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From Kosterlitz-Thouless to Pokrovsky-Talapov transitions in spinless fermions
and spin chains with next-nearest-neighbor interactions
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We investigate the nature of the quantum phase transition out of density-wave phase in a spinless fermion
model with nearest- and next-nearest-neighbor interaction at one-third filling. Using extensive density ma-
trix renormalization group (DMRG) simulations, we show that the transition changes it nature. For weak
next-nearest-neighbor coupling the transition is of Kosterlitz-Thouless type, in agreement with bosonisation pre-
dictions. For large next-nearest-neighbor repulsion we provide numerical evidences that the transition belongs to
the Pokrovsky-Talapov univerality class describing a nonconformal commensurate-incommensurate transition.
We argue that the change of the nature of the transition is a result of incommensurability induced by frustration
and realized even at zero doping. The implications in the context of the XXZ chain with next-nearest-neighbor
Ising interaction is briefly discussed.
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I. INTRODUCTION

Understanding the nature of quantum phase transitions in
low-dimensional systems is one of the central topics in con-
densed matter physics[1–3]. The conjecture of universality
classes allows to investigate phase transitions on a simple
lattice models. A paradigmatic example that appeared in many
contexts over the decades is a model of interacting spinless
fermions in one dimension [1]. Their applications ranged
from solving spin models through Jordan-Wigner transforma-
tion [4] to studying the commensurate melting of classical
two-dimensional (2D) and later quantum one-dimensional
(1D) models [5–11]. The models with competing nearest-
neighbor (NN) and next-nearest-neighbor (NNN) interactions
has been studied intensely over the years [12–16]. Initially
formulated as a toy model for the long-range Coulomb in-
teraction, it was soon realized that, despite its simplicity, the
model has very rich phase diagram hosting, in particular the
Luttinger liquid phase, the density waves at half- and third-
fillings, and paired phases [16–18]. The full phase diagram,
however, is far from being complete and there are a number
of questions that remain open. For instance, the properties of
the highly entropic phase reported recently [16] or the nature
of quantum phase transitions that will be the main focus of
this paper. Our analysis is based on the combination of field
theory predictions in 1 + 1D [19–22] and the density matrix
renormalization group algorithm (DMRG) [23–26] that, over
the past decades, has proven to be extremely powerful in
coming up with theoretical predictions for numerous fascinat-
ing critical phenomena.
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In this paper we investigate the nature of the quantum
phase transition between the density wave phase realized at
one-third filling and the Luttinger liquid phase for a chain
of spinless fermions with nearest-neighbor and next-nearest-
neighbor repulsion. The microscopic model is defined by the
following Hamiltonian:

Hferm =
∑

i

−t (c†
i ci+1 + H.c.) + U1nini+1 + U2nini+2, (1)

where c†
i , ci are fermionic creation and annihilation operators,

t is a hoping amplitude, and U1,2 are nearest-neighbor and
next-nearest-neighbor coupling constants, correspondingly.
The model can be reformulated in terms of hard-core bosons
and the Hamiltonian takes essentially the same form. By
means of Jordan-Wigner transformation the model can also
be rewritten in terms of spin-1/2 operators with the following
Hamiltonian:

Hspin =
∑

i

−t (S+
i S−

i+1 + S−
i S+

i+1) + U1Sz
i Sz

i+1 + U2Sz
i Sz

i+2,

(2)
where S±

i = Sx
i ± iSy

i . The Hamiltonian of Eq. (1) preserves
the total number of fermions, while in the spin version of the
Hamiltonian of Eq. (2) the total magnetization is conserved.
It is, therefore, natural to study the phase diagram of these
models at a fixed filling or fixed magnetization. Here we
will focus on one-third filling. In the spin language this cor-
responds to the total magnetization Sz

tot = −(N − 1)/6 [27]
and the ground state of the form ↑↓↓. Since the Hamiltonian
obeys particle-hole symmetry our results will also be valid for
two-third filling.

In the noninteracting case U1 = U2 = 0 the ground state
can be described by the Luttinger liquid with the Lut-
tinger liquid parameter K = 1. Repulsive interactions do not
immediately destroy the Luttinger liquid leading to a critical
phase with K < 1. At one-third filling a large portion of the
phase diagram is occupied by the density wave phase that
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spontaneously breaks translation symmetry with every third
site occupied by a fermion [16]. According to the theory of
Mott-U transitions [7], i.e., those that take place as a function
of coupling while the filling is fixed, one can expect the
transition between the density-wave phase and the Luttinger
liquid phase to be of the Kosterlitz-Thouless type [21]. Ac-
cording to bosonisation, this transition takes place when the
Luttinger liquid parameter reaches the critical value Kc =
2/9 [16]. But how robust is this prediction against strong
next-nearest-neighbor coupling? And how robust is the pre-
diction of the Kosterlitz-Thouless transition in general against
multiple competing interactions and frustration?

