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Physiological states of bacterial cells exhibit a wide spectrum of timescale. Under nutrient-rich conditions,
most of the cells in an isogenic bacterial population grow at certain rates, while a small subpopulation sometimes
falls into a dormant state where the growth rates slow down by orders of magnitude. The dormant cells have
unique characteristics: The metabolic activity is quite slow, and the dormant cells typically exhibit a high
tolerance for a range of stresses, such as antibiotics applications. To reveal the origins of such heterogeneity
of timescales, we constructed a kinetic model of Escherichia coli central carbon metabolism, including the
dynamics of the energy currency molecules, and asked if perturbations of the metabolites’ concentrations lead
to the distinct metabolic states. By numerically studying the relaxation dynamics, we found that the model
robustly exhibits two qualitatively distinct relaxation dynamics depending on the initial conditions generated by
the perturbations. In the first type, the concentrations of metabolites reach the steady state quickly, resembling the
growing dynamics. On the other hand, the other type of dynamics takes a much longer time to reach the steady
state, and during the relaxation, cell growth almost halts, reminding us of the dormant cells. In order to unveil
the mechanism of distinct behaviors, we reduced the metabolic network model into a minimal model without
losing the emergence of distinct dynamics. Analytical and numerical studies of the two-variable minimal model
revealed the necessary conditions for the distinct behavior, namely, the depletion of energy due to the futile
cycle and its nonuniform impact on the kinetics because of the coexistence of the energy currency-coupled and
uncoupled reactions as well as branching of the network. The result is consistent with the experimental reports
that the dormant cells commonly exhibit low ATP levels and provides a possible explanation for the appearance
of dormant cells that causes antibiotic persistence.
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I. INTRODUCTION

Bacterial growth rates span a wide range of timescales:
Escherichia coli cells typically double every 20 minutes under
nutrient-rich conditions, while cells can also exhibit dormancy
where the growth of cells almost halts and yet the death
is strongly suppressed [1–3]. The transition to the dormant
states can either be a stochastic event or a response to hostile
environments such as starvation and exposure to antibiotics.
This dormancy is a beneficial strategy for surviving nutrient-
poor conditions as it can lower the cell’s nutrient requirements
[4]. Also, dormancy is known as the main cause of bacterial
persistence that has a high tolerance to antibiotics, and thus,
has been gathering attention from a wide range of fields from
microbiology to therapeutic studies [2,3,5,6].
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Notable changes in the timescale of cellular physiology
are happening in the dormant cells. It has been implied that
the dormant cells have a sort of memory capacities: The lag
time was shown to depend on the length of time that the cells
are starved [7–9] and the death rates of the starved cells differ
depending on the previous culture conditions even though the
starvation condition is identical [10]. Given that slow dynam-
ics are vital for storing memories, a drastic change in the
timescale of cellular physiology is necessary. Indeed, it was
reported that the proteome kept changing at least for 8 hours
in the starved E. coli cells [11].

Experimental studies have revealed the links between dor-
mancy and several molecules, such as growth-inhibiting genes
and metabolic enzymes (cf. reviews of Refs. [3,12,13]). Based
on the experimental findings, models that exhibit the transition
to dormancy have been proposed. The model developed by
Klumpp et al. [14] shows the bistability of growing- and dor-
mant state led by the toxin-based feedback mechanism of gene
expression. The transition mechanism suggested by Rocco
et al. is based on the bursting activity of gene expression
[15,16]. According to the model by Radzikowski et al. [11],
the collapse of the metabolic homeostasis by perturbation is
the key to the transition: A strong perturbation is applied to the
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metabolic state, and the resulting low metabolic flux cannot
support the synthesis of the metabolic enzymes to restore
metabolic homeostasis. This failure of metabolic readjustment
further lowers metabolic activity.

All the models mentioned above for exhibiting the dor-
mancy transition include the gene expression dynamics. Here
in the present paper, we explored another possibility: the
dormancy transition is triggered by the metabolic dynamics it-
self, without regulatory changes. Metabolic reaction networks
are highly interconnected via cofactors such as ATPs; thus,
the kinetic models of metabolic networks should have high
nonlinearities. The emergence of different timescales is one
of the hallmarks of nonlinear dynamical systems. Indeed, the
studies of a simple catalytic reaction network showed that
the relaxations to the steady state are much slower than that
inferred from the rate constants of the reactions and exhibit
multiple plateaux [17–19].

In the present paper, we study the kinetic model of E. coli
central carbon metabolism with cofactors, such as ATP, as
variables. There are a number of studies of kinetic model of
E. coli central carbon metabolism [20–35]. However, as far as
we know, the dynamics of the cofactors are often neglected
[20–30], or if included, the relaxation dynamics of the mod-
els are not actually computed [31–35]. As the experimental
studies suggested [36,37], ATPs may play a central role in the
transition to dormancy. Thus, the cofactors can be vital model
components for studying the growth-dormancy transition.

In the following sections, we present that the kinetic model
of E. coli central carbon metabolism with cofactors robustly
exhibits two distinct dynamics: One is reminiscent of the
normal growth behavior, and the other is analogous to the dor-
mant dynamics. Then we derive the minimal network showing
qualitatively the same dynamics. The minimal model analysis
reveals two necessary conditions for the emergence of both
growth and dormant dynamics: the depletion of energy due
to the futile cycle and its nonuniform impact on the kinetics
because of the coexistence of the energy currency-coupled and
uncoupled reactions as well as branching of the network.

The obtained result implies that the depletion of ATP and
ADP itself leads to the slow dynamics of the metabolites’
concentrations. This conclusion is consistent with the “low-
energy” view of the bacterial dormancy presented in [36,38],
and highlights the notable impact of introducing cofactors
into models. We also discuss the possible applications of our
analysis for the studies of dormancy in other species based on
the minimal network motifs.

II. MATERIALS AND METHODS

A. Simulation of ordinary differential equations (ODEs)

All the ODE computations were performed by using Mat-
lab (Mathworks) ode23s function. For searching attractors,
we set 10ui,n for the ith metabolite as the nth initial value
where ui,n is the random number generated from a uniform
distribution in [−1, 1]. The steady-state concentration [X (ss)

i ]
is then obtained, and initial concentrations for the main anal-
ysis of the dynamics are generated as 10ui,n [X (ss)

i ] with ui,n

is the same random number yet distributed in [−2, 2]. The
ODEs were computed with two tolerance options (AbsTol =

10−10, RelTol = 10−12) and (AbsTol = 10−10, RelTol =
10−14) from exactly the same initial points. After the com-
putation, the trajectories with two different RelTol values,
but from the same initial point, were compared for the qual-
ity check of the computation. If the Hausdorff distance of
the pair of the trajectories was less than 0.5, the trajectories
were considered as correctly computed, and the trajectory ob-
tained with RelTol = 10−14 was used for the further analysis,
and otherwise, discarded. The quality check of the computa-
tion was performed after the transformation x(t ) → ln (x(t ))
where x(t ) is the concentration of the chemicals.

B. Principal component analysis

We used the python package sklearn.
decomposition.PCA [39] without whitening. The whitening
leads to only a minor effect on the results. The concentrations
of the chemicals were transformed into the natural logarithm
of the concentration before the analysis. PCA is performed
for each model, i.e., all the data points generated by a single
model with a number of initial conditions (the state vectors
representing the chemical concentrations) are stacked into a
single dataset, and we computed the covariance matrix of the
dataset for the projection of the trajectories.

III. RESULTS

A. Model

In the present paper, we study the E. coli core network
[40] as one of the simplest models of the real metabolic
reaction networks. The E. coli core model was obtained from
BiGG database [41]. The model contains stoichiometry and
the reversibility of the reactions. The E. coli core model
has 52 and 75 intracellular metabolites and reactions, respec-
tively. After an appropriate data curation as described later,
we implemented the model by using the ordinary differential
equation (ODE) that describes the dynamics of concentrations
of metabolites.

We applied several modifications to the model to make
it suitable for ODE implementation. First, small molecules
such as O2, H2O, and NH4, were not considered as variables
but treated as constants under the assumptions that the exter-
nal concentration of these chemicals are kept constant, and
uptakes/secretions of them take place quickly. The uptake and
secretion pathways of all carbon sources except glucose are
removed.

Under anaerobic conditions, cells transfer the free energy
to ATP directly, while under aerobic conditions, most of the
energy transfer takes an indirect form: The energy is first
transferred to other chemicals such as NADH and NADPH,
and then, the stored energy in NADH, NADPH, and others are
used for converting ADP to ATP. The conversion yield of ATP
per NADH in the E. coli core model is 1.25 (via NADH16,
CYTB, and ATPS4r), and NADH/NADPH yield is roughly
unity. For introducing the cofactors to the model in a sim-
ple manner, we assume that the energy transfers via NADH
and NADPH are sufficiently fast and ATP/NADH(NAPDH)
yield as unity. According to these assumptions, we replace
NAD(NADP) and NADH(NADPH) with ADP and ATP, re-
spectively (we discussed the validity of this assumption in the
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FIG. 1. The metabolic network of the E. coli core model gener-
ated by Escher [41]. The sole carbon source (glucose-6-phosphate)
is placed at the left top (abbreviated as glc). We highlighted the
substrates of the growth reaction other than ATP, namely, e4p and
gln. The growth reaction is not drawn.

