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Circuit connectivity boosts by quantum-classical-quantum interfaces
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High-connectivity circuits are a major roadblock for current quantum hardware. We propose a hybrid
classical-quantum algorithm to simulate such circuits without SWAP-gate ladders. As the main technical tool,
we introduce quantum-classical-quantum interfaces. These replace an experimentally problematic gate (e.g., a
long-range one) with single-qubit random measurements followed by state preparations sampled according to a
classical quasiprobability simulation of the noiseless gate. Each interface introduces a multiplicative statistical
overhead which, remarkably, is independent of the on-chip qubit distance. Hence, by applying interfaces to the
longest-range gates in a target circuit, significant reductions in circuit depth and gate infidelity can be attained.
We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits and
a variational ground-state solver for the transverse-field Ising model on a ring. Our findings provide a versatile
toolbox for error-mitigation and circuit boosts tailored for noisy, intermediate-scale quantum computation.
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I. INTRODUCTION

Quantum computation promises a major disruption in high-
performance computing, with applications in diverse fields
ranging from many-body physics and chemistry to machine
learning, finance, automation, or logistics, to name a few
[1–3]. However, the current paradigm of noisy, intermediate-
scale quantum (NISQ) devices limits quantum algorithms to
circuits with low qubit numbers, low depth, and low connec-
tivity [4]. This poses serious concerns regarding the actual
usefulness of quantum computers in the near term and has
thus ignited a both experimental and theoretical quest for ways
to unleash the potential of quantum algorithms with NISQ
hardware [5–7].

A large class of NISQ algorithms are based on hybrid
quantum-classical approaches. One of the most successful of
these consists of parametrized quantum circuits variationally
optimized through a classical optimizer aimed at approximat-
ing a target ground state [8,9]. To combat the noise in these
systems, subsequent variants incorporated the idea of quan-
tum error mitigation [10–13]. This refers to schemes whereby
noisy experimental implementations (e.g., in different noise
regimes or with different gate choices), together with suitable
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classical postprocessing, are used to simulate a target, noise-
less quantum circuit of limited size. This offers a NISQ
alternative to quantum error correction (which requires large-
scale quantum circuits), where full fault tolerance is achieved
by actively correcting errors on the quantum hardware during
the execution of the computation.

More recently, a different type of hybrid method has been
put forward [14–19]. There, a classical algorithm calls a quan-
tum computer as a subroutine to simulate a larger quantum
circuit. However, the cost of this is that both the number
of queries to the quantum subroutine and the classical post-
processing runtime unavoidably grow exponentially with the
size of the target circuit. Moreover, a particularly challenging
aspect of NISQ devices is their inability to run algorithms that
require high, long-range connectivity among the constituent
qubits. In most NISQ hardware, long-range gates are syn-
thesized by a long sequence of nearest-neighbor gates. This
drastically inflates the circuit depth and causes large infidelity
due to noise accumulation incurred during the syntheses. This
is a crucial limitation in the NISQ era.

Here, we take a conceptually different direction from pre-
vious hybrid schemes: Instead of assembling a large quantum
circuit from small pieces, we simulate a high-connectivity
circuit from circuits with low connectivity and depth. To that
end, we introduce the notion of quantum-classical-quantum
(QCQ) interfaces. A QCQ interface for a gate U corresponds
to a local measurement on the qubits on which U acts fol-
lowed by a repreparation of those same qubits in a random
product state that depends on U . In other words, the interface
performs a hybrid quantum-classical simulation of U . Each
interface introduces a multiplicative statistical overhead that,
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as we prove below, is independent of the on-chip distance
between the qubits. Hence, for a fixed number of interfaces,
for example, the longer the range of the target gates is, the
more drastic the reduction in depth attained is at the expense
of a constant overall statistical overhead.