Recently, it was shown that the Luttinger liquid phase
can be stabilized for a model with strong nearest-neighbor
and next-nearest-neighbor repulsion up to the Luttinger liq-
uid parameter Kc = 1/9. The result is exact in the limit of
the NNN blockade [28], but it is expected to hold even for
large-enough but finite interaction strength [29]. In this case
the transition out of the density-wave phase belongs to the
Pokrovsky-Talapov universality class [22]. The stability of
the Luttinger liquid was studied as a function of chemical
potential μ, which in Giamarchi’s notations [7] corresponds
to the Mott-δ transition, i.e., the one that takes place at a fixed
coupling constant while the filling is tuned by μ. However,
this raises two interesting questions: (i) Whether the Luttinger
liquid phase for strong NNN repulsion is stable up to Kc =
1/9 also for the fixed one-third filling and (ii) whether such
an extension of the Luttinger liquid phase beyond Kc

KT = 2/9
in turn leads to a different type of quantum phase transition to
the period-3 phase?

In this paper we show that the nature of the quantum
transition out of the period-three phase changes from the
Kosterlitz-Thouless type realized for weak coupling U2 to the
Pokrovsky-Talapov universality class that appears for strong
U2 as shown in Fig. 1. We argue that incommensurability
associated with Pokrovsky-Talapov transition is a result of a
frustration induced by the repulsion and a filling constraint.
This results in the appearance of the floating phase — a region
of the Luttinger liquid phase with the local density in the
finite-size system oscillating around its fixed value 1/3 with
the wave vector noticeably different from the commensurate
value q = 2π/3.

The rest of the paper is organized as follows. In Sec. II
we provide technical details of the used numerical method. In
Sec. III we numerically verify the prediction for Kosterlitz-
Thouless transition for small U2. In Sec. IV we provide
numerical evidences for the Pokrovsky-Talapov transition and
demonstrate the emergence of the incommensurate floating
phase. Finally, in Sec. V we summarize the results and put
them into perspective.

II. NUMERICAL METHOD

Numerical simulations were performed with the density
matrix renormalization group (DMRG) algorithm [23–26] for
the spin model of Eq. (2). Without loss of generality the
hopping amplitude is set to t = 1 throughout the paper. The
results are obtained for chains with up to N = 3601 sites with
open boundary conditions, keeping up to D = 3000 states
and discarding singular values below 10−8. This allows to

FIG. 1. Phase diagram as a function of nearest-neighbor and
next-nearest-neighbor repulsion for the one-third filling. (a) Phase
diagram obtained with DMRG simulations. For U � 5 the transition
is in the Kosterlitz-Thouless universality class (red); for U � 5 the
transition is of Pokrovsky-Talapov type (blue). Green squares mark
the location of the kinks in the correlation length, dashed green line
is a guide to eyes. White region corresponds to the possible highly
entropic phase [16], which is out of the scope of the present study.
(b) Schematic sketch of the main features of the Luttinger liquid
phase on the phase diagram presented in (a). The Luttinger liquid
parameter is K = 1 at U1 = U2 = 0 and decreases upon approaching
the boundary of the period-three phase. At the Kosterlitz-Thouless
transition the K takes the critical value Kc = 2/9. At the Pokrovsky-
Talapov transition the corresponding critical value is Kc = 1/9.
Equal-K lines with 1/9 < K < 2/9 (black dotted lines) are expected
to collapse at the point where the transition changes its nature.
The crossover line (green dashed) is expected to continue in the
critical phase separating the commensurate Luttinger liquid form
the floating phase with incommensurate wave-vector q. Location of
the commensurate-incommensurate crossover in the Luttinger liquid
phase is unknown, green dashed line is just indicative.

converge the ground-state energy with the error well below
10−7. Thus high accuracy turns out to be a prerequisite to
observe the floating phase on a finite-size chains with N =
301 and 601 sites (see, for instance, Fig. 5). To realize 1/3
filling of the fermionic model, the algorithm is constrained to
the sector with total magnetization Sz

tot = −(N − 1)/6 + 1/2
with N = 3k + 1, k ∈ Z. The boundary conditions are fixed
by polarizing the edge spins in the z-direction.

