lead to more
information on the displacement since it does not require the
restriction to |Gα| � 1.

The idea of implementing a transformation before the dis-
placement of a parameter and then undoing it is present in
many other quantum metrological tasks, involving, for in-
stance, phase shifts in interferometers (see Secs. III and IV)
and displacements of the electromagnetic field in a mode
of a superconducting cavity [12], which is similar to the
present example, since the cavity mode can be considered as
a harmonic oscillator. While for the experiment in [10] the
amplification comes from the squeezing parameter, in [12]
the amplification factor is the distance between two coherent
states in an entangled atom-field Schrödinger-cat state, pro-
duced by the resonant interaction between a Rydberg atom
and a coherent state in the cavity. After the displacement, a
time-inversion protocol disentangles the atom and the field,
and the detection of the atomic state allows the estimation of
the displacement, beyond the standard quantum limit.

The strategy of “doing” and “undoing” was reported in
[30] for the measurement of phonon frequency fluctuations,
through the use of superpositions of phonon-number states,
and in [17] for quantum-enhanced sensing of displacements
and electric fields.

We consider in the following two further examples: the
measurement of phase in SU(1,1) interferometers [31–35] and
in atomic interferometry [11,36–38].

III. MEASUREMENT OF PHASE VIA TWO-MODE
SQUEEZED STATES

We next consider a similar scenario for the measurement of
phase via SU(1,1) interferometry [31]. The scheme is shown
in Fig. 3. Here, Ŝab(γ ) = exp[γ (â†b̂† − âb̂)] is a two-mode
squeezing transformation, and φ is the phase to be estimated.
The error sensitivity for this measurement is obtained from
the measured signal, 〈N̂out〉, where N̂out = â†

outâout + b̂†
outb̂out,

and the fluctuations in N̂out, expressed in terms of the standard
deviation �N̂out. The averages here are taken in the initial
state. The best result, which yields the minimum value for the
phase uncertainty, is found around φ = 0 [39]:

�φ = �N̂out

∂〈N̂out〉/∂φ
= 1

2 cosh r sinh r
= 1√〈N〉(2 + 〈N〉)

,

(19)

FIG. 3. Phase estimation in a SU(1,1) interferometer. Ŝab(r) is a
two-mode squeezing transformation, applied to the vacuum state of
both modes, and φ is the phase to be estimated, through the detection
of the total number of photons emerging from the interferometer.
Everything to the right of the dashed line is considered part of the
measurement process.

where 〈N〉 = 2 sinh2r is the average number of photons in the
two-mode vacuum squeezed state, which is the resource in this
case. The Heisenberg scaling is obtained when 〈N〉 � 1.

From the perspective of the quantum Fisher information,
the initial resource state is Ŝab(r)|0, 0〉. The phase shift in
the dispersive arm of the interferometer is represented by
the unitary operator eiφâ†â. Thus the quantum Fisher infor-
mation FQ(φ) is 4[〈(â†â)2〉 − 〈â†â〉2], where the expectation
value is computed in the state Ŝab(r)|0, 0〉. It is easily seen
that FQ(φ) = 4〈â†â〉(1 + 〈â†â〉) = 4 sinh2 r cosh2 r, leading
to (19). Thus, the measurement in Fig. 3 saturates the Cramér-
Rao bound. Note that everything to the right of the dashed
line in Fig. 3 has to be considered as part of the measurement
process. This includes the action of the second inverse squeez-
ing transformation, which, similarly to the previous example,
undoes what was done by the first squeezing transformation.

IV. MEASUREMENT OF PHASE IN ATOMIC
INTERFEROMETRY

A similar analysis applies to atomic interferometry with
entangled states. Consider the state |↓ . . . ↓〉, containing an
even number of qubits characterized by the states |↓〉 and
|↑〉 (a more general treatment, valid for even and odd states,
was considered in [11]). A resource state for phase esti-
mation is obtained by applying to this state the entangling
transformation Û = exp(iπ Ĵ2

x /2) [11,40–42], where Ĵx is the
x component of the collective angular momentum operator
associated with the N qubits.

The scheme displayed in Fig. 4 allows the quantum am-
plification of a phase shift undergone by the qubits. The
measurement corresponds to the scheme to the right of
the dashed line. Again, the quantum amplification process
involves “doing” and “undoing”: the first entangling transfor-
mation, used to build the resource state, is undone after the
phase shift.

FIG. 4. Phase estimation in atomic interferometry. The operator
exp(iπ Ĵ2

x /2) leads to an entangled state, which probes the phase
φ. The inverse operator exp(−iπ Ĵ2

x /2) allows the estimation of φ

through measurement of the population inversion.
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One should note that the resource state in this case is ([39],
Sec. 12.9),

|ψ〉 = eiπ Ĵ2
x /2|↓, . . . ↓〉 = eiπ/4

√
2

[|↓ . . . ↓〉 + iN−1|↑ . . . ↑〉].

(20)

The quantum Fisher information corresponding to this re-
source state and the phase-shift operator eiφĴz is FQ(φ) =
4(〈Ĵ2

z 〉 − 〈Ĵz〉2) = N2, yielding a phase uncertainty �φ =
1/N , which corresponds to Heisenberg scaling.