More technically, our interfaces combine state-of-the-art
state estimation based on single-qubit random measurements
[20,21] with quasiprobability representations based on frames
[22,23]. Such representations have been used for classically
simulating a quantum circuit with Monte Carlo sampling
techniques [24–26]. In particular, our algorithm can be seen
as a hybrid version of the scheme of Ref. [26], where ev-
erything is quantum except for a subset of gates that one
wishes to “cut out” of the experimental circuit. Here, we
choose such a subset in terms of the on-chip qubit distance.
However, other relevant choices may be due simply to er-
ror mitigation or hardware-specific limitations. Like most
quasiprobability schemes, our method suffers from the in-
famous sign problem [27–29]. Remarkably, the severity of
the problem depends only on the number of interfaces and
not on the on-chip distance between the qubits. Moreover,
as a by-product contribution, in order to minimize the aver-
age sign of our quasiprobability representation, we develop a
Metropolis-Hastings simulated-annealing algorithm based on
random walks in the space of dual positive operator-valued
measurements (POVMs). We implement such walks through
a convenient, long-known parametrization of generalized
inverse matrices [30]. This allows us to decrease the sample-
complexity overhead per interface by almost a factor of 4 rel-
ative to the canonical POVM choice, constituting a practical
tool of general relevance for sign-problem mitigation [31,32].

The paper is organized as follows. In Sec. II we intro-
duce our notation and the necessary mathematical background
to understand QCQ interfaces. We then present our algo-
rithm in detail in Sec. III. In Sec. IV we perform numerical
experiments to show the efficacy of our method on two illus-
trative circuits, namely, the preparation of a Bell state between
two increasingly distant qubits and a variational ground-state
solver for the one-dimensional (1D) transverse-field Ising
model with periodic boundary conditions. We end with a
discussion of our results in Sec. V and provide a perspective
on other potential applications of our method.

II. PRELIMINARIES

Here, we give a high-level description of our method and
leave the formal treatment in terms of frame theory [22,23]
for Appendix A.

We consider an N-qubit system fS described by a den-
sity matrix �. This density matrix can be fully described
via the measurement statistics of an informationally com-
plete positive operator-valued measure (IC-POVM) M =
{Ma}a∈{1,...,m}N , which can be constructed by taking the tensor
product of single-qubit IC-POVMs, Ma = Ma1 ⊗ · · · ⊗ MaN ,
where Mai � 0 and

∑m
ai=1 Mai = 1 [33,34]. For each operator

Ma we can define a dual IC-POVM element M̃a such that the
following equality holds:

� =
∑

a

P�(a)M̃a, (1)

where P�(a) := Tr[Ma�] is the probability of measurement
outcome a on �. Equation (1) is the basis of classical-shadow
tomography, a powerful technique to get compact classical
representations of states from measurements [21,35]. Note
that Eq. (1) also works if Ma acts on a subset of all N qubits,
e.g., � = ∑

a P�(a)(M̃a ⊗ �red(a)), where �red(a) is the nor-
malized state on the rest of the system after applying Ma.

The dual POVM elements M̃a can be expressed in terms of
the Mb’s as

M̃a =
∑

b

T̃a,bMb, (2)

where T̃ = TT T and Ta,b := Tr[MaMb]; hence T is an mN ×
mN matrix. The matrix T has to satisfy the equation T =
TTT , i.e., T is a generalized inverse of T [36].

By virtue of Eqs. (1) and (2), we can then express any �

as an affine combination of product states by normalizing the
POVM elements.

This fact has been used to reconstruct quantum states [20],
processes [37], and overlaps [38] from single-qubit measure-
ments. Additionally, this has been used to simulate quantum
circuits [39] with generative machine learning models, where
T was taken as the canonical pseudoinverse of T . However,
other choices of T are possible. The columns of T are normal-
ized, but in general, its elements can be positive or negative;
hence we can understand it as a quasiprobability distribution
[26]. The negativity of T has important consequences for the
sample complexity of our algorithm.