Most of the results were obtained with quantities that
do not depend on the statistics. The correlation length ξ is
extracted inside the gapped period-three phase by fitting an
exponential decay of the correlation function 〈Sz

i Sz
j〉. Up to

a constant this is equivalent to density-density correlations
〈nin j〉 in the fermion model. The Luttinger liquid parameter
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FIG. 2. Extraction of the Luttinger liquid exponent K by fitting (a) the Friedel oscillations of the local density on a finite chain and
(b) the transverse component of the spin-spin correlations. The results are shown for U1 = 10 at U2 = 0 (blue) and at U2 = 2.5 (green) (in the
thermodynamic limit the critical point is located at U2 ≈ 2.462). The results of the fit are shown in red.

K is extracted by fitting the profile of the local magnetization
〈Sz

i 〉. This is equivalent to the local density profile 〈ni〉. Fixed
boundary conditions act as an impurity and lead to Friedel
oscillations. According to the boundary conformal field theory
the profile takes the following form [30]:

Sz
j ∝ cos(q j)

[(N/π ) sin(π j/N )]K
. (3)

One can benchmark the value of the Luttinger liquid exponent
K obtained with Friedel oscillations by comparing it to the
slope of the correlation function of the transverse components
of spins 〈S+

i S−
j 〉. This is the only statistics sensitive quantity

used in this paper. This correlation function is much easier to
compute and to fit in the spin language than in the fermionic
one. Figure 2 provides some examples of the fits. In general
the two methods give similar results and from now on we
only present the results obtained with Friedel oscillations. The
error bars are estimated by fitting different intervals of the data
points discarding from 5% to 25% of the spins at each edge.

Finally, the incommensurate wave-vector q was obtained
by fitting the Friedel oscillations inside the floating phase.

III. KOSTERLITZ-THOULESS TRANSITION

Let us first focus on the Kosterlitz-Thouless transition and
let us start with the line U1 = U2. The results for the Luttinger
liquid exponent K extracted by fitting the Friedel oscilla-
tions are presented in Fig. 3(a). In the noninteracting case
the well-known result K = 1 is recovered. Away from this
point the Luttinger liquid exponent decreases in agreement
with the repulsive interactions in the system. Close to the
transition finite-size effects becomes stronger. Note that, due
to the exponential divergence of the correlation length typ-
ical for the Kosterlitz-Thouless transition, one can extract an
effective Luttinger liquid exponent even beyond the transition;
this effective exponent is expected to decay to zero in the
thermodynamic limit.

To locate the critical point in the thermodynamic limit
we first locate the point where the curve K (U2) for each
system size N crosses the line Kc = 2/9 and then extrapo-
late the obtained values with a quadratic [31] fit in 1/N as

shown in Fig. 3(b). The correlation length is computed by
fitting exponential decay of the density-density correlations
in the period-three phase. At the Kosterlitz-Thouless tran-
sition the correlation length is expected to diverge as ξ ∝
exp[A/

√
U − U c] [21], where A is some nonuniversal con-

stant. Figure 3(c) presents the inverse of the correlation length
upon approaching the transition. In Fig. 3(d) the correlation
length is shown as a function of a square root of a distance to
the transition in a semi-log scale. One can see that the scaling
systematically approaches the straight line in agreement with
the theory prediction.

The results along the cut at U1 = 10 are organized in a
similar way and presented in Figs. 3(e) to 3(h). Similar to
the previous case one can see a good agreement between
numerical data and the expected exponential divergence of
the correlation length. These results confirm that for small
values of U2 the transition belongs to the Kosterlitz-Thouless
universality class and that the Luttinger liquid exponent takes
the value Kc

KT = 2/9 at the transition.

IV. POKROVSKY-TALAPOV TRANSITION

Let us now take a look at the boundary of the same period-
three phase but for large values of U2. From Figs. 4(a) to 4(b)
one can see that the inverse of the correlation length upon
approaching the transition vanishes with an infinite slope in
a striking difference to the Kosterlitz-Thouless transition with
the exponentially diverging correlation length presented in
Figs. 3(c) and 3(g). We fit the data points with 1/ξ ∝ (U1 −
U c

1 )ν , where ν is the correlation length critical exponent that
takes very special value ν = 1/2 at the Pokrovsky-Talapov
transition [22]. The fits are in spectacular agreement with
the numerical data, especially given that there are only two
fitting parameters: the location of the critical point U c

1 and the
prefactor. Slight shift of the critical point is a typical finite-size
effect [30,32].