We show now that measuring the population inversion in
the final state, after the operator exp(−iπ Ĵ2

x /2), leads to the
bound obtained from the quantum Fisher information. The
final state is

|ψ f 〉 = cos(Nφ/2)|↓ . . . ↓〉 + iN sin(Nφ/2)|↑ . . . ↑〉,
(21)

so the probabilities of finding the qubits in the states |↓ . . . ↓〉
and |↑ . . . ↑〉 are p↓ = cos2(Nφ/2) and p↑ = sin2(Nφ/2),
respectively. The corresponding Fisher information is then

F (φ) = 1

p↓

(
∂ p↓
∂φ

)2

+ 1

p↑

(
∂ p↑
∂φ

)2

= N2, (22)

which leads to the bound given by the quantum Fisher infor-
mation.

One should note that in order to determine p↓ and p↑, it is
sufficient to measure the population of the first qubit in (21).
This leads to the best possible value for the lower bound for
�φ, which is achieved in the limit of a very large number of
measurements (more precisely, when N → ∞).

This shows that the measuring of the phase in atomic
interferometry may also be placed in the framework of do-
ing and undoing of [10] and [12]. An alternative method
was discussed in [11]. Instead of decoding the phase infor-
mation in (20) through a disentangling operation, this was
achieved by a parity measurement (odd and even numbers of
particles in the state |↓〉) after a parity pulse with variable
phase, which may be simpler than the disentangling trans-
formation, but has the disadvantage that measurement of the
parity is very difficult for large values of N, in the presence
of noise.

V. CONCLUSION

We have shown that the idea of quantum amplification
of parameter-dependent processes, experimentally demon-
strated in [10], within the context of displaced trapped ions,
encompasses a broad class of parameter-estimation situa-
tions. It involves applying a transformation that leads to
a resource state, which undergoes the parameter-dependent
process, and subsequently undoing the transformation, thus
decoding the information on the parameter in the state of
the probe. The examples discussed here show that this pro-
cedure, when associated with the tools of quantum metrology,
allows the determination of the best measurement procedure
leading to results for the precision in agreement with those
obtained from the quantum Fisher information. In particular,
we have applied these ideas to SU(1,1) and atomic interferom-
eters, showing how our approach leads to Heisenberg scaling
in the precision. As discussed in Sec. IV, the procedure of

doing and undoing is by no means the only possible strategy to
reach the best precision. It provides, however, a nice example
of noiseless quantum amplification, a unifying concept for a
broad class of experiments. In any case, the quantum Fisher
information is a useful benchmark for designing experiments
leading to the best possible parameter estimation. This was
illustrated in connection with the experiment reported in [10],
for which phonon counting leads to optimal estimation of the
displacement.These findings may motivate further experimen-
tal work on these and other systems, aiming at increasing
the precision of parameter estimation through the quantum-
amplification strategy. Due to its generality, our analysis can
be applied to a diversity of quantum sensing tasks.

ACKNOWLEDGMENTS

G.S.A. acknowledges the support of the Air Force Office of
Scientific Research (AFOSR Award No. FA9550-20-1-0366)
and the Robert A. Welch Foundation (Grant No. A-1943).
L.D. acknowledges the support of the Brazilian agencies
CNPq and FAPERJ and the Brazilian National Institute of Sci-
ence and Technology for Quantum Information. The authors
thank Jiaxuan Wang for producing Fig. 2.

APPENDIX: QUANTUM OPTICAL DERIVATION
OF THE SIGNAL-TO-NOISE RATIO

In this Appendix, we present a calculation of σ [C(Gα)]
in Eq. (11), using the fluctuations in the operator that corre-
sponds to the contrast C, as defined in Eq. (8). In [10], the
measured quantity P↓ is obtained from

P↓ =
∑

n

|〈n|〈↓|R̂(π/2, φ)ÛRSBD(Gα)|↓〉|0〉|2

= 〈Gα|〈↓ |Û †
RSB|ψ↓〉〈ψ↓|ÛRSB|Gα〉|↓〉, (A1)

where ÛRSB is the resonant red-sideband time-evolution op-
erator that maps phonon-field information on two internal
states of the ion, R̂(π/2, φ) is a spin rotation operator de-
scribing the π/2 carrier pulse, with phase φ (taken here to be
equal to zero), and |ψ↓〉 = R̂†(π/2, 0)|↓〉. Similarly, |ψ↑〉 =
R̂†(π/2, 0)|↑〉.

Equation (A1) implies that P↓ is the expectation value of
|ψ↓〉〈ψ↓|, with

|ψ↓〉 = R̂†(π/2, 0)|↓〉 = (|↓〉 + |↑〉)/
√

2, (A2)

in the state |�〉 = ÛRSB|Gα,↓〉; similarly for P↑. Therefore,
the contrast can be written as the expectation value of

C = 〈�|�̂|�〉, �̂ = |ψ↓〉〈ψ↓| − |ψ↑〉〈ψ↑|. (A3)

The fluctuations can be calculated from

〈�|�̂2|�〉 − (〈�|�̂|�〉)2 = 1 − C2, (A4)

and therefore the signal-to-noise ratio becomes

SNR = C
√
N√

1 − C2
, (A5)

where we have added the factor
√
N for the number of mea-

surements.
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