III. INTERFACES FOR HYBRID
CLASSICAL-QUANTUM CIRCUITS

Our goal is to simulate observable measurements on
quantum circuits using hybrid classical-quantum ones. More
precisely, we are given an observable O, an N-qubit input
state �0 := |0〉〈0|, and a target circuit C := {Uk}k=1,...,K , con-
sisting of single- or two-qubit unitary gates Uk . We denote
by sk ⊂ S the subset of qubits on which Uk acts, and by ask

a corresponding substring of POVM measurement outcomes
on sk . Some of the gates {Ul}l=l1,...,lL ⊂ C, where li � K are
gates in the circuit that we intend to replace, because they
are, for instance, particularly experimentally demanding for
NISQ implementations or do not match the native hardware
connectivity of the device.

The case we explicitly study below is that of two-qubit
gates on qubits far apart in the connectivity graph in question.
We want to estimate the expectation value Tr[�K O] of O on
the output state �K := UK · · ·U1 �0 U †

1 · · ·U †
K by substituting

every Uk with k ∈ L by a classical simulation of it. Our main
tool to achieve this consists of interfaces between quantum
objects and their (classical) representations. Note that we can
also use a partial state reconstruction. The first type of inter-
face is based on Eq. (1).

Definition 1: Quantum-classical interfaces. A quantum-
classical (QC) interface on sk refers to the assignment of a
classical snapshot M̃ask

according to the measurement out-
come ask of a factorable POVM M on a state �, occurring
with probability P�(ask ) := Tr[Mask

�].
Hence the QC interface is a list of bit strings corresponding

to measurement outcomes on the subsystem sk .
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FIG. 1. Schematics of our method. (a) A QCQ interface V (a, b) applying the identity operator Uk = 1 between qubits 1 and N . We measure
the POVM M on both qubits reprepare them in a product state that depends on the simulated gate and the outcome a. The other N − 2
qubits are left untouched. (b) An exemplary four-qubit circuit (left) is simulated by a hybrid quantum-classical circuit (right), where the
non-nearest-neighbor gates U1 and U3 are substituted by QCQ interfaces [V1(as1 , bs1 ) and V3(as3 , bs3 ), respectively]. The summation over
(as1 , bs1 , as3 , bs3 ) represents the average over all interface outcomes sampled (see text).

From the outcomes ask of the QC interface, we can use
Eq. (2) to reconstruct the state by importance-sampling bsk .
To achieve this, we first define the normalized states σb :=
Mb/Tr[Mb]. Next, we rewrite T̃ask ,bsk

as

T̃ask ,bsk
=:

∥∥T̃ask

∥∥
1 sgn

(
T̃ask ,bsk

)
P
(
bsk

∣∣ask

)
, (3)

where ‖T̃ask
‖1 := ∑

bsk
|T̃ask ,bsk

| is the l1 norm of the rows

T̃ask ,bsk
and P(bsk |ask ) := |T̃ask ,bsk

|/‖T̃ask
‖1 is the conditional

probability distribution obtained by taking the absolute value
of the rows and normalizing appropriately. By construction,
P(◦|ask ) is a valid probability distribution, which allows us
to quantum-Monte-Carlo-simulate M̃ask

by sampling bsk [26].
This leads us to the definition of our second type of interface.

Definition 2: Classical-quantum interface. A classical-
quantum (CQ) interface on sk refers to the repreparation of
the state σbsk

, with probability P(bsk |ask ), given a classical
snapshot M̃ask

. Each sampled pair (ask , bsk ) is assigned the
value ‖T̃ask

‖1 sgn(T̃ask ,bsk
)Tr[Mb].

The CQ interface is thus a collection of bit strings indicat-
ing which state to reprepare on sk , while we keep track of the
signs and norms of T̃ . One can combine the QC interface with
the CQ interface to represent � by measuring and repreparing
states on sk . The main contribution of our work is going
beyond this identity. To do this, we absorb the action of a gate
Uk acting on sk into the measurement and repreparation of �

by defining T̃ Uk := TT Uk T, where

T Uk := Tr
[
UkMask

U †
k Mbsk

]
. (4)

We provide a derivation of this quantity in Appendix A. This
leads us to our final definition.