Pokrovsky-Talapov transition is a commensurate-
incommensurate transition and the natural question that
arises at this stage is how the incommensurability appears
in the phase diagram with the fixed commensurate filling?
By looking at the correlation length further away from the
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FIG. 3. Numerical results for the Kosterlitz-Thouless transition along (a)–(d) U1 = U2 diagonal cut and (e)–(h) U1 = 10 vertical cut. (a,e)
Effective values of the Luttinger liquid parameter K extracted by fitting finite-size Friedel oscillation profiles. (b,f) Finite-size extrapolation
of the location of the finite-size critical point associated with Kc = 2/9 towards the thermodynamic limit. Red circles are data, solid lines are
polynomial in 1/N fits. Extrapolated critical values are (a) U c

1 = U c
2 
 3.849 and (f) U1 = 10, U c

2 
 2.469. (c,g) Inverse of the correlation
length extracted from the density-density correlations in the period-three phase. (d,h) Exponential divergence of the correlation length in the
period-three phase as a function of a distance to the transition. Dashed lines are linear fit of (b) five and (c) seven points the farthest from the
transition for N = 2401.

transition one can notice a pronounced kink. Typically, when
there is no constraint on the filling, such kinks signal the
disorder line separating commensurate and incommensurate
regimes. Inside the period-three phase, however, the fixed fill-
ings as well as the long-range order of the gapped phase force
the dominant wave vector to be commensurate q = 2π/3.
Within the numerical precision obtained results always agree
with this value. Interestingly, if one keeps track of the location
of the kink, it turns out that the line crosses the boundary of
the period-3 phase at U2 ≈ 5 as shown in Fig. 1. This agrees
with the point where the transition changes its nature.

It is natural to expect the crossover line to continue in the
critical phase where it will separates commensurate Luttinger
liquid from the floating phase as sketched in Fig. 1(b). In the

critical phase the appearance of the incommensurability can
be captured explicitly. Figure 5 provides a few examples of the
Friedel oscillations profile where the local density fluctuates
around n = 1/3 with the wave vector noticeably different
from 2π/3. For the model written in terms of spin operators
in Eq. (2) it is easy to see that all next-nearest-neighbor bonds
cannot be simultaneously minimized for the imposed total
magnetization Sz

tot = −(N − 1)/6 with commensurate period-
3 configuration ↑↓↓. The incommensurate fluctuations of
local density presented in Fig. 5 appear as a response to this
frustration and give rise to a commensurate-incommensurate
nature of the Pokrovsky-Talapov transition at large U2.

By fitting the Friedel oscillations profile as shown
in Fig. 5 one can get an accurate estimate of the

FIG. 4. Inverse of the correlation length upon approaching the transition from the period-three phase along (a) U2 = 7 and (b) U2 = 9.
Symbols are numerical data, lines are fits with 1/ξ ∝ (U − Uc )ν with the Pokrovsky-Talapov critical exponent ν = 1/2. In (a) one can see the
appearance of pronounced kinks indicated with green arrows. The location of the kink corresponds to green squares on the phase diagram of
Fig. 1.
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FIG. 5. Examples of the local density profiles inside the Lut-
tinger liquid phase for large values of U2. Competition between
the one-third filling constraint and next-nearest-neighbor interaction
lead to incommensurate oscillations of the local density around the
fixed value 1/3 (gray line). The DMRG data are shown in blue, the
results of the fit are shown in pink, an incommensurate wave-vector
q obtained from the fit is indicated at each panel.

incommensurate wave-vector q. The results for U = 9 are
summarized in Fig. 6. The error bars are estimated as δq ≈
π/N — the elementary value of the wave vector that on the
entire chain with N sites accumulates into one turn by π . At
the Pokrovsky-Talapov [22] transition the wave-vector q is
expected to approach its commensurate value with the critical
exponent β̄ = 1/2. The obtained numerical data are fit with
�q ∝ (U c

1 − U )1/2, where the location of the critical point
is fixed to the value extracted from the fit of the correlation
length for N = 1201 [see Fig. 4(b)]; so the only fitting pa-
rameter for �q is the nonuniversal prefactor. The numerical
data are in spectacular agreement with this theory prediction.
Numerical data for other cuts through the Pokrovsky-Talapov
transition can be found in the Appendix.

FIG. 6. Incommensurate wave-vector q as a function of U1 upon
approaching the Pokrovsky-Talapov transition. Numerical data (sym-
bols) agree with the theory prediction (lines) q − 2π/3 ∝ (U c

1 −
U1)β̄ with the Pokrovsky-Talapov critical exponent β̄ = 1/2. Green
line shows the result of the fit for N = 301 and dashed blue line
states for N = 601. For the fits U c

1 is fixed to the value obtained in
Fig. 4(b) for N = 1201 sites.

