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Atypical eigenstates in the form of quantum scars and fragmentation of Hilbert space due to conservation
laws provide obstructions to thermalization in the absence of disorder. In certain models with dipole and U(1)
conservation, the fragmentation results in subdiffusive transport. In this Letter we study the interplay between
scarring and weak fragmentation giving rise to anomalous hydrodynamics in a class of one-dimensional spin-1
frustration-free projector Hamiltonians, known as deformed Motzkin chain. The ground states and low-lying
excitations of these chains exhibit large entanglement and critical slowdown. We show that at high energies
the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary
conditions, with an exact quantum scar being embedded in each subspace, leading to slow growth of entan-
glement and localized dynamics for specific out-of-equilibrium initial states. Furthermore, focusing on infinite
temperature, we unveil that spin transport is subdiffusive, which we corroborate by simulations of constrained
stochastic cellular automaton circuits. Compared with dipole moment conserving systems, the deformed Motzkin
chain appears to belong to a different universality class with distinct dynamical transport exponent and only
polynomially many Krylov subspaces.
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Introduction. Unraveling the intricate dynamics of isolated
many-body quantum systems has attracted a vast amount
of interest in recent years [1–5]. In this context, trans-
port processes represent arguably one of the most generic
nonequilibrium situations, and the common expectation is that
hydrodynamics emerges naturally from the underlying unitary
time evolution [6,7]. The emergence of a variety of universal
hydrodynamics and their relevance to transport coefficients
are actively pursued theoretically with potential for utility
in near-term quantum devices [6–9]. Enormous experimen-
tal efforts have been undertaken to study quantum transport
in various platforms, including mesoscopic and solid-state
settings as well as cold-atom quantum simulators (see, e.g.,
Refs. [10–14]), remarkably allowing one to observe even
anomalous types of hydrodynamics [15,16].

While most quantum systems relax to thermal equilib-
rium, as explained by the eigenstate thermalization hypothesis
(ETH) [17–19] and numerically confirmed for a variety
of models (e.g., Refs. [3,20–28]), several counterexamples
to this paradigm have been identified, with integrable and
many-body localized systems being prime examples [29–31].
Moreover, studies of the so-called PXP model revealed that
also weaker violations of the ETH are possible, where rare
nonthermal states coexist with thermal eigenstates at the same
energy density [32,33], now usually referred to as quantum
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many-body scars [33–39]. By now, quantum scars have been
found in various models [33–53], and tailored embedding
procedures further allow one to place nonthermal eigenstates
into the spectrum of chaotic many-body Hamiltonians [54,55].

Building on insights from fractonic systems [56–58], the
phenomenon of Hilbert-space fragmentation provides yet an-
other mechanism to break ergodicity [59–62]. Hilbert-space
fragmentation occurs, for instance, in locally interacting mod-
els which in addition to a U(1) charge also conserve the
associated dipole moment, though other possibilities have
been discussed as well [63–67]. In such cases, the Hilbert
space splits into exponentially many disconnected blocks,
often referred to as Krylov subspaces, despite states in dif-
ferent subspaces having the same symmetries. While some
subspaces might be integrable or localized, others can be
chaotic [62,64,68]. Even within the thermalizing regimes
of such models, the constraints on excitations, e.g., higher-
order conservation laws, have implications on the dynamics
and lead to subdiffusive transport [69–76], reminiscent of
disordered models close to the many-body localization tran-
sition [77–79]. The class of frustration-free Hamiltonians
considered in this Letter similarly exhibits disjoint Krylov
subspaces and subdiffusive hydrodynamics. The underlying
mechanisms, however, will be distinct from those of the mod-
els mentioned above.