Definition 3: Quantum-classical-quantum interface. A
quantum-classical-quantum (QCQ) interface on sk given a
gate Uk refers to the measurement of M with outcome
ask , followed by the repreparation of σbsk

with probability
PUk (bsk |ask ). Each sampled pair (ask , bsk ) is assigned the value
vask ,bsk

:= ‖T̃ Uk
ask

‖1 sgn(T̃ Uk
ask ,bsk

)Tr[Mb]. We represent this inter-

face by Vk (ask , bsk ).
Note that we can place an interface at any point in the

circuit to replace a gate. For example, we can perform
the gates {U1 · · ·Ul1−1} to our initial state �0, create an

interface Vl1 (asl1
, bsl1

), and then apply the rest of the circuit
{Ul1+1 · · ·UK} to the reprepared state σsl1

(Fig. 1). By combin-
ing Eqs. (1)–(3) we can obtain the following equation for the
expectation value of an observable O via a QCQ interface:

Tr[�O] =
∑

ask ,bsk

P�

(
asl1

)
vask ,bsk

Tr
[
Mbsk

]

× Tr
[
UK · · ·Ul1+1σbsk

Ul1+1 · · ·UK O
]
. (5)

We can extend the single-QCQ-interface example above to
multiple interfaces by applying subsequent measurement-
and-repreparation steps and multiplying the norms and signs
vask ,bsk

of each interface accordingly.
Equation (5) and its generalization to multiple interfaces

can be experimentally calculated with a finite-statistics es-
timator O∗

Ms
over Ms runs (see Appendix D). We refer to

Ms as the sample complexity of our protocol. Clearly, the
estimation of observables via QCQ interfaces comes at a cost.
In particular, the multiplicative factors of vask ,bsk

increase the
variance of the observable estimator O∗

Ms
; hence we need more

runs Ms to get an accurate estimate of Tr[�K O]. In practice,
Ms needs to be chosen to guarantee that the statistical error
and significance level (failure probability) of the estimation
are given by target values ε and δ, respectively. The entire
procedure is sketched by the pseudocode in Algorithm 1.

To quantify the runtime of the algorithm given ε and δ,
we define the interface negativity of the gate Uk and the total
forward interface negativity of the entire circuit C as

nUk
:= max

ask ,bsk

∥∥T̃
Usk

ask

∥∥
1 Tr

[
Mbsk

]
and n→ :=

∏
k∈L

nUk , (6)

respectively. This allows us to state the following theorem.
Theorem 1: Correctness and sample complexity. The finite-

statistics average O∗
M of Algorithm 1 is an unbiased estimator

of Tr[�K O] (see Appendix D). Moreover, if

Ms � n2
→ × 2 ‖O‖2 ln (2/δ)

ε2
, (7)

with ‖O‖ being the operator norm of O, then, with probability
at least 1 − δ, the statistical error of O∗

M is at most ε.
The proof follows straightforwardly from the Hoeffding

bound. We note that the factor 2 ‖O‖2 ln (2/δ)
ε2 in Eq. (7) is
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Algorithm 1. Hybrid classical-quantum simulation with QCQ
interfaces.

Input: �0, C, O, ε, δ

Output: O∗
Ms

s.t. |O∗
Ms

− Tr[O �K ]| � ε with
probability at least 1 − δ.

Initialize O∗
Ms

= 0, v = 1, and Ms as in Eq. (7).
for m ∈ (1, . . . , Ms ) do

for k ∈ (1, . . . , K ) do
if k ∈ {l1, . . . , lL} them

Apply a QCQ interface for Uk on qubits sk ,
obtaining the pair (ask , bsk );

v ← v × vask ,bsk
, with vask ,bsk

as in Definition 3.
else

Apply the gate Uk on qubits sk .
end

end
Measure O, obtaining the measurement outcome
(eigenvalue of O) o;
O∗

Ms
← O∗

Ms
+ o × v.

end

O∗
Ms

← O∗
Ms

Ms
.

the equivalent sample-complexity bound one would obtain
if Tr[�K O] was estimated from measurements on the ac-
tual state �K . Hence n2