V. DISCUSSION

To summarize, the nature of the quantum phase transition
of the fermionic chain with nearest-neighbor and next-
nearest-neighbor interactions changes from the Kosterlitz-
Thouless type realized for small U2 to the Pokrovsky-Talapov
commensurate-incommensurate transition realized when U2 is
strong. Incommensurate oscillations appears in the Luttinger
liquids ubiquitously by tuning the total density with the chem-
ical potential [7–11,29,33]. In the present model we witness a
different mechanism — an incommensurability appears due
to a competition between the next-nearest-neighbor repulsion
and the imposed constraint on the filling. This opens new pos-
sibilities in the theory of Mott-U transitions in the presence of
competing interactions or frustration.

FIG. 7. Additional numerical data across the Pokrovsky-Talapov
transition. (a),(b) Inverse of the correlation length upon approaching
the transition out of the period-3 phase at (a) U2 = 6 fairly close
to the turning point and (b) U2 = 10. Symbols are numerical data,
lines are fits with 1/ξ ∝ (U1 − U c

1 )ν with the Pokrovsky-Talapov
critical exponent ν = 1/2. One can see the appearance of pro-
nounced kinks inside the period-3 phase. The location of these kinks
corresponds to green squares on the phase diagram of Fig. 1. (c)
Incommensurate wave-vector q as a function of U1 upon approaching
the Pokrovsky-Talapov transition. Numerical data (symbols) agree
with the theory prediction (line) q − 2π/3 ∝ (U c

1 − U1)β̄ with the
Pokrovsky-Talapov critical exponent β̄ = 1/2. Green line shows the
result of the fit for N = 301 with U c

1 being fixed to the value obtained
in (b) for N = 1201 sites.
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What are the consequences of the floating phase and
the commensurate-incommensurate Pokrovsky-Talapov tran-
sition? First of all, the very fact that Kosterlitz-Thouless
transition turns into a Pokrovsky-Talapov transition is sur-
prising and to the best of our knowledge such a possibility
has not been reported yet neither in the context of field the-
ory nor in the framework of lattice models. Furthermore, the
mismatch between the two critical exponents Kc

PT = 1/9 and
Kc

KT = 2/9 implies that equal-K lines with 1/9 < K < 2/9
will condense at the point where the nature of the transition
changes as sketched in Fig. 1(b). Qualitatively, slightly convex
curvature of the critical line for large U2 agrees with this
picture. However, quantitative verification of this prediction
would require much longer chains: such that in the direct
vicinity of the Pokrovsky-Talapov transition the chain will
host multiple helices to have a reliable fit. Because of strong
frustration and low-lying excitations the convergence in the
Luttinger liquid phase for large U2 is extremely slow, while the
accuracy required to capture the floating phase must be kept
high. This question is left open for future investigations. It
would be very interesting and instructive to have insights from
the field theory on the nature of the turning point at which the
transition changes its nature.

It should be possible to directly program the model of
Eq. (1) at one-third filling in optical cavities with individ-
ual control over the trapped atoms. This will allow to probe
both, the Kosterlitz-Thouless and the Pokrovsky-Talapov tran-
sitions experimentally. Also note that the floating phase in
the vicinity of the Pokrovsky-Talapov transition, more specif-
ically, the floating phase with the Luttinger liquid parameter
1/9 < K < 1/8 [29], is stable against a single-particle
instability, unlike the rest of the Luttinger liquid phase on the
phase diagram. This provides an alternative way to probe the
reported-here change of nature of the quantum phase transi-
tions in experiments.
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APPENDIX: ADDITIONAL DATA FOR THE
POKROVSKY-TALAPOV TRANSITION

In this Appendix we provide additional data for the
Pokrovsky-Talapov transition across the cuts at U2 = 6
[Fig. 7(a)] and at U2 = 10 [Figs. 7(b) and 7(c)]. Along
both cuts the correlation length diverges with the Pokrovsky-
Talapov critical exponent ν = 1/2. For U2 = 10 one can also
compare the data of the incommensurate wave-vector q with
theory expectation q/π ∝ (U c

1 − U1)β̄ , where the location of
the critical point was extracted by sitting the correlation length
as shown in Fig. 7(b) and the critical exponent is fixed to the
value of the Pokrovsky-Talapov transition β̄ = 1/2. For both
values of next-nearest-neighbor coupling U2 one can notice
the presence of a crossover deep inside the period-3 phase.
We associate the location of the kink (green arrows) with the
first point that deviates from the main slope while coming
from inside the charge-density wave phase. In Fig. 7(c) we
show the incommensurate wave-vector q for U2 = 10 ap-
proaching its commensurate value q = 2π/3 with the critical
exponent β̄ = 1/2. The results agree with those presented
in Fig. 6.
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