Another motivation for this Letter is given by recent work
on quantum many-body scars and Hilbert-space fragmenta-
tion in Fredkin chains [80]. The Fredkin model is a spin-1/2
chain, where the Hamiltonian is a sum over projectors and can
be rewritten in the form of a dressed Heisenberg chain [81],
bearing resemblance to other kinetically constrained mod-
els [82–84]. While the model is nonintegrable in general, its
degenerate ground-state manifold is known analytically [81].
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FIG. 1. Identification of |1〉, |−1〉, |0〉 as |u〉, |d〉, |0〉, correspond-
ing to up, down, and horizontal moves on a plane. (a) Local updates
induced by the projectors of Hν . (b) and (c) For OBCs, the Hilbert
space splits into Krylov subspaces labeled by Nd and Nu. (b) shows an
example configuration with Nd = Nu = 0. Paired spins are indicated
by arcs. (c) shows a configuration with Nd = Nu = 1. The area A
determines the weight of the basis state within |Sν〉; see Eq. (3).

In particular, as shown in Ref. [80], the degenerate states can
be moved to the center of the spectrum by generalizing the
model [85,86], with each state belonging to a different Krylov
subspace.

Here, we consider a closely related class of models, known
as deformed Motzkin chain [87–93]. While the ground-state
properties of Motzkin chains have been explored in a series
of works [87–96], much less is known about the nature of
thermalization and nonequilibrium dynamics. In this Letter,
we show that the particular form of the Hamiltonian leads
to an intriguing interplay of disconnected Krylov subspaces
and exact quantum many-body scars, similar to Ref. [80].
As a main result, we unveil that the Motzkin chain exhibits
subdiffusive hydrodynamics at infinite temperature, which
we corroborate by simulations of suitable stochastic cel-
lular automaton circuits [69,71,72,97,98]. Furthermore, we
demonstrate that the scarred eigenstates lead to localized dy-
namics for specific out-of-equilibrium states and parameter
regimes.

The model. We consider a class of spin-1 projector Hamil-
tonians, Hν = ∑

� ��,�+1(ν), known as deformed Motzkin
chain [87–96],

��,�+1(ν) = c1 |Dν〉〈Dν | + c2 |Uν〉〈Uν | + c3 |Vν〉〈Vν | , (1)

where c1, c2, and c3 are real-valued coefficients, ν �
0 is a deformation parameter, and the terms |·〉 〈·| are
given by |D〉 = (|0d〉 − ν |d0〉)/

√
1 + ν2, |U 〉 = (|u0〉 −

ν |0u〉)/
√

1 + ν2, |V 〉 = (|ud〉 − ν |00〉)/
√

1 + ν2 and should
be understood as acting on two neighboring sites � and � + 1.
We adopt the convention to denote the three eigenstates of a
local spin-1 operator Sz

� as |u〉 ≡ |+1〉, |d〉 ≡ |−1〉 and |0〉,
where |u〉 (“up”), |d〉 (“down”), and |0〉 are interpreted as
the moves (x, y) → (x + 1, y + 1), (x, y) → (x + 1, y − 1),
and (x, y) → (x + 1, y) on a two-dimensional plane [89]; see
Fig. 1. The terms |·〉 〈·| in Eq. (1) have eigenvalues 0 and 1
such that Hν has a positive-semidefinite spectrum if all ci � 0.
Hν has a U(1) symmetry, such that Sz = ∑

� Sz
� is conserved.

Written in terms of usual spin-1 operators, Hν takes on a
bilinear-biquadratic form [91,94,95].

For a spin configuration on L sites, the identification of
spins as moves leads to a “random walk.” In the Sz = 0 sector,
these walks start at (0,0) and end at (L, 0); see Figs. 1(b)

and 1(c). For open boundary conditions (OBCs), an important
concept is then the distinction between paired and unpaired
moves [87]. An up move is called unpaired if there is no
matching down move further to the right in the chain, and a
down move is unpaired if there is no matching up move further
to the left. Given a configuration with no unpaired moves,
the height profile never crosses the horizon [Fig. 1(b)]. Such
walks in the upper half plane are referred to as Motzkin paths,
giving rise to the name of the model.