→ quantifies the runtime overhead
introduced by the interfaces. In that regard, the interface neg-
ativities play the same role in our hybrid classical-quantum
simulation as the negativities of Ref. [26] in fully classical
simulations with quasiprobability representations. An innova-
tive and advantageous feature of Eq. (6) is the presence of the
POVM-element trace Tr[Mbsk

] in nUk , which comes from the
state repreparation. Indeed, since Tr[Mbsk

] < 1, the nUk ’s (and
therefore also n→) are significantly smaller than their coun-
terparts for fully classical simulations [26]. This is consistent
with the intuition that hybrid classical-quantum Monte Carlo
simulations should cause lower sample-complexity increases
than fully classical ones. Our bound is similar to the sample
complexity of the spacelike circuit cuts in Refs. [19,40] but is
not restricted specific gates.

Either way, the most relevant property for our purposes is
that n2

→ (and therefore also Ms) is independent of not only
the number of gates K or qubits N but also, most importantly,
the connectivity-graph distance between the qubits on which
the interfaces act. In other words, for a fixed budget of mea-
surement runs, simulating a gate Uk with a QCQ interface
increases the statistical error at most by a constant factor
nUk , regardless of how far apart in the circuit the qubits sk

are. In contrast, experimentally synthesizing Uk with noisy
nearest-neighbor gates would give a systematic error due to
infidelity accumulation that grows with the distance between
those qubits.

With regard to the limitations of our method, we note that
n2

→ grows exponentially with the number L of interfaces used.
We can therefore only simulate a limited a number of gates
before the number of measurement-and-repreparation steps
becomes too large to perform in practice. Additionally, the
forward negativity depends on ‖T̃

Usk
ask

‖1, which increases with
the number of qubits onto which the simulated gate acts. How-

ever, we are usually only interested in simulating two-qubit
gates, where this effect is small. Even with these drawbacks,
Algorithm 1 constitutes a better alternative for many circuits
than the bare NISQ implementation. Also, Theorem 1 pro-
vides a direct way to get a sense of whether implementing
a QCQ interface will be too difficult to perform in practice,
since we can obtain an upper bound on the number of shots
required to perform an accurate simulation of a certain gate.
We study relevant exemplary circuits with such trade-offs in
the next sections.

Finally, note that n2
→ is POVM dependent. This is crucial to

the efficiency of classical simulations [27–29]. For instance,
in the quantum Monte Carlo method, it is known that the
statistical overhead due to negative (quasi)probabilities can be
ameliorated [32] or even removed [31] by local base changes.
Something similar applies here: The interface negativities de-
pend not only on the choice of POVM, but also on how we
construct the dual POVM elements.

IV. NUMERICAL EXPERIMENTS

Here, we provide numerical experiments to validate the
procedure outlined in Algorithm 1. Throughout the rest of this
paper, we take {Ma}a to be the Pauli-6 IC-POVM,

{Ma}Pauli-6
a :=

⋃
i=x.y,z

{
1

3
|↑i〉〈↑i|, 1

3
|↓i〉〈↓i|

}
, (8)

where the vectors |↑i〉 and |↓i〉 correspond to the eigenvec-
tors of the Pauli operators with eigenvalues +1 and −1,
respectively. Note that this POVM can be implemented in an
experimental setting without the usage of ancilla qubits (see
Appendix B).

For our simulations, we make use of full density matrix
simulations and locally purified density operator (LPDO) ten-
sor networks [41] (see Appendix F). For the latter, we choose
the bond and Kraus dimensions D and κ , respectively, such
that the simulation errors are under control and we end up with
a high-fidelity (>99.9%) state approximation. To simulate
realistic experimental settings, we apply noise to the two-
qubit gates in our circuit. In particular, we implement noisy
CNOT gates throughout our circuits by applying single-qubit
depolarizing channels E : � �→ E (�) to both the control and
target qubit of the CNOT gate. We apply depolarizing noise in
the CNOT gates with λunit = 0.005. These values correspond to
experimentally realistic values [42]. At the end of the circuit
we estimate observables Tr[�O] exactly, i.e., without further
sampling bit strings but relying on the full state representation.