Sec. IV and Appendix F). Full lists of the chemical compo-
nents and the reactions are provided in SI Data.1 within the
Supplemental Material [42].

Also, the stoichiometry of the growth reaction was mod-
ified. The original E. coli core model has the biomass
production reaction leading to the cell growth consisting of
16 substrates and 7 products with noninteger stoichiome-
try constants. For kinetic modeling, such reactions having
too many substrates and products lead to numerical instabil-
ity, and noninteger stoichiometry is unreasonable. Thus, we
replaced the biomass production reaction with a following
reaction: (erythrose 4-phosphate) + (L-glutamine) + (ATP)
→ (ADP). This reaction is much simpler than the original
one. Still, it requires the model to run all the modules of the
metabolic reactions, namely the pentose phosphate pathway
for erythrose 4-phosphate (e4p), TCA cycle for L-glutamine
(gln), and energy generation for ATP. Hereafter, we call this
simplified biomass production reaction as the growth reaction.

The resulting model consists of 32 variables and 40 re-
actions. The final metabolic reaction network is drawn in
Fig. 1. Our model cell takes up the nutrient from the node
labeled as “glc”, which has a constant concentration, performs
successive conversion of the chemicals generating energy, and
proceeds with the growth reaction.

First, we simulated the model with realistic setups. The
kinetic parameters of E. coli core model have been esti-
mated using the metabolic ensemble modeling (MEM) by
Khodayari and colleagues [33]. We derived the Michaelis-
Menten type rate equation for each reaction according to
the enzyme kinetics used in [33] with the presented kinetic
parameters. Then we assumed that each chemical species is
consumed/synthesized by associated reactions, diluted as the
cell grows, and spontaneously degraded at a slow rate. Thus,
the temporal change of the concentration of the ith chemical

species Xi is ruled by

d[Xi]

dt
=

∑

j

Si jJj − d[Xi] − μ[Xi], (1)

where S is the stoichiometric matrix, and Ji’s are the fluxes
due to chemical reactions. d and μ are the spontaneous degra-
dation rate and the growth rate, respectively. Note that the
concentrations of enzymes are supposed to be constant and
lumped in the kinetic parameters. We assumed that sponta-
neous degradation is a very slow process represented by a
single parameter. The dilution and degradation terms are omit-
ted in the AMP, ADP, and ATP equations because the de novo
synthesis of the adenine nucleotide carriers is not modeled
in the E. coli core model. This assumption is equivalent to
the homeostasis of the total adenine nucleotide carriers. (We
check that the assumption can be relaxed by introducing a
phenomenological reaction for the de-novo synthesis of AMP,
see Appendix E). According to the growth reaction which we
have introduced above, our model cell grows as the reaction
(erythrose 4-phosphate) + (L-glutamine) + (ATP) → (ADP)
proceeds. We chose the simplest kinetics of the growth re-
action given by Jg = vg[e4p][gln][atp] and the growth rate
as μ = rJg. We fit the values vg and r so that the growth
rate at the steady state is in the range of the typical growth
rate of E. coli in minimal glucose media ≈0.5 per hour. The
spontaneous degradation rate d is set to be one-hundredth of
the steady growth rate so that the effect of the spontaneous
degradation is negligible at the attractor. The concentration of
the nutrient ([glc]) and the total concentration of the adenine
nucleotide carriers (At ) are set to 20 mM and 1 mM, respec-
tively (see Appendix A).

To see how many attractors the model has, we computed
the model dynamics from multiple initial concentrations. As
far as we have checked, the model has only a single steady-
state attractor.

B. Dormant trajectory

We applied random perturbations to the steady-state con-
centration to emulate the exposure to the sublethal stresses
that disturb intracellular states. The perturbations are applied
in a multiplicative manner. For the metabolite i with the
steady-state concentration [X (ss)

i ], the initial concentration is
given by 10u[X (ss)

i ], where u is a random number sampled
from uniform distribution in [−2, 2]. The concentrations of
ATP, ADP, and AMP are normalized so that the total concen-
tration is At because it is conserved in the model.

We found that the model exhibited two qualitatively dis-
tinct relaxation behaviors depending on the initial conditions.
The typical time course of each type is plotted in Fig. 2(a)
in log scale to depict the wide range of the concentration and
timescale [43].

Even though the two trajectories eventually relax to the
same steady state, the relaxation behaviors are evidently dis-
tinct. First, the concentrations after minutes (∼10−1 hours) are
different between the top and bottom panels by many orders
of magnitude. The concentrations of several chemicals are
smaller than one molecule per cell, especially in the bottom
panel. We revisit this point in the discussion section. Also,
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FIG. 2. (a) Two characteristic dynamics of E. coli core model starting from different initial points. While the growth rate of the cell is ≈0.5
per hour at the attractor, there are huge differences in the relaxation behaviors between the top and bottom panels. (b) The temporal changes
of the growth rates along the dynamics in the same row in (a) are plotted. (c) The distribution of the relaxation time shows a clear bimodality.
(d) Trajectories are overlaid in two-dimensional principal component space. The color indicates log10 of time. The trajectories having shorter
relaxation time (several hours) are colored green-white-purple while the others are colored blue-white-red. The black point corresponds to
the steady-state attractor. Initial concentration of each metabolites is 10u[X (ss)

i ] mM with [X (ss)
i ] as the steady-state concentration of the ith

metabolite, and u as a random number uniformly distributed in [−2, 2] while the total concentrations of adenine nucleotide carriers are
normalized. Parameters other than ones obtained from [33] are [glc] = 20 mM, At = 1 mM, d = 5 × 10−3 h−1, vg = 3.6 × 104 mM−2 sec−1,
and r = 5.0 mM−1.

the characteristic timescale between them is clearly different.
The concentrations of the chemicals reach close to the steady
values in minutes in the top panel.

In contrast, the concentrations keep changing for a much
longer time, t ≈ 103 hours in the bottom panel, which is ex-
perimentally indistinguishable from the situation where cells
stop growing. When sampled over various initial conditions,
the relaxation time distribution has a clear bimodality as
shown in Fig. 2(c). Here, the relaxation time is defined as
when the distance between the steady-state attractor and the
state in the logarithm-converted phase space first becomes less
than 0.05.

For visualizing the differences among the trajectories, we
analyzed all the trajectories in the phase space by the prin-
cipal component analysis (PCA, see Sec. II), where all the
trajectories are converted to the logarithmic scale. We plot-
ted all trajectories projected onto the 2-dimensional principal
component space (PCS) in Fig. 2(d). The trajectories were

classified into two groups by the relaxation time and differ-
ently colored. The first group is quickly-relaxing trajectories
that the trajectory in the top panel of Fig. 2(a) belongs to
(colored in green-white-purple). The trajectory in the bottom
panel of Fig. 2(a) is grouped into the other group, colored
blue-white-red, which takes much longer to relax to the
steady-state attractor.

The remarkable gaps between the timescale of chemical
reactions and, accordingly, the growth rate during their relax-
ations highlight the difference between the two time courses.
The specific growth rate μ at the steady state is ≈0.5 hour−1,
and the model cell achieves this growth rate in a few seconds
in the top panel of Fig. 2(a), while less than 10−10 hour−1 in
the bottom panel at t = 102 hours (at plateau). Thus, in the
following sections, we call the trajectories of the second group
“dormant trajectories” because of their much slower growth
rate than the other group. Accordingly, the trajectories of the
first group are termed “growth trajectories”. The following

043223-4



EMERGENCE OF GROWTH AND DORMANCY FROM A … PHYSICAL REVIEW RESEARCH 4, 043223 (2022)

FIG. 3. (a) Two types of reaction removal. The simple removal removes one or a few reactions from the network. The number of reactions
to be removed is determined so that the removal does not make the dead-end chemicals. The contraction removes a single reaction first, and
then, the substrate and product of the removed reaction are identified and regarded as a new chemical species. (b) The reduced networks of
the intermediate models (models 2, 10, and 16) are drawn. The only nutrient (glucose) is at the top left corner of the network. The trajectories
projected onto the PCS of each model are also shown. For the coloring protocol of the trajectories, see the main text.

sections are devoted to unveiling the mechanism leading to
the differentiation of the growth and dormant trajectories.

C. Systematic model reduction

In the previous section, we saw that distinct relaxation
dynamics emerge depending on the initial concentrations of
the metabolites. Interestingly, we found that the emergence
of distinct dynamics is a robust feature of the E. coli core
model. The distinct dynamics emerge even if we use the
mass-action kinetics instead of the Michaelis-Menten function
for the reaction-rate function. Also, it is less sensitive to the
specific choice of the parameter values (see Appendices B and
H). This robustness implies that the distinct dynamics emerge
from the structure of the metabolic reaction network of the
E. coli core model rather than choices of specific parameter
values.

Thus, it is worth asking if there are understandably simple,
minimal network architecture(s) in the E. coli core network
which lead to the distinct trajectories. In the present section,

we reduce the E. coli core network to obtain a minimal net-
work exhibiting distinct relaxation dynamics. As far as we
know, there is no method to reduce the reaction network
without losing the characteristic nature of the relaxation dy-
namics. Once the concentrations of the cofactors are dealt
with as variables, metabolic reactions in the model get highly
interconnected, and the well-known reduction method works
poorly. For instance, adiabatic elimination may eliminate
merely one or few reactions, and obtaining an understandably
simple model is hopeless. Thus, here we focus only on the
emergence of distinct trajectories. As will be seen, this allows
us to derive a much simpler model than the original model.