Disconnected Krylov subspaces. In the case of OBCs, the
Hilbert space of Hν splits into Krylov subspaces due to the
interplay of the boundary conditions and the action of the
projectors on neighboring spins; cf. Fig. 1(a). The subspaces
can be understood as equivalence classes, where each spin
configuration is equivalent to a specific root state |ψdu〉 [87].
Given an arbitrary configuration, |ψdu〉 can be defined as fol-
lows. First, identify pairs of up and down spins, where the
spins forming a pair do not have to be nearest neighbors; cf.
Figs. 1(b) and 1(c). Secondly, flip both spins to the |0〉 state
and move the zeros to the center, which eventually yields [87]

|ψdu〉 = |dd · · · dd︸ ︷︷ ︸
Nd

00 · · · 00︸ ︷︷ ︸
L−Nd −Nu

uu · · · uu︸ ︷︷ ︸
Nu

〉 , (2)

where Nd and Nu denote the numbers of unpaired
down or up moves. Given |ψdu〉, its corresponding
Krylov subspace Kdu = K(Hν, |ψdu〉) follows as Kdu =
span{|ψdu〉 ,Hν |ψdu〉 ,H2

ν |ψdu〉 , . . . }. In particular, two spin
configurations which correspond to different |ψdu〉 can-
not be transformed into each other by the action of Hν .
As an example, consider |ψ1〉 = |u · · · ud · · · d〉 and |ψ2〉 =
|d · · · du · · · u〉, which both have Sz = 0. However, while |ψ1〉
belongs to K00 (i.e., it is equivalent to |0 · · · 0〉), |ψ2〉 belongs
to KL/2L/2. In fact, |ψ2〉 is an exact eigenstate of Hν , i.e., it
spans a subspace of dimension one. Apparently, the degree of
“Hilbert-space fragmentation” in the Motzkin chain is weaker
compared with, e.g., models with charge and dipole conser-
vation, which exhibit exponentially many subspaces [59–61].
For instance, in the Sz = 0 sector, there are only L/2 + 1 sepa-
rate Kdu labeled by 0 � Nd = Nu � L/2, i.e., the total number
of subspaces grows only polynomially with L. An expression
for the dimension Ddu of each Kdu can be derived combi-
natorially [99]. In particular, for Kdu with small Nd + Nu,
Ddu is expected to grow exponentially with L. At the same
time, for any finite L, there always exist Kdu with Ddu = 1
(namely, when Nd + Nu = L), as well as small subspaces with
Ddu ∝ L.

For subspaces with large Ddu, thermalization is expected
to occur. This is visualized in Fig. 2(a) in terms of the eigen-
state entanglement entropy S|n〉 = −Tr[ρA ln ρA], where ρA =
TrB{|n〉 〈n|} is the reduced density matrix for a half-chain bi-
partition. While the overall distribution of S|n〉 is rather broad,
it looks thermal when focusing on individual Kdu with small
Nd , Nu. At the same time, the low values of S|n〉 in the center of
the spectrum mostly belong to Kdu with large Nd , Nu, where
the maximally achievable entanglement is limited due to small
Ddu. Moreover, as shown in the Supplemental Material [100],
individual Kdu indeed exhibit chaotic energy-level statistics,
and most eigenstates follow the ETH.

Exact quantum many-body scars. Despite Hν being non-
integrable and chaotic, a number of eigenstates |Sν〉 can be
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FIG. 2. (a) Eigenstate entanglement S|n〉 for OBCs, L = 10, and
ν = 1, labeled according to their Krylov subspace. (b) S|Sν 〉 (filled
symbols with solid curves) at ν = 1 vs subsystem size LA for L = 12
and different Kdu with Nd = Nu. As a comparison, the entanglement
S|n〉 (open symbols with dashed curves) of an eigenstate directly
adjacent to |Sν〉 is shown. We have c1 = c3 = 1 and c2 = −1.