Since we are considering two-qubit gates for our numerical
experiments, our interfaces only act on two-qubit systems.
Hence, for our measurement-and-repreparation step, we only
need to store bit strings asl of length 2, as well as the 62 × 62

overlap matrix T̃ Uk .
To improve the sample complexity of our algorithm, we

use a Monte Carlo algorithm to minimize the interface neg-
ativities. We first note that the matrix T̃ Uk defined under
Eq. (2) defines a domain over which to optimize such nega-
tivity. Similar optimizations have been used for alleviating the
sign problem in partition-function estimations [31,32]. In our
setting, we use a convenient parametrization of generalized
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FIG. 2. CHSH violation as a function of the number of qubits.
These results were obtained with an LPDO simulation where D = 12
and κ = 24. In addition to the gate noise, we apply a depolariz-
ing channel to simulate measurement noise with λmeas = 0.01 and
repreparation noise with λreprep = 0.005. The classical bound (pink)
and maximal violation orange) are 2 and 2

√
2, respectively, for all

d . We see that the violation in the noisy circuit (green) decreases
linearly with the number of qubits as a result of the 4(d − 2) + 1
noisy SWAP gates required to prepare the state. Our algorithm pro-
vides the maximum CHSH violation up to statistical fluctuations
independent of the distance between the qubits. This comes at a
cost of sampling M = 60 000 measurement-and-repreparation steps
to estimate the violation.

inverse matrices by Rao [30] to propose dual POVM el-
ements for an adaptive random walk Metropolis-Hastings
algorithm. This allows us to decrease the multiplicative
sample-complexity overhead per interface by almost a factor
of 4 relative to the canonical dual POVM (corresponding to
T̃ = T −1, with T −1 being the pseudoinverse of T ), which
reduces the number of samples required by a factor of 4 (see
Appendix G).

A. Simulation of long-range maximal Bell violations

As a proof-of-principle experiment, we show that a max-
imally entangled state simulated with our method attains
the maximal violation of the Clauser-Horne-Shimony-Holt
(CHSH) inequalities (see Appendix E) as expected. Specifi-
cally, we create the Bell state |�+〉 = 1

2 (|00〉 + |11〉), which
has the maximum CHSH violation S(A, B) = 2

√
2. We con-

sider the case where the state is prepared on two qubits
separated by a distance d . Applying the CNOT between these
distant qubits requires implementing a SWAP chain to bring
the two states close together. In Fig. 2 we compare the CHSH
violation of the Bell state simulated with our algorithm and
one prepared with a circuit containing a noisy SWAP chain.
We see that the CHSH violation is only affected by the sta-
tistical fluctuations of our method and therefore approximates
the maximum value independent of the distance between the
qubits.

B. The transverse-field Ising-model circuit

As a practical example of implementing our method in
an experimentally realistic setting, we investigate the ground

FIG. 3. The Hamiltonian variational ansatz circuit for the ground
state of the TFIM. The parameters {βi, γi} for i = 1, . . . , p can
be found with a variational quantum eigensolver optimization [9].
Each layer in the circuit contains a long-range two-qubit ZZ rota-
tion. We assume that the distance between the first and last qubit
is N − 2. Implementing the nearest-neighbor ZZ gates comes at a
cost of 2(N − 1) CNOT gates. The long-range ZZ rotations require
4(N − 2) + 1 CNOT gates since we must use a SWAP chain to bring
the first and last qubit together. The total number of CNOT gates per
layer is therefore dominated by the implementation of long-range ZZ
rotations.

state of a prototypical model for quantum magnetism: the
transverse-field Ising model (TFIM) on a one-dimensional
ring. The Hamiltonian of the TFIM for the 1D chain is given
by

HTFIM = −
N∑

i=1

[ZiZi+1 + gXi], (9)

where we assume periodic boundary conditions and set g = 1.
The ground state of H can be approximated reliably with a
depth p = N/2 circuit ansatz called the Hamiltonian varia-
tional ansatz [43–45].