In the following, we remove one or a few reactions from the
network step by step and check if the reduced model still ex-
hibits distinct trajectories (a solid criterion is introduced later).
As illustrated in Fig. 3(a), we consider two types of reaction
removal, namely, simple removal and contraction. First, we
describe the simple removal. Suppose that there are reactions
A � B, B � C and C � A, and also A and B are connected to
the rest part of the network by the other reactions [Fig. 3(a)(i)].
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The simple removal removes the reaction B � C and C � A,
and, accordingly, eliminates the chemical C because it is a
disconnected component in the network.

In contrast, chemical species are merged by the contraction
[Fig. 3(a)(ii)]. It removes a reaction A � E , and then, the
chemical A and E are identified, forming a new chemical Æ.
Here, we avoided the appearance of the dead-end chemical,
which has only one reaction because networks with dead-end
chemicals can cause a heavy accumulation of the chemi-
cals, potentially leading to an artifactual anomalous relaxation
behavior.

At each reduction step, we checked if the reduced model
exhibits the two distinct classes of trajectories by computing
its dynamics (For the details and the criterion for the distinct
dynamics, see Appendix C). In the following we use the model
with the mass-action kinetics with most parameters to be unity
because we have confirmed the distinct dynamics also emerge
with this setup (for the detailed setups, see Appendix B).

We have reduced the E. coli core model step-by-step ac-
cording to the model reduction method described above (The
pseudo-code is presented in Algorithm 1 in Appendices).
For accomplishing the network reduction, we manually deter-
mined the order of the reaction removal so that subsystems of
the network are removed or contracted in consecutive reduc-
tion steps. We completed the model reduction by removing
and contracting the L-glutamine synthesis pathway (4 steps),
pentose-phosphate pathway (4 steps), glycolytic pathway
(3 steps), and TCA cycle (7 steps) with the indicated num-
ber of steps in the parenthesis. The full list of the removed
reactions is provided in SI Data.1 within the Supplemental
Material [42]. Note that we also tried the model reduction
in random orders of the reaction removal (see Appendix G).
The minimal networks led by the reduction surely depend on
the order of the reaction removal. However, all the minimal
networks commonly satisfied the two conditions for the emer-
gence of the distinct trajectories discussed later. We revisit the
case of random-order reduction in Sec. IV.

The reaction network, and the trajectories projected onto
the PCS of selected models are shown in Fig. 3(c). We col-
ored the trajectories based on the relaxation time of each.
The figure shows that dormant trajectories (blue-white-red
trajectories) commonly take detours to reach the attractor
in the PCS. We confirmed that the dormant trajectory also
takes detours in the original high-dimensional phase space
(Appendix C 5).

D. A minimal model

After the 18 steps of reductions, we reached the stage
where no more reduction is possible without losing the distinct
dynamics. The reaction network and names that remained in
this minimal network (model 18) are depicted together with
the original E. coli core network in Fig. 4(a). The network con-
sists of glucose (glc), phosphoenolpyruvate (pep), pyruvate
(pyr), oxaloacetate (oaa), ATP, ADP, and AMP. As highlighted
in the original network, the reaction from glc to pep is the
contraction of the glycolytic pathway, and oaa is represen-
tative of the chemicals in the TCA cycle. It is worth noting
that the network’s local structure among pep, pyr, and oaa is
unchanged (cyan boxes). In other words, the minimal network

is obtained by removing the pentose phosphate pathway and
contracting the glycolytic pathway and the TCA cycle. Also,
the reaction ADK1 converting two ADPs to ATP and AMP is
conserved. As shown in Figs. 4(b) and 4(c), the model still ex-
hibits distinct trajectories. In the following, we use one-letter
variables instead of the abbreviations of the metabolites. x, y, z
and g denote [pep], [pyr], [oaa], and [glc], respectively. a, b,
and c are assigned for [atp], [adp], and [amp], respectively.
We use the upper-case characters for referring to the name of
the metabolites (i.e., X indicates phosphoenolpyruvate, and x
means its concentration [pep]).

The model consists of five variables (recall that g and
a + b + c are constant). We wish to simplify the model further
and draw the two-dimensional vector field. Thus, we tried the
adiabatic elimination of the concentrations of three chemicals
(because now we have the five variables). By checking all the
possible combinations of three chemicals, we found that the
adiabatic elimination of a, b, and z does not lose the distinct
dynamics. The set of ODEs of the minimal model is then
given by

dx

dt
= −(ax − bg) − (x − κz) + (ay − κcx)

− (bx − κay) − (d + rza)x, (2)

dy

dt
= −(ay − κcx) + (bx − κay) − (d + rza)y, (3)

where a, b (accordingly c = At − a − b with At as the total
concentration of adenosine energy carriers), and z are adia-
batically solved, and thus, are the functions of x and y.

The two-variable system allows us to visualize the vec-
tor field. As shown in Fig. 4(d), interestingly, there is a
boundary below and above which the streamlines change the
direction dramatically (x � 0.1 and y ≈ 1). Below the bound-
ary, the state relaxes to the attractor rather straightforwardly,
corresponding to the dynamics shown in Fig. 4(b) (growth
trajectory). On the other hand, trajectories starting from the
upper region first travel to the left side of the phase space
(small x region) and return to the attractor, corresponding to
Fig. 4(c) (dormant trajectory). We attribute the emergence of
the distinct trajectories to this dramatic change in the direction
of the vector field across the boundary. Hereafter, we call the
region above- and below the boundary the dormant and the
growth region, respectively.

E. Conditions for the emergence of distinct trajectories

What determines the boundary between the growth- and
the dormant region, and why is the vector field of the two-
variable model [Fig. 4(d)] almost parallel to the horizontal
axis in the dormant region? For the first point, we found a
large gap between the two regions in a and b. In the dormant
region, their concentrations are low (∼10−8), while in the
growth region, they are in the order of 0.1. This gap gives
an insight into the second point. We found that the drastic
change in the direction of the vector field occurs because four
of the five reactions of the model coupled with the adenine
nucleotide carriers. Thus, these reactions halt almost entirely
in the dormant region.
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FIG. 4. (a) The list of the reactions in the minimal network (left). The structure of the minimal network (middle). The original network
with the reactions in the minimal model is highlighted (right). The minimal model consists of three parts, namely, the glycolytic pathway (pink
bar and boxes), the joint part between the glycolytic pathway and the TCA cycle (cyan bar and boxes), and the adenosine kinase reaction
(yellow bar and boxes). [(b), (c)] Example time courses of the growth trajectory (b) and the dormant trajectory (c) of the minimal model.
(d) The streamline representation of the vector field of the two-variable minimal model where the steady values of [atp], [adp] and [oaa] under
given [pep] and [pyr] are numerically solved. (e) The streamline representation of the simplified minimal model. The color indicates the norm
of the vector v = (dx/dt, d[pyr]/dt ) at each point, and the black dots indicate the attractor of each in (d) and (e). φ0 = 10−8 in (e). The dashed
lines in (d) and (e) represent the boundary where the direction of the vector field changes dramatically (y = 1). The lines are drawn according
to the Eq. (4) for (d) and the definition of φ for (e).

Intuitively, the low values of a and b in the dormant region
can be understood from the reactions in Fig. 4(a) as follows.
First, let us consider the situation where x and y are in the
dormant region. If, in addition, x is low, the uptake reaction
proceeds in the direction G + B → X + A. When this reaction
accumulates some ATP, PPS proceeds in the direction Y +
A → X + C, because x is low. In total, the uptake reaction
and PPS form a futile cycle that converts A and B into C. Note
that the PPS does not easily result in the accumulation of X ,
because of PPC reaction. If x is high, but y is also high so that
the system is still in the dormant region, PYK plays the same
role as the uptake reaction in the previous case. Thus, a futile
cycle converting A and B into C is formed in both cases. If
the conversion from A and B into C is slow enough, the other
reaction, ADK1 (A + C � 2B) proceeds to balance A + B and

C. However, ADK1 cannot balance them if the conversion is
too fast because the reaction needs A.

Indeed, this intuitive description is consistent with the
analytical estimate of the boundary. We derive the bound-
ary between the growth and dormant region for x � 1. The
boundary is given by y leading to a low a and b with a
given value of x. For the estimation of the critical y, we sum
up da/dt and db/dt and assume a, b, x = O(ε) with ε � 1.
Also, recall that the irreversibility parameter κ in [Eq. (2)] is
small, and thus, we omit κ term [44]. Then we obtain

d (a + b)

dt
= JADK1 − JPPS ∼ a(vADK1At − vPPSy), (4)

where we explicitly write down the rate parameter v∗’s for the
interpretation of the estimate. If the first term of the rightmost
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side is larger than the second term, a + b increases, while in
the opposite situation, the sum keeps decreasing to zero as
long as a is nonzero. This shift occurs at vPPSy ∼ vADK1At , and
it gives the boundary between the growing and the dormant
regions.