constructed combinatorially [87–89]. In this context, the key
quantity is the area Ak enclosed by the height profile of a
given spin configuration |k〉, where areas below the horizon
contribute negatively; cf. Figs. 1(b) and 1(c). Within each Kdu,
|Sν〉 is then given by the area-weighted superposition [87–89]
(see also Supplemental Material [100])

|Sν〉 = 1√
M ′

ν

Ddu∑

k=1

νAk |k〉 = 1√
Mν

Ddu∑

k=1

ν−Pk |k〉 , (3)

where the sum runs over all Ddu basis states |k〉, P =∑L
�=1 �Sz

� is the dipole operator with Pk = 〈k|P |k〉, and
M ′

ν and Mν ensure normalization. The states |Sν〉 have ex-
actly zero energy as they are annihilated by all projectors in
Eq. (1) [87–89]. According to Eq. (3), |Sν〉 is dominated by |k〉
with large positive Pk if ν < 1. In contrast, for ν > 1, |k〉 with
large negative Pk dominate. At ν = 1, |Sν〉 is an equal-weight
superposition of all states in Kdu, reminiscent of the Rokhsar-
Kivelson ground state in quantum dimer models [107].

By choosing suitable ci in Eq. (1), the |Sν〉 can be shifted
close to the center of the spectrum [108], where they act as
quantum many-body scars due to their subvolume-law entan-
glement [87–89], similar to other examples of frustration-free
ground states being embedded by deforming the underlying
model [43–45]. The nonthermal nature of the |Sν〉 is empha-
sized in Fig. 2(b), where S|Sν 〉 is shown versus subsystem
size LA for different Kdu. In particular, S|Sν 〉 is compared
with the entanglement of an eigenstate directly adjacent to
|Sν〉, demonstrating that typical eigenstates are extensively
entangled whereas |Sν〉 is not. As shown in the Supplemental
Material [100], |Sν〉 also violates the ETH by yielding atypical
expectation values for local operators.

While the construction of Kdu as in Eq. (2) does not apply
to periodic boundary conditions (PBCs), we note that quan-
tum scars appear to exist also for PBCs [100].

Anomalous hydrodynamics. We probe the transport prop-
erties of Hν in terms of the infinite-temperature correlation
function C(r, t ),

C(r, t ) = Tr[Sz
�+r (t )Sz

�]/3L, (4)

where Sz
�+r (t ) = eiHt Sz

�+re−iHt and r is the distance between
the two sites [109]. In the case of diffusion, C(r, t ) takes on
a Gaussian shape with a standard deviation σ (t ) ∝ t1/z with
z = 2 [6,110]. Correspondingly, the autocorrelation function
C(r = 0, t ) acquires a hydrodynamic tail, C(0, t ) ∝ t−1/z. For

FIG. 3. (a) C(0, t ) for PBCs (solid curves) and OBCs (dashed
curves) at ν = 1 and L = 14, 16, 18. A power law ∝ t−1/z with
z = 5/2 is shown for comparison (thin dashed line). The inset shows
data for L = 10 up to longer times. (b) C(r, t )t1/z vs r/t1/z at fixed
times. We have c1 = c3 = 1 and c2 = −1 in all cases. (c) Exemplary
time step in the cellular automaton (CA) circuit, consisting of two
layers of two-site updates. Given a particular configuration of two
sites, one of the updates D, U , or V is chosen, while with probability
1/2, we instead apply D̄, Ū , or V̄ , leaving the spin configuration un-
changed (see Supplemental Material [100] for more details). (d) and
(e) Analogous data to those in (a) and (b), but now obtained by CA
circuits for larger L.

a thermalizing system, one expects a uniform distribution at
long times, C(r, t → ∞) → Ceq, where Ceq = C(0, 0)/L [6].
We exploit quantum typicality [100,111,112] to simulate
C(r, t ) for spin-1 systems up to L = 18, beyond the range
of full exact diagonalization. Focusing on ν = 1, we find that
C(0, t ) ∝ t−1/z with z ≈ 5/2 (similar to Ref. [76]), suggesting
that spin transport in the Motzkin chain is not diffusive but
subdiffusive instead, both for PBCs and OBCs [Fig. 3(a)]. In
the latter case, the power law persists on a shorter time scale as
C(0, t ) saturates to a higher long-time value C(0, t → ∞) >