This circuit for the ground state is given in Fig. 3. To
evaluate the accuracy of the state reconstruction, we compare
the finite-statistics estimator of the energy 〈ĤM〉 from our al-
gorithm with the ground-state energy Egs = 〈ψgs|H |ψgs〉 from
exact diagonalization.

We consider three setups: First, we consider the N = 4
and N = 8 qubit TFIM chains where the last long-range ZZ
gate (in the second and fourth layers, respectively) is clas-
sically simulated with our algorithm (see Fig. 4). Next, we
apply our method twice for the same circuits, with simula-
tion of both the last and first-to-last long-range ZZ gate (see
Fig. 5). Finally, we consider the ground state of an N = 20
TFIM chain, where we only apply the first two layers of
the circuit and simulate the second long-range ZZ gate (see
Fig. 6). For all experiments, we confirm that we can greatly
improve the final energy estimates by making use of QCQ
interfaces at the cost of Ms measurement-and-repreparation
steps.
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FIG. 4. Comparison of QCQ interface simulation with both noisy and noiseless TFIM circuits for (a) N = 4 and (b) N = 8 qubits obtained
with a full density matrix simulation. Each dot represents the average energy E[〈ĤM〉] estimated over 50 separate instances. The error bars
indicate the standard deviation. As the number of samples Ms increases, the statistical fluctuations of our method become small in accordance
with the central limit theorem. We can determine the scaling of the size of the error bars by fitting σ = σ̄ /

√
Nsamples. While for four qubits

σ̄ ≈ 27.8, for eight qubits we have σ̄ ≈ 76.5. This scaling only depends on the mean negativity, which differs between the two circuits because
we apply a different ZZ rotation on each circuit. The energy of the noiseless circuit (orange dashed line) corresponds to the ground-state energy
Egs. The noisy circuit (green dashed line) shows the energy obtained when we apply depolarizing channels with λunit = 0.005 to the CNOT gates
in the circuit. We see that for both four and eight qubits, our algorithm provides a significant improvement on the final estimated energy of
the circuit for a reasonable number of measure-and-reprepare steps. In (b) we observe that the large number of number of noisy CNOT gates
dominates the simulation; hence the improvement is not as significant as for four qubits.

V. FINAL DISCUSSION

We have introduced a rigorous framework of hybrid
quantum-classical interfaces for quantum-circuit simulations.
We applied a specific variant of these gadgets—which we dub
quantum-classical-quantum (QCQ) interfaces—to simulate
long-range gates in low-connectivity devices without using
SWAP-gate ladders. QCQ interfaces replace an experimentally
problematic gate (e.g., a very long range one) by single-
qubit random measurements and state preparations sampled
according to a classical quasiprobability simulation of the
ideal target gate. This procedure eliminates long SWAP-gate

ladders which would otherwise be required to physically syn-
thesize the target gate. This results in a drastic increase in gate
fidelity. The final output of the scheme is an estimate of the
expectation value of a given observable on the output of the
target high-connectivity circuit.

The quasiprobability distribution used is given by a POVM
representation of the gate simulated at each interface. As
with any sampling scheme based on nonpositive quasiproba-
bilities, our method suffers from the sign problem. Because
of this, the overall sample complexity grows exponentially
with the number of interfaces applied. However, the statistical

FIG. 5. Comparison of double-QCQ-interface simulation with both noisy and noiseless TFIM circuits for (a) N = 4 and (b) N = 8 qubits.
These results were obtained with a full density matrix simulation. In (a), we see that we can almost approximate the true ground-state energy
of the four-qubit state, because the only noisy operations are the 12 CNOT gates required for implementing the six nearest-neighbor ZZ gates in
layers 1 and 2. In (b) we see a more significant improvement over the energies from Fig. 4(b), but still the noise dominates. Since we apply the
QCQ method twice, the standard deviation σ = σ̄ /

√
Nsamples of the error bars increases quadratically, as per Eq. (6). We find σ̄ ≈ 333.1 and