Next, we explain how the decrease of a and b leads to the
vector field parallel to the horizontal axis in the dormant re-
gion [Fig. 4(d)]. Let us assume that a and b are approximately
the same and well-represented by a single lumped parameter
φ. Also, we set the irreversibility parameter κ to zero for
simplicity. Then, the ODE for the two-variable minimal model
[Eq. (2)] is given by

dx

dt
= φ(1 − x + y + rz) − (1 + d )x, (5)

dy

dt
= φ(x − y + rz) − dy, (6)

where z is the function of φ, while it becomes constant as φ

approaches 0. From the equation, we can see that if a and b,
represented by φ, are O(1) (i.e., in the growth region), the
timescale of the system is O(1). On the other hand, if A and B
deplete and φ ≈ 0 holds in the dormant region, the timescale
of dy/dt becomes O(d ). Since the spontaneous degradation
rate d is sufficiently smaller than unity, |dx/dt | � |dy/dt |
holds, and it leads to the vector field being almost parallel to
the x axis as depicted in Fig. 4(d).

To confirm if the simplification above still captures the
feature of the vector filed in Fig. 4(d), we have drawn the
vector field of the simplified model Eqs. (5) and (6) with
φ = max{1 − y, φ0} in Fig. 4(e). It well captures the feature of
the original vector field. We have confirmed that the shape of
the vector field is robust to the choice of the function φ. Also,
we analytically solved the model without the growth dilution
term [Eqs. (5) and (6) with r = 0] and found that the model
has only a single timescale which is O(1) in the growth region
(see Sec. D).

The simplified model [Eqs. (5) and (6)] highlights that
the timescale of dx/dt is much faster than that of dy/dt in
the dormant region. The right hand side of Eq. (5) has the
term (1 + d )x, while that in Eq. (6) is only the degradation
term dy, and this difference results in the parallel streamline
in the phase space [Fig. 4(e)]. It is worth noting where the
term (1 + d )x in Eq. (5) comes from. d corresponds to the
constant-rate degradation term, and the reactions coupled with
either A or B should have the rate proportional to φ. Therefore,
this timescale 1 comes from the reaction coupled neither with
A nor B, namely, PPC (X → Z). All the reactions except PPC
are coupled with either A or B, and thus, the reactions slow
down over the boundary between the growth- and the dormant
region. However, the rate of PPC has no direct effect from the
depletion of A and B. Then, even after the slowing down of
almost all reactions, X is kept being consumed, and it leads to
the characteristic dynamics of the dormant trajectory.

Note that, if PPC were also coupled with A and B, (1 + d )x
term in Eq. (5) would have been replaced by (φ + d )x. In such
a case, all the reactions would have been uniformly slowed
down by the depletion of A and B, and the direction of the
vector field would not change over the boundary as drastically
as Fig. 4(d). Thus, it is vital that the reaction system partially
slows down due to the depletion of A and B.

It is noteworthy that the network structure is also a part
of the mechanism: If PPC were the reaction converting Y to
Z instead of X to Z , the drastic change of the direction of
the vector field as Fig. 4(d) would not result. If PPC were
Y → Z , the main body of the reaction network (reactions
except for ADK1) would have no branch. The slowing down
of the upstream reactions of PPC (i.e., uptake, PYK, and PPS)
would be rate-limiting steps of it, and PPC would slow down
coordinated with these reactions.

The above two points suggest that large discrepancies in
the chemical concentrations between the steady state and the
plateaux lead to distinct dynamics. In both cases—PPC with
energy coupling and the main network without a branch—the
reactions uniformly slow down. In such scenarios, even if
A and B deplete, the difference between the production and
consumption of each chemical stays relatively small. Thus, the
changes in the concentrations remain small. However, if the
slowing-down occurs heterogeneously on the network, some
chemicals will have a significant mismatch between produc-
tion and consumption. As a consequence, the concentrations
of such chemicals drastically change from the concentrations
before the depletion of A and B.

To sum up, the mechanism of the emergence of the dis-
tinct trajectories has two parts: (i) the unbalance of energy
(ATP and ADP) production and consumption, and (ii) partial
slowing down of the reaction system caused by nonuniform
coupling to the energy currencies and branching of the net-
work.

IV. DISCUSSION

We have shown that E. coli central carbon metabolism
exhibits distinctly different dynamics depending on the per-
turbation from the steady-state concentration. The two types
of trajectories greatly differed in terms of the relaxation time
and the growth rate during the relaxation, and thus, we termed
them as the growth- and the dormant trajectories. We system-
atically reduce the reaction network without losing the distinct
trajectories. By the successive reduction of the model, we
eventually reached the minimal network still exhibiting the
qualitatively same behavior.

By drawing the vector field of the two-variable minimal
model, we found that there is a boundary at which the vector
field changes the direction drastically. Indeed, the two regions
are divided by the boundary corresponding to the set of the
initial points of the growth- and the dormant trajectories. The
analysis led that there are at least two vital requirements for
the distinct trajectories: (i) the unbalance of the energy pro-
duction and consumption and (ii) the partial slowing-down of
the reactions due to the nonuniform coupling with the energy
currency molecules and branching of the network.

By studying several model variants, we carefully examined
the robustness of our main results, namely, the emergence of
distinct trajectories and the consequence of model reduction.
First, the robustness of the emergence of distinct trajectories
to the parameter values was examined. For several values of
the total adenine nucleotide carriers concentration (At ), we
randomly assigned the rate constants and studied if the distinct
trajectories still emerged. As anticipated from the analysis,
the distinct trajectories robustly emerge as long as the total
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concentration of adenine carriers At is not too large for the
depletion of ATP and ADP to occur (see Appendix H). As well
as the random parameter values, we performed the reaction
removal for the model reduction in 16 different randomized
orders. All the minimal networks obtained by the random re-
duction were larger than those derived in the result section but
shared the main features argued above, namely, (a) the models
keep ADK1 reaction and AMP, and (b) in each network,
there are both reactions, with and without the coupling to the
energy currency molecules (ATP, ADP, and AMP) as well as
branches.

We checked the outcomes of relaxing the assumptions
that we made initially. It is confirmed that the model with-
out the replacement of the nicotinamide nucleotide carriers
by the adenine nucleotide carriers exhibits distinct trajecto-
ries (Appendix F). Also, we have confirmed that the distinct
trajectories emerge if the assumption on the constant total
concentration of the adenine nucleotide carriers is relaxed by
introducing a phenomenological reaction for the de novo syn-
thesis of AMP to the minimal model (Appendix E). Overall,
the emergence of distinct trajectories is a robust feature of the
E. coli core model rather than a phenomenon led by fine tuning
of the parameters.

Two transition paths to the dormancy were schematically
proposed by M. Heinemann’s group [11,13]. The first path is
the transition triggered by stochastic gene expression. For ex-
ample, the elevated concentration of the toxin protein inhibits
several cellular processes and leads to the ppGpp-mediated
stress responses [45,46]. There are multiple mathemati-
cal models in accordance with this “genetically-triggered”
scenario [14,47–51]. The second path is “metabolically-
triggered”. The disturbance of the metabolic state induces
the stress response to modulate the gene expression pattern.
While the disturbance of the metabolic state is attributed to
the stochastic fluctuations of the enzyme level in the pa-
pers [11,13], the distinct dynamics due to the nonlinearity of
the metabolic reactions should be able to play a role in the
transition.

The present model showed a possibility that the dormancy
transition could be triggered by the metabolic dynamics itself
when the metabolic state is perturbed. According to the mini-
mal model, the perturbation evokes a futile cycle and leads to
the depletion of ATP and ADP. Here, the sources of the pertur-
bation can be starvation, nutrient shift, exposure to antibiotics,
pH stress, or even stochasticity of the intracellular processes.

However, in reality, the intracellular states of the dor-
mant cells may go beyond what we can depict in terms of
metabolites. We did not consider a dynamic change in enzyme
concentrations in the current model analysis, which would
modify chemical reaction rates. While a constant enzyme
concentration assumption is plausible in steady-state growth,
gene regulations of enzyme levels are likely to be relevant
in dynamically changing growth processes. Indeed, disrup-
tions of the metabolic states may lead to several responses,
such as the stress-response systems controlled by (p)ppGpp,
toxin-antitoxin modules, and/or the alternative sigma factor
σ S [11,52–57]. Since the response systems work to relieve
the disruption of the metabolic state, such a strong drop of
the concentrations of the metabolites found in the present
study may be avoided by gene regulation of relevant enzymes.

While further research on the effect of the gene-regulation
dynamics is needed, we believe that the present findings pro-
vide a possible mechanism to trigger dormancy where the
disruption of the metabolic state may lead to even bigger
responses.

Note that we can find the counterpart of the reactions in the
minimal model in the full E.coli metabolic network. Thus, the
dormancy transition demonstrated by the minimal model is
verifiable by experiments. The central part of the mechanism
is that PPS and PYK can form a futile cycle and the competi-
tion between PPS and ADK1 on the consumption/production
of ATP. Indeed, the experiments showed that one could induce
the ATP-consuming futile cycle between phosphoenolpyru-
vate and pyruvate via PYK and PPS by overexpressing the
ppsA gene [58,59]. Taking the experimental reports and the
present computational results together, we hypothesize that
the overexpression of the pps gene leads to an increase in the
persister fraction because PPS converts ATP to AMP.