Ceq [inset of Fig. 3(a)] due to the disjoint Kdu. We expect this
difference between PBCs and OBCs to disappear in the ther-
modynamic limit L → ∞, where the exponentially large Kdu

dominate. Subdiffusive spin transport is further substantiated
in Fig. 3(b), where the correlations C(r, t ) for different t nicely
collapse onto each other if the data and r are rescaled with t1/z.
We note that the observed value of z is distinct from that found
in dipole-conserving systems, where z = 4 [60,71].

Intuitively, the occurrence of subdiffusion can be under-
stood by considering the updates of local spin configurations
induced by Hν ; cf. Fig. 1(a). As there are no matrix elements
connecting |du〉 ↔ |00〉 or |du〉 ↔ |ud〉, configurations |du〉
act as bottlenecks. Particularly, extended regions of the form
|· · · ddduuu · · ·〉 will slow down the dynamics. This argu-
ment can also be stated more formally by inspecting the
spin-current operator of Hν ; see Supplemental Material [100].
While we cannot provide a full hydrodynamic theory, we
here proceed by constructing a stochastic cellular automaton
(CA) circuit (see Fig. 3(c) and Supplemental Material [100])
which mimics the terms appearing in Hν and allows us to
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FIG. 4. (a) C(0, t ) at ν = 0.5, 2 for c1 = c3 = 1 and c2 = −1.
A power law ∝ t−0.4 is shown for comparison. (b) C(0, t ) at ν = 1
for c3 = −1, 0, 1 and c1 = c2 = 1. We have L = 16 and PBCs in all
cases.

access large systems and long times [69,71,72,97,98]. The so-
obtained data for L � 103 and t � 106 in Figs. 3(d) and 3(e)
corroborate our findings of anomalous hydrodynamics with
z ≈ 5/2 at infinite temperature. (Our CA data for large L and
long t are also consistent with z ≈ 8/3 [113].) Putting these
results into perspective, we note that subdiffusive dynamics in
Motzkin chains [92,94,95] (and related Fredkin models [114])
has been observed before at low temperatures by analyzing
the scaling of low-lying energy gaps, where a slightly larger
z was found. In this context, we note that the dynamical
exponent z in certain constrained chaotic models consisting of
Floquet random unitary circuits can be related to the scaling of
the low-energy gap of Rokhsar-Kivelson-type Hamiltonians
using classical Markov circuits [75,113,115,116], which has
partially motivated our usage of CA circuits.

While we have focused on ν = 1 in Fig. 3, we stress that
the occurrence of high-temperature subdiffusion seems robust
for a wider range of parameters. This is demonstrated in
Fig. 4, where C(0, t ) ∝ t−1/z both for ν = 0.5, 2 and for ν = 1
but different choices of ci. Only for c3 = 0 does the decay of
C(0, t ) appear to be different, which can be explained by the
fact that Hν becomes integrable in this limit [117].

As an aside, we note that the anomalous transport
properties of Hν also reflect themselves in an unusual
growth of Rényi entropies Sα (t ) = ln Tr[ρα

A ]/(1 − α), ρA =
TrB |ψ (t )〉 〈ψ (t )|, which were argued to grow sub-ballistically
for α > 1 [118,119]; see Supplemental Material [100] for
details.