σ̄ ≈ 856.8 for four and eight qubits, respectively.
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FIG. 6. Comparison of a QCQ interface simulation with both
noisy and noiseless circuits for a 20-qubit TFIM circuit. These results
were obtained with an LPDO simulation where D = 50 and κ = 50.
Only two of the eight layers of the circuit are simulated here, to keep
simulation errors under control. The sample variance σ̂ ≈ 195.0.

overhead per interface is independent of the on-chip distance
between the qubits on which the interface acts. To amelio-
rate the sign problem, we developed a Metropolis-Hastings
simulated-annealing algorithm based on random walks in the
space of dual POVMs. This allowed us to decrease the statis-
tical overhead per interface by almost a factor of 2 over that
of the canonical dual POVM. This is potentially interesting
on its own beyond the current scope, and further optimization
is possible. All together, we show that any circuit with a
limited number of gates to cut out can be simulated at the
expense of a moderate overall overhead in sample complexity.
As examples, we explicitly considered a Bell-state preparation
circuit for two qubits increasingly far apart and variational
ground-state solvers for the transverse-field Ising model on
ring lattices. The former involves a single long-range gate,
whereas the latter contains one such gate per variational layer.

Interestingly, the quasiprobability approach we use here is
not the only route to gate simulation. In Ref. [46], similar in
spirit to Ref. [26], quantum circuits are simulated via Monte
Carlo simulation. However, instead of using the language of
frames, a Hubbard-Stratonovich transformation is applied. In
this context, the sign problem manifests itself in the form of
a complex action that inhibits the efficient simulation of a
large number of gates. A potential fruitful direction of future
work would be to investigate the limits of this alternative gate
simulation approach.

Importantly, our method requires platforms supporting
midcircuit measurements and state preparations, which are
readily provided by some quantum hardware companies such
as, e.g., IBM and Honeywell [47,48]. This may pave the way
to implement our method in a practical setting in the near
future. However, the efficacy of our method will rely on the
speed and accuracy of intermediate measurements. Although
our numerical experiments for the CHSH violation indicate
that our algorithm is insensitive to imperfect measurements,
slow measurements may be more problematic since NISQ
devices only have a limited coherence time.

Finally, we emphasize that our framework is not restricted
to connectivity boosts only. It could also be applied to any gate
that is too noisy for a given platform or combined with error-
correcting codes to remove a gate that is particularly difficult
to implement fault-tolerantly by the code. Another interest-
ing application that will be studied elsewhere is circuit-depth
boosts, where a deep circuit is simulated by shallower exper-
imental circuits together with classical simulations of entire
slices of the target circuit. In conclusion, our framework pro-
vides a versatile toolbox for both error-mitigation and circuit
boosts well suited for noisy, intermediate-scale quantum hard-
ware.
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APPENDIX A: INTERFACES FOR HYBRID
CLASSICAL-QUANTUM CIRCUITS WITH FRAMES

Here, we give a more formal presentation of the mathemat-
ical background of our algorithm in the language of frames.

1. Preliminaries

We consider an N-qubit system S of Hilbert space HS
and denote the space of bounded, linear operators on HS by
L(HS ). We now consider the notion of a frame, which gener-
alizes the notion of basis [22,23]. For our purposes, a frame
FS for L(HS ) is any set FS := {Ma}a of Hermitian operators
Ma that spans L(HS ). Such a (in general, linearly dependent)
spanning set is sometimes referred to as an overcomplete basis
of L(HS ). In turn, a frame DS := {M̃a}a such that

I =
∑

a

|M̃a)(Ma|, (A1)

where I is the identity map on L(HS ), is called the dual to
FS (and we then refer to FS as the primal to DS ). In Eq. (A1),
the identity channel is written in the so-called Liouville or
transfer matrix representation. That is, the round kets and bras
denote 22N -dimensional column and row vectors, respectively,
representing operators in L(HS ) and their Hermitian adjoints.
Accordingly, (A|B) denotes the Hilbert-Schmidt inner product
Tr[A†B] in L(HS ). This is a popular notation in quantum
information [22,23,50] that will be used here interchangeably
with the (more usual) operator notation upon convenience.