Lastly, we like to remark that the requirements for the
metabolic network to show the distinct trajectories are not
limited only on the E. coli core model. We can find sev-
eral reactions that potentially form a futile cycle from
various species. For instance, each of acetyl-CoA syn-
thetase (KEGGID:R00235), phosphoribosylpyrophosphate
synthetase (R01049), and asparagine synthase (R00578) [60]
converts ATP to AMP and forms a loop in the metabolic
networks. These are the minimum requirements for a reaction
to form a futile cycle discussed above. Such reactions are
widespread from prokaryotes to eukaryotes and from unicel-
lular to multicellular organisms. Comprehensive studies of the
kinetic models of not only E. coli but also other organisms
may pave the way for understanding the robust and generic
network features leading to the multiple timescales of cellular
growth and dormancy.
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APPENDIX A: THE E. COLI CORE MODEL WITH
BIOLOGICALLY REALISTIC PARAMETER VALUES

It is worth asking if the model exhibits distinct trajec-
tories with biologically realistic kinetic values. However,
obtaining the kinetic parameters for all reactions, even in a
rather small E. coli core model, is still challenging. Thus, we
take advantage of the metabolic ensemble modeling (MEM)
[31,33], which is a method for the parameter estimation of the
metabolic models. In the MEM approach, each enzymatic re-
action is decomposed into a sequence of elementary reactions,
i.e., an enzymatic reaction A + B � C catalyzed by E is, for
instance, decomposed as follows:

A + E � AE , (A1)

AE + B � ABE , (A2)

ABE � CE , (A3)

CE � C + E . (A4)
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Note that the rates of elementary reactions [Eqs. (A1)–(A4)]
can be represented by the mass-action kinetics. For example,
the forward reaction of Eq. (A1) is given by

vA+E→AE = kA+E→AE [A][E ],

where kA+E→AE , [A], and [E ] represents the rate constant of
the reaction A + E → AE , the concentration of the chemical
A, and the concentration of the free enzyme E (E not in
the complex form). Let [A]ss and [E ]0 be the steady-state
concentration of the chemical A and the total concentration
of the enzyme E , respectively. Then at the steady state, the
logarithm of the reaction flux is

ln vA+E→AE = ln(kA+E→AE [A]ss[E ]0) + ln([E ]/[E ]0).

Note that the term depending on [A] is dropped because
ln[A]/[A]ss is zero at the steady state. The MEM approach
seeks the values of the scaled rate constant such as k̃A+E→AE =
kA+E→AE [A]ss[E ]0 and e = [E ]/[E ]0 so that the model can fit
the experimentally obtained fluxome data using the ensemble
modeling [61]. (for more detail, see [31,33])

For the simulation of the E. coli core model, we adopted
the parameter values estimated by Khodayari et al. [33]. For
obtaining the values of (nonscaled) rate constants, we need
to divide the scaled rate constants by experimentally reported
concentrations of chemicals because what they estimated are,
for instance, in the form of kA+E→AE [A]ss[E ]0. We calculated
the rate constants by using the concentration data measured by
Gerosa et al. [62] and estimated by Akbari et al. [63]. Since
the concentration of glyoxylate was presented in neither [62]
nor [63], we used the geometric mean of the concentrations of
two neighbor metabolites in the metabolic network, isocitrate
and L-malate. The back-calculated parameters are presented
in SI Data.2 within the Supplemental Material [42]. After
the back-calculation of the rate constants, we constructed
an ODE model. We adiabatically eliminated the elementary
reactions for each enzymatic reaction in the model and used
the Michaelis-Menten type rate equation (see [33]).

In growth dynamics [Fig. 2(a) in the main text], the con-
centration of a chemical species, glutamine, becomes lower
than 1 nM. Glutamine is one of the growth factors in the
current setup. We attribute this extreme drop to the following
technical reason: In contrast to the present model, the biomass
synthesis reaction was not incorporated into the model in
[33] where the kinetic parameters were estimated. Therefore,
glutamine is consumed much faster in the present model than
in the model used to estimate the parameters.

APPENDIX B: SIMPLIFIED MODEL WITH MASS-ACTION
KINETICS

The kinetic E. coli core model is, as it is, too complicated to
understand the mechanism that leads to the two distinct relax-
ation trajectories. Thus, we simplified the E. coli core model as
follows. First, we modified the kinetics of the chemical reac-
tions from the Michaelis-Menten formula to the mass-action

rate equation. The rate of the ith chemical reaction A � B, Ji,
which was given by

Ji = vi
[A] − ki[B]

1 + [A]/K (i)
A + [B]/K (i)

B

(B1)

is replaced by

Ji = vi([A] − ki[B]), (B2)

where vi and viki are the forward and backward reaction
rate constant, respectively. Note that the mass-action kinetics
[Eq. (B2)] is a special form of the Michaelis-Menten kinet-
ics [Eq. (B1)] in the parameter region where [A] � K (i)

A and
[B] � K (i)

B hold (for general arguments, see [64]). The model
is then nondimensionalized by scaling the concentrations by
the external glucose concentration and the time by the rate
constant of the glucose uptake. We further simplified the rate
equations by setting vi’s to unity and binarising ki’s for all i′s.
The E. coli core model contains the information of irreversibil-
ity for each reaction, and thus, if the ith reaction is reversible,
we set ki as unity, and otherwise, set it to κ � 1. We term this
simplified version of the kinetic E. coli core model as model0
with an index for the following model reduction steps.

Surprisingly, the emergence of distinct relaxation trajecto-
ries is robust to such an extensive model modification. The
qualitative difference of the trajectories [Fig. 5(a)], bimodality
of the distribution of the relaxation time [Fig. 5(b)], and the
distinction of the trajectories in the PC1-PC2 space [Fig. 5(c)]
were unchanged. This robustness implies that the emergence
of the distinct trajectories stems from the structure of the
metabolic reaction network of the E. coli core model rather
than choices of specific parameter values. We also confirmed
that the distinct trajectories emerge if the kinetic parameters
are randomly assigned instead of setting them to unity (see
Appendix H).

APPENDIX C: MODEL REDUCTION

1. Criterion for distinct trajectories

For each model reduction step, we run the ODE model
from 512 randomly generated initial points to search the
attractors. Except for a single model, all the intermediate
models of the reduction process showed monostability (see
Appendix C 6). Then, 512 initial conditions were generated
by perturbing the steady-state concentration in the same way
as we did in the previous models.

The bimodality of the relaxation time distribution is one
of the best intuitive criteria for distinct trajectories. However,
we found in some cases, the bimodality was unclear even
though there were clearly different types of trajectories when
we plotted the time courses and performed PCA. This is
because the growth rates during the relaxation of both types
of trajectories (growth and dormant) become smaller than the
spontaneous degradation rate d . Thus, the relaxation time of
all the trajectories becomes approximately 1/d . It is possi-
ble to overcome this problem by setting d to be sufficiently
small such as 10−20 in principle, but the computation time
becomes unbearably long. Thus, we decided to focus on the
similarity of the trajectories instead of the relaxation time
itself. For interested readers, the distributions of the relaxation
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FIG. 5. (a) Two characteristic dynamics of the model 0 starting from different initial points. The relaxation behaviors are qualitatively
different between the top and bottom panels. (b) The distribution of the relaxation time showing a clear bimodality. (c) Trajectories are
overlaid in two-dimensional principal component space. The color indicates log10 of time. The trajectories having shorter relaxation time
[top panel of (a)] are colored green-white-purple while the others are colored blue-white-red. The black point corresponds to the attractor.
Initial concentration of each metabolites is 10ui,n [X (ss)

i ] with [X (ss)
i ] as the steady-state concentration of the ith metabolite, and ui,n as a random

number uniformly distributed in [−2, 2] while the total concentrations of adenine nucleotide carriers are normalized. v = 1 and κ = 10−6 for
all reactions. Other parameters are [glc] = 1, At = 1, r = 0.1, and d = 10−8.

time for all the models in the reduction step are presented in
Appendix C 3.

Below, we first intuitively explain how we quantify the
similarity of the trajectories and then introduce the actual
measure.

Suppose that a model has a single attractor. Then, all the
trajectories starting from different initial points eventually
converge. We like to categorize the trajectories into different
groups so that if a pair of trajectories monotonically approach
each other as they converge to the attractor, they belong to
the same group. One may naïvely expect that we can state
that two trajectories x(t ) and y(t ) monotonically approach
each other if the Euclidean distance between them at the
same time point d (x(t ), y(t )) is a monotonically decreasing
function of t . However, since the initial points are distributed
in the phase space, measuring the distance between the points
on two trajectories at the same time point is unreasonable.

Thus, instead of adopting this naïve definition of mono-
tonicity, we measure the maximum Euclidean distance
between two trajectories in the phase space. It is known as
the Hausdorff distance of the trajectories, given by

dH (x, y) = max{max
t

min
s

d (x(t ), y(s)), max
t

× min
s

d (x(s), y(t ))}. (C1)

The Hausdorff distance first looks for the closest point of the
trajectory y from the point x(t ), y(s∗(t )), and then find the
pair of the points (x(t ), y(s∗(t ))), which gives the maximum
Euclidean distance. The same is done from the points of y(t )
and the larger value is chosen for the symmetry dH (x, y) =
dH (y, x). The Hausdorff distance thus measures how far the
two trajectories are distant while trivially distant pairs of
points are not taken into account (for example, the initial point
of x and the endpoint of y, i.e., the attractor).