Initial-state dependence. While C(r, t ) represents a high-
temperature average, studying quantum quenches with in-
dividual out-of-equilibrium states reveals the impact of the
quantum scar |Sν〉 on the dynamics. In particular, given its
construction in Eq. (3), the dynamics can be tuned between
different regimes depending on the deformation parameter
ν. We here exemplify this fact by considering a domain
wall |ψ〉 = |u · · · ud · · · d〉, which is a natural initial condition
for quench dynamics [120–123]. While |ψ〉 has zero energy
density, 〈ψ |Hν |ψ〉 /L → 0, such that thermalization is ex-
pected, we note that in the picture of random walks on a
plane (Fig. 1), |ψ〉 maximizes the area A. According to the
construction of |Sν〉 in Eq. (3), |ψ〉 therefore contributes dom-
inantly to |Sν〉 if ν > 1 (here, |〈ψ |Sν〉|2 ≈ 0.64 for ν = 2 and
L = 16 [124], in contrast to |〈ψ |Sν〉|2 = 1/D2

du for ν = 1).
As a consequence, we find that L(t ) = | 〈ψ (t )|ψ〉 |2 decays
quickly for ν = 0.5, 1, while L(t ) oscillates around a finite
value for ν = 2 [Fig. 5(a)]. Likewise, the growth of the von
Neumann entropy S1(t ) [126] is significantly slower for ν = 2

FIG. 5. Dynamics of domain-wall state for L = 16 and OBCs.
(a) and (b) L(t ) = |〈ψ (t )|ψ〉|2 and S1(t ) for ν = 0.5, 1, 2. (c) and
(d) 〈Sz

�(t )〉 at fixed t for ν = 1, 2. The inset in (c) shows data at t =
50, 100, 150 vs (� − L/2)/t0.4.

[Fig. 5(b)]. As shown in the Supplemental Material [100],
there also exist initial states where dynamics is instead slower
for ν < 1 and faster for ν > 1.

By tuning ν and thereby controlling its overlap with |Sν〉,
it is thus possible to obstruct thermalization of |ψ〉. This is
emphasized even more in Figs. 5(c) and 5(d), where the spin
profiles 〈S�(t )〉 = 〈ψ (t )| Sz

� |ψ (t )〉 are shown at fixed times for
ν = 1 and ν = 2. In particular, for ν = 2, 〈S�(t )〉 is found to
remain localized even at long times. In contrast, for ν = 1,
|ψ〉 is not dominated by |Sν〉 such that the domain wall melts
away, albeit 〈S�(t )〉 is still rather inhomogeneous even at t =
150. In fact, the profiles for different t approximately collapse
onto a single curve when plotted against (l − L/2)/t1/z [inset
of Fig. 5(c)], i.e., consistent with the anomalous transport
discussed above. We note that similar parameter-dependent
melting of domain-wall states is known for other classes of
models as well [120,123].

Conclusion and outlook. To summarize, we have stud-
ied a class of frustration-free Hamiltonians, where disjoint
Krylov subspaces, anomalous hydrodynamics, and exact
quantum many-body scars occur simultaneously. Compared
with dipole-conserving or other fractonic models, the Motzkin
chain appears to lie in a different “universality class” featuring
a distinct dynamical transport exponent z ≈ 5/2 at infinite
temperature and Hilbert-space fragmentation with only poly-
nomially many subspaces. The quantum scars |Sν〉 are similar
to other embeddings of frustration-free ground states by de-
forming the underlying model [43–45]. Moreover, a similar
construction of exact scars in individual Krylov subspaces has
been recently presented for related Fredkin chains [80].

Regarding prospective directions of research, we note that
while at present an analytical expression is known only for
the states |Sν〉, the data in Fig. 2 suggest that Hν hosts
other low-entangled eigenstates beyond |Sν〉. Approximating
further nonthermal eigenstates, e.g., by devising a spectrum
generating algebra [127–130] acting on |Sν〉, might thus
be an interesting attempt. Another extension is to study
hydrodynamics at finite temperatures to connect our high-
temperature results to the subdiffusive scaling of low-energy
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excitations [94,95], as well as to consider transport beyond
half filling, where CA circuits have already proven help-
ful [72]. Finally, the stability of the |Sν〉 and, particularly,
the persistence of anomalous hydrodynamics upon adding
different perturbations to Hν are open questions.

We thank S. Moudgalya, B. Ware, and R. Vasseur for
helpful comments. This work was funded by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant Agreement No.
853368).
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