We cannot judge whether the trajectories go away from
each other or not directly from the Hausdorff distance since

it needs to be compared with the initial separation. Thus, we
normalize the Hausdorff distance by the Euclidean distance
between the initial points, d (x(0), y(0)) leading to

R(x, y) = dH (x, y)

d (x(0), y(0))
. (C2)

We call this ratio R(x, y) as the expansion ratio of the tra-
jectories x and y. It measures how much the initial distance
has expanded. If dH (x, y) is smaller than the initial distance,
R(x, y) is less than unity. R(x, y) > 1 means that two trajecto-
ries go away from each other at least once despite eventually
converging to the same attractor. Note that in this paper, the
Euclidean distance, and accordingly, the Hausdorff distance
are measured in the original high-dimensional phase space
after applying the logarithm-conversion of the variables, not
in the lower-dimensional principal component space.

The distribution is expected to have a trivial peak around
R = 1. If the distribution has only a trivial peak, it indicates
that all the trajectories are monotonically attracted to a single
predominant stream in the phase space reaching the attractor.
Oppositely, suppose the distribution has a nontrivial peak(s)
and/or an additional long tail. In that case, the correlation
between the initial distance and the Hausdorff distance is not
simply scaled to each other.

Therefore, in the present paper, we utilize the multimodal-
ity and/or the long tail of the distribution of the expansion
ratio as the criterion of the distinct trajectories (examples
can be found in Appendix C 3). We examine if the model
has exhibited distinct trajectories by fitting the distribution
by a sum of Gaussian functions. In rough terms, it checks
if the distribution needs at least two Gaussian functions with
distant peaks (see Appendix C 2 for the details). Note that
in the following analysis, the computation of the expansion
ratio and PCA were performed for the trajectories converted
to the logarithmic scale so that the dynamic behaviours of
the chemicals with low concentrations are also reflected in
the analysis (As a side effect of the logarithm conversion,
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FIG. 6. The trajectories on the PCS (from model 1 to model 12).

the behaviors of the chemicals with quite low concentrations
may be too much highlighted. We computed the expansion
ratio with cut-offs of the concentrations for a lower side, see
Appendix C 4).

2. Judging multimodality

Let us suppose that there is a list of the expansion
ratio {R(x, y)}x,y∈Ti where Ti is the set of the trajecto-
ries of the ith model. Then, we fit the histogram of
the expansion ratio by a sum of the normal distributions
G(R, 
μ, 
σ ) = ∑M−1

i=0 wiN (R; μi, σi ),
∑M−1

i=0 wi = 1,wi � 0
where N (R; μi, σi ) is the normal distribution with μi and σi

as the mean and the standard deviation, respectively. Here,
we heuristically choose M as 4 because the distributions of
the expansion ratio often had a heavy tail, and fitting with a
small M could prioritize to fit the tail rather than the second
peak. We used the python package sklearn.mixture for
the fitting.GaussianMixture [39] with the options as
covariance_type = “full′′, tol = 10−4, n_init = 16.

After the fitting, we reorganize the indices of the normal
distributions so that μi < μi+1 holds. We judged the distribu-
tion is multimodal if the result fulfills the conditions below:

(i) μ0 < 1.05 (there is a trivial peak)
(ii) w0 � wi (the trivial peak has the largest weight)
(iii) 1 � ∃i < M s.t., μi − μ0 > max(1, σ0 + σi ) and wi/

w0 > 0.01 (there is another, distant peak)

3. Intermediate models

Here, we present the trajectories on PC1-PC2 space
(Figs. 6 and 7), the distribution of the expansion ratio (Fig. 8),
and the relaxation time distribution (Fig. 9) for all the inter-
mediate models of the reduction described in the main text.
As mentioned in the main text, d = 10−8 becomes larger
than the growth rate μ at the relaxation plateaux for some
models, and in such cases, the relaxation time cannot dis-
tinguish the growth and dormant trajectories. According to
the importance of [atp] + [adp] that we found in the main
text, we wonder if the minimum value of [atp] + [adp] dur-
ing the relaxation of each trajectory works as a criterion
to distinguish the two types of the trajectories. In accor-
dance with the expectation, we found that the distribution
of Amin = mint∈(0,∞) log10 ([atp](t ) + [adp](t )) of each inter-
mediate model was double peaked. Thus, we colored each
trajectory in Figs. 6 and 7 based on which peak of the dis-
tribution Amin the trajectory belongs to.

4. The expansion ratio with cutoffs

As shown in Figs. 2(a) and 3(a), the concentrations of
some chemicals become too low. Because of the logarithm
conversion of the concentrations, these low concentrations can
strongly contribute to the multimodal distributions of the ex-
pansion ratio to result. To check if the multimodal distribution
of the expansion is sensitive to such low concentrations, we
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FIG. 7. The trajectories on the PCS (from model 13 to model 18).

computed the expansion ratio of the model 0 with cut-offs.
With a given value of cut-off C, we converted each element of
the trajectories 
x(t ) to ξi(t ) = max (xi(t ),C). The trajectories

ξ (t )′s are logarithm converted and then used for computing
the expansion ratio. As shown in Fig. 10, the distributions are
multimodal up to C = 10−10, while the distribution becomes
long tailed with two plateaus for C � 10−9.

5. L/D ratio

The trajectories projected onto the two-dimensional PC
space give us the impression that the dormant trajectories take
roundabout ways comparing the growth trajectories. For the
confirmation of the impression, we compare the length of the
trajectory in the phase space.

For a trajectory x(t ), we introduce two quantities, namely,
the line integral of the trajectory L = ∫

x dl , and the Eu-
clidean distance between the initial point and the attractor
D = d (x(0), x(∞)). Since the straight line gives the shortest
possible length between two points, the ratio L/D of x mea-
sures the deviation of the trajectory x from the shortest path
from the initial point to the attractor, representing how far x
takes a detour.

For grouping the trajectories, we used the minimum value
of [atp] + [adp] during the relaxation Amin of each trajectory
(see Appendix C 3). We computed the average L/D ratio of
the high Amin (growth) and the low Amin (dormant) trajectories,

respectively. As shown in Fig. 11, the average L/D ratio of the
low Amin trajectories is larger than that of the trajectories with
high Amin values for all the models while the differences are
within the error bar in model 5.

6. The minor attractor of model 8

In the model reduction, only model 8 exhibited bistability.
The fraction of the initial points relaxing to the major attractor,
analyzed in the main text, is approximately 92%.

Here, we apply the same analysis for the trajectories re-
laxing to the minor attractor to confirm that the choice of
the attractor is not crucial for model reduction. We applied
perturbation on the minor attractor as 10ui,n [X (ss)

i ] where ui,n

and [X (ss)
i ] represents a random number for the ith metabolite

and the nth perturbation, uniformly distributed in [−1, 1] and
the concentration of the ith metabolite at the minor attractor,
respectively.

First, the distribution of the expansion ratio computed from
the trajectories relaxing to the minor attractor also exhibited
bimodality [Fig. 12(a)]. For the visualization of the trajecto-
ries, PCA was performed on the trajectories. In the PC1-PC2
space, the growth trajectories (green-white-purple) and the
dormant trajectories (blue-white-red) are clearly separated.
Also, the average L/D ratio (see Sec. C 5) with the standard
deviation of the growth- and the dormant trajectories are ap-
proximately 7.99 ± 3.46 and 9.30 ± 2.44, respectively.
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FIG. 8. The distribution of the expansion ratio.

APPENDIX D: ANALYTIC SOLUTION OF THE SIMPLE
MODEL AND THE CHOICE OF THE FUNCTION φ

For obtaining the analytic solution of the simple model
[Eqs. (9) and (10) in the main text] in the growth region, we
ignore the growth dilution term here (r = 0 case). Then, the
ordinary differential equation is given by

d[pep]

dt
= φ([pyr])(1 − [pep] + [pyr]) − (1 + d )[pep],

d[pyr]

dt
= φ([pyr])([pep] − [pyr]) − d[pyr].

We solve this set of equations with

φ = max{1 − [pyr], φ0}. (D1)

In the region where φ([pyr]) = φ0 holds, the ODE is linear
and, thus, easily solved. In the other region, we transform the
variables as γ (t ) = [pep](t ) + [pyr](t ) and δ(t ) = [pep](t ) −
[pyr](t ). Then, temporal evolution of (γ , δ) is ruled by

dγ

dt
= 1 − (1 + d )γ .

dδ

dt
= (1 − (γ − δ)/2)(1 − 2δ) − (γ + δ)/2 − dδ.

The solution for this is given by

γ (t ) = f −1 + C0e− f t ,

δ(t ) = C0e− f t − (κ + η)/2 f ,

+C0

αC1U (1+α, 2+β; ζe− f t )+L1+β

−(1+α)(ζe− f t )

C1U (α, 1+β; ζe− f t )+Lβ
−α (ζe− f t )

e− f t .

(D2)

where U and L are the confluent hypergeometric function and
the associated Laguerre polynomial, respectively. Lumped pa-
rameters are

f = 1 + d,

ξ ( f ) = 1 − 3 f + f 2,

η( f ) =
√

1 − 6 f + 3 f 2 + 2 f 3 + f 4,

ζ ( f ) = C0

f
,

κ ( f ) = −1 + f + f 2,

α( f ) = (ξ ( f ) + η( f ))/2 f 2,

β( f ) = η( f )/ f 2,
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FIG. 9. The distribution of the relaxation time.

and the integral constants C0 and C1 are given by

C0 = γ (0) − 1/ f ,

C1 = − C0L1+β

−(1+α)(C0/ f ) + Lβ
−α (C0/ f )(C0 − (κ + η)/2 f − δ(0))

C0αU (1 + α, 2 + β;C0/ f ) + U (α, 1 + β;C0/ f )(C0 − (κ + η)/2 f − δ(0))
.

Note that there is only a single timescale 1/ f = 1/(1 + d )
in the growth region. 1/ f is O(1) with the default parameter
set. While we omitted the growth-dilution term −μ[·] for
obtaining the analytic solution, if the growth rate μ is smaller
than 1, the effect of including the dilution term is masked by
f . On the other hand, it simply speeds up the relaxation if μ

is larger than unity. Thus, the inclusion of μ does not change
the argument that the slowest timescale in the growth region
is O(1).

The analytic solution is obtained for a specific func-
tional form of φ defined as Eq. (D1). However, the structure
of the vector field is not sensitive to the choice of φ. In
Fig. 13, we drew the two-dimensional vector fields with the
functional form of φ chosen to be an exponential function
φ = exp(−[pyr]) (a) and a Hill function φ = [pyr]nH /(KnH +
[pyr]nH ) (b). The figures imply that the nature of the vector

field is robust as long as φ reaches a small value as [pyr]
increases.

APPENDIX E: THE MINIMAL MODEL WITH DE NOVO
AMP SYNTHESIS

Since the E. coli core model includes no AMP synthesis
pathway, we assumed that the total concentration of the ade-
nine nucleotide carriers (ATP, ADP, and AMP) is constant in
the main text. To check if this assumption is crucial for the
obtained result, we introduce a coarse-grained AMP synthesis
reaction to the minimal model and study the dynamics of the
model.

Here, we extend the minimal model studied in the
main text. The nucleotide carriers such as AMP and GMP
are synthesized from the pentose-phosphate pathway (PPP)
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FIG. 10. The distribution of the expansion ratio of mode l0 with
several values of cut-off: without cut-off (purple), C = 10−10 (green),
C = 10−9 (cyan), and C = 10−8 (orange). Parameters are set to
the default values: v = 1 and κ = 10−6 for all reactions, [glc] =
1.0, At = 1.0, r = 0.1, and d = 10−8.

chemicals by utilizing ATP energy. In the minimal model,
PPP is already removed from the model; thus, glucose is the
chemical species closest to the PPP in the original metabolic
network. Therefore, we introduced phenomenological AMP
synthesis reaction glc + atp � amp + adp where glucose is
the substrate, and the reaction needs the energy consumption
(ATP → ADP). Then, the total concentration of adenine car-
riers is no longer constant, and thus, we put the constant-rate
degradation term and the growth dilution term whose rate is

FIG. 11. The average ratio of the line integral of the trajectory (L)
to the Euclidean distance between the initial point and the attractor
(D) for the growth trajectories and dormant trajectory. The ratio L/D
is averaged over the trajectories for each group (high and low Amin

groups) and plotted against the model index with the error bars as
the standard deviation. In all the cases, the low Amin trajectories have
a larger L/D ratio than the growth trajectories. The broken-black line
is an eye guideline representing L/D = 1.

proportional to the growth reaction to all chemicals. Then, the
equations are given by

d[pep]

dt
= Juptake + Jpps − Jpyk − Jppc − (d + μ)[pep], (E1)

d[pyr]

dt
= Jpyk − Jpps − (d + μ)[pyr], (E2)

d[oaa]

dt
= Jpps − Jgrowth − (d + μ)[oaa], (E3)

d[atp]

dt
= Juptake + Jpyk − Jpps − Jgrowth − Jadk1

− Jamps − (d + μ)[atp], (E4)

d[adp]

dt
= −Juptake − Jpyk + Jgrowth + 2Jadk1

+ Jamps − (d + μ)[adp], (E5)

d[amp]

dt
= Jpps − Jakd1 + Jamps − (d + μ)[amp], (E6)

Jamps = vatp([glc][atp] − [amp][adp]). (E7)

Here we analyzed the trajectories starting from randomly-
generated initial point 10ui,n with ui,n as the uniformly-
distributed random number in [−1, 1] for the ith chemical
and the nth initial point. This reduces the requirements of the
computational resources because we can skip the computation
for finding attractors. As far as we have checked, the model
had a single attractor.

Figure 14 shows the distribution of the expansion ratio and
the projected trajectories onto the two-dimensional PC space.
As depicted, the model with the de-novo synthesis of AMP
still exhibits distinct trajectories while the dormant trajectories
become rare with the default parameter set.

APPENDIX F: MODEL0 WITH THE NICOTINAMIDE
NUCLEOTIDE CARRIERS

In the main text, we replaced NAD(NADP) and
NADH(NADPH) with ATP and ADP, respectively, with the
assumption that the ATP synthesis via the electron transport
chain and the conversion of NADP to NADPH is sufficiently
quick. Here, we relax these assumptions and introduce the
dynamics of NAD, NADH, NADP, and NADPH to model 0.

Here, we introduce two phenomenological reactions shown
in Table I, and the replacement of the nicotinamide nucleotide
carriers by the adenine nucleotide carriers is not performed.
A full list of the reactions is provided in SI Data.3 within the
Supplemental Material [42].

The reaction “ATPPMF” is for the ATP generation using
proton motive force which consists of NADH16, CYTBD,
and ATPS4r in the original core model. NADTRHD has the
same stoichiometry as that in the core model except for the
hydrogen ion.

In the model, the degradation and growth-dilution term are
omitted for their dynamics, and [nad] + [nadh] and [nadp] +
[nadph] are constant because the cofactors are not newly
synthesized in the model. For simplicity, here we set [atp] +
[adp] + [amp] = [nad] + [nadh] = [nadp] + [nadph] = At .
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(a) (b)

FIG. 12. (a) The distribution of the expansion ratio of the trajectories perturbed from the minor attractor. (b) The trajectories are projected
onto the PC1-PC2 space. The trajectories are colored based on the dynamics of Amin (low: blue-white-red, high: green-white-purple). There are
145 growth and 160 dormant trajectories overlaid in the figure. Parameters are set to the default values: v = 1 and κ = 10−6 for all reactions,
[glc] = 1.0, At = 1.0, r = 0.1, and d = 10−8.

(a) (b)

FIG. 13. The streamlines in the phase space with alternative functions. The exponential function exp(−[pyr]) and the Hill function
[pyr]nH /(KnH + [pyr]nH ) are used as the function φ for (a) and (b), respectively. K = 1.0 and nH = −4 for (b). The other parameter values are
v = 1 and κ = 10−6 for all reactions, [glc] = 1.0, r = 0.1, and d = 10−8.

FIG. 14. (a) The distribution of the expansion ratio of the minimal model with the de novo AMP synthesis. It shows clear bimodality.
(b) The trajectories projected onto the two-dimensional PC space. The green-white-purple and blue-white-red colored trajectories are the
growth and the dormant trajectories, respectively. The trajectories are colored based on the relaxation time of each trajectory. The black dot
represents the attractor and the initial points cluster in the region highlighted in orange. v = 1 and κ = 10−6 for all reactions while vatp = 0.1,
[glc] = 1.0, r = 0.1, and d = 10−8.
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TABLE I. Reactions added to model 0.

Reaction name Reaction formula

ATPPMF NADH + ADP → NAD + ATP
NADTRHD NAD + NADPH → NADH + NADP

Here we used the randomly-generated initial conditions
with ui,n as the random number, 10ui,n , ui,n ∈ [−1, 1], instead
of the initial condition generated by the perturbation. The
concentrations of the cofactors are normalized after assigning
the random numbers. We found in this model the distinct
trajectories emerge when the range of initial concentration
of pyruvate is set to [1, 103] (i.e, ui,n ∈ [0, 3] for pyruvate)
as shown in Fig. 15. This is qualitatively consistent with the
result of the minimal model in the main text that pyruvate
plays a crucial role in displaying distinct relaxation behav-
iors. Including the nicotinamide nucleotide carries simply
changes the needed pyruvate level to have a dormant trajectory
quantitatively.

In this model, the separation of the trajectories is unclear in
the two-dimensional PC space [Fig. 15(b)], while it is in the
three-dimensional PC space [Fig. 15(c)]. Note that, in these
figures, we colored the trajectories based on Amin because the
distribution of Amin showed clear bimodality. However, it is
not fully consistent with the separation of the trajectories in

Fig. 15(c). This is probably because Amin alone is now an
insufficient indicator of the energetic state of the cell. For
more precise coloring, the contributions of the nicotinamide
nucleotide carriers should be incorporated, while it is beyond
the scope of the present study.

APPENDIX G: MODEL REDUCTION WITH RANDOM
ORDER

In the main text, We have obtained the minimal model by
manually deciding the order of the reaction removal. However,
in general, the resulting minimal models by the reduction
depend on the order of the removal. Here, we reduce the E.
coli core model in random order to investigate if the obtained
minimal models share features in common with the one we
presented in the main text.

Pseudocodes that summarize the algorithms are presented
in the following. For the random reduction, we randomly
choose a reaction and check if the reaction is removable by
Algorithm 1 and iterate it until there is no more removable
reaction.

Algorithm 1 requires the reaction network (a list of the
reactions) and the name of the reaction to be removed as
inputs. If the reaction is removable from the network, it returns
the reaction network without the reaction, while it returns
the same reaction network as the input if the reaction is not
removable.

FIG. 15. (a) The distribution of the expansion ratio of the model 0 with NAD, NADH, NADP, and NADPH, showing clear bimodality.
[(b),(c)] The trajectories in the two-dimensional (b) and three-dimensional (c) PC space. The green-white-purple and blue-white-red colored
trajectories are the growth and the dormant trajectories, respectively. The trajectories are colored based on Amin. The black dot represents
the attractor and the initial points cluster in the region highlighted in orange. v = 1 and κ = 10−6 for all reactions. Other parameters are
[glc] = 1.0, At = 1/3, r = 0.1, and d = 10−8.
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Algorithm 1. Compute a reduced network from given network
R and a reaction to be removed rxn.

Notations:
(i) R : the reaction network
(ii) B : the reaction network without ATP, ADP, and AMP
(iii) R − T : the reaction network without the reactions in T
(iv) E (k) : the number of reactions that the chemical k is associated

1: C ← the list of chemicals in R
2: C0 ← C−‘glc’

3: if E (k) � 2 for ∀k ∈ C0 after rxn is removed then
4: RemoveList←[rxn]
5: RenameList←[]
6: else if rxn is one-to-one reaction in B and no loop b/w substrate

and product of rxn then
7: RemoveList←[rxn]
8: RenameList←[(Substrate of rxn, Product of rxn)]
9: else
10: find a minimal reaction set T so that E (k) � 2 or E (k) = 0

for ∀k ∈ C0 in R − T
11: RemoveList← T
12: RenameList←[]
13: end if
14: R̃ ← R−RemoveList

15: C̃ ←chemicals in R̃
16: Rename chemical names in R̃ and C̃ according to RenameList

17: if a growth factor gi is removed then
18: replace gi by a closest chemical on B
19: end if
20: if Connected and Nonzero steady flux exists and The dist. of the

exp. ratio is multimodal
21: return R̃
22: else
23: return R
24: end if

The algorithm first checks whether the input reaction can
be simply removed (line 3) or the contraction is needed (line
6). In the case where the removal of the input reaction leads
to dead-end chemicals (chemicals with only one reaction con-
nected), the algorithm computes a set of reactions T . T is a
minimal set of reactions, including the input reaction so the
simultaneous removal of the reactions in T from the reaction
network does not lead to dead-end chemicals (line 10).

If the reaction removal eliminates a chemical in the growth
reaction, a neighboring chemical in the backbone network B
(the reaction network without ATP, ADP, and AMP) is chosen
as the replacement of the eliminated chemical (line 17−19).

By removing the reaction, we obtain a candidate of the
reduced reaction network R̃. Then, the algorithm checks if
the network R̃ satisfies the following three conditions: con-
nectivity, a nonzero steady flux without the degradation and
growth dilution, and multimodality of the distribution of the
expansion ratio (line 20).

Algorithm 2 calls Algorithm 1 with a randomly selected
reaction(s) and checks if the obtained network is minimal.

To check if the distribution of the expansion ratio R̃ is
multimodal and/or long tailed, we calculated R̃ of the kinetic
model with a default parameter set used in the main text
(v = 1 and κ = 10−6 for all reactions).

Algorithm 2. The algorithm for a random reduction (the same
notation with Algorithm 1 is used).

1: while 1 do
2: RxnList ← All reactions in R−[’growth reaction’]
3: Shuffle RxnList
4: for r in RxnList do
5: R0 ←SingleLoopReduction(R, r) (see Alg. 1)
6: if R0 �= R then
7: break
8: end if
9: end for
10: if R = R0 then
11: return R
12: end if
13: R ← R0

14: end while

The reaction lists of 16 minimal models obtained from
different random seeds for the reduction are given in SI Data.4
within the Supplemental Material [42]. By random reduction,
we obtained two groups of minimal models classified by the
shape of the distribution of the expansion ratio. The first case
shows clear multimodality (model #0 − #13). The second
case shows a long tail rather than additional peaks (model #14
and #15), see Fig. 16.

All the minimal models had more reactions than the
minimal model in the main text. Interestingly, the network
structures of the minimal models are qualitatively different
depending on whether the model exhibits the clear bimodal
distribution of the expansion ratio or not. The models with the
bimodal distribution share two network features, namely, (i)
ATP, ADP, and AMP are in the model, and (ii) there are both
types of reactions; with and without the adenine nucleotide
carriers coupling as well as branching of the network. These
are the vital network features for the model to satisfy the two
conditions for the distinct trajectories discussed in the main
text. We like to emphasize that during the random model re-
ductions, several models without AMP were generated, while
none of them showed a multimodal distribution of the expan-
sion ratio, and they were rejected based on the distribution of
the expansion ratio.

On the other hand, the minimal models exhibiting the dis-
tribution of the expansion ratio with a long tail lack the second
condition, i.e., all the reactions are coupled with the adenine
nucleotide carriers. As a consequence, all the metabolic re-
actions are uniformly slowed down even if ATP and ADP
deplete. Thus, the distinction among the trajectories is not as
clear as in the other minimal models.

In Fig. 17, we plotted the trajectories of each minimal
model. Since we found that the distributions of Amin (see
Appendix C 3) of the minimal models were double-peaked,
we colored the trajectories by the same criterion used in
Appendix C 3. Interestingly, there are several types of minimal
models in terms of the visual impression of the trajectories in
PC1-PC2 space; The minimal models show clear separations
of two types of trajectories as the minimal model studied in
the main text (#1, #2, #6 − #8, #11, and #12), models exhibit-
ing the oscillation during the relaxation (#3 and #10), and
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FIG. 16. Two types of resulted distribution of the expansion ratio. The first type exhibiting the clear multimodality (left) and the second
type showing a long-tail rather than additional extrema (right). Labels in the panels are the indices of the minimal models.

FIG. 17. The trajectories on the PCS. Trajectories are colored according to Amin.
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FIG. 18. The average L/D ratio of for the minimal models ob-
tained by the random reduction. Error bars indicate the standard
deviation. The trajectories with low Amin has a higher L/D ratio than
that of trajectories with high Amin. The black-dashed line is L/D = 1
for an eye guide.

models where the separation of the trajectories is not quite
clear (#0, #4, #5, #9, and #13) [65]. However, in the original
high-dimensional phase-space, the two types of trajectories
are distinct in terms of the L/D ratio (see Sec. C 5) for the
models with the bimodal distribution of the expansion ratio
(model #0-#13) as shown in Fig. 18.

APPENDIX H: THE BEHAVIOR OF MODEL 0 WITH
RANDOMLY ASSIGNED PARAMETERS

In the main text, we saw that the distinct trajectories
emerge in two sets of parameter values, the realistic setting
and uniform assignment for v′

is and k′
is. Here, we check the

robustness of the emergence of the distinct trajectories by
randomly assigning the parameter values.

We simulated model 0 with a variety of parameter values.
As concluded in the main text, the concentrations of ATP
and ADP play a crucial role in the emergence of distinct
trajectories. Therefore, we studied the relaxation dynamics of
the model with several values of the total concentrations of
the adenine nucleotide carriers At (= [atp] + [adp] + [amp]).
In addition, we assigned random values for the kinetic pa-
rameters in the rate equations [v′

is and k′
is. see Eq. (3) in the

FIG. 19. The fraction of the parameter sets leading to a multi-
modal distribution of the expansion ratio is plotted as the function
of the total adenine nucleotide carriers concentration At . The result
obtained from the simulations with two different ranges of k′

is are
overlaid.

main text]. We kept the concentration of the nutrient [glc],
the degradation constant d , and the proportionality constant
between the growth reaction and the growth rate r the same as
the main text.

For each values of At , we generated 32 random vectors of
parameters 
p = (
v, 
k) where 
v and 
k are vector representation
of the parameters v′

is and k′
is, respectively. For each 
p, we

ran the differential equations from 128 randomly generated
initial points and computed the distribution of the expansion
ratio. v′

is and k′
is are given as 10u where u is an uniformly-

distributed random number. For v′
is, u ranges from 0 to 1,

while it ranges from −6 to −4 or from −4 to −2 for k′
is.

Figure 19 shows the fraction of 
p′s that led a bimodal
distribution as a function of At . The results obtained from two
different ranges of k′

is are overlaid. The bimodality is judged
by using the same criterion described in Appendix C 2. The
fraction of parameter sets leading to a bimodal distribution
of the expansion ratio is a decreasing function of At if k′

is
ranges from 10−4 to 10−2, while interestingly, it shows non-
monotonic behavior in the case where k′

is ranges from 10−6

to 10−4. Thus, the emergence of distinct trajectories robustly
takes place while the chance of it with random parameter
assignments eventually decreases as At increases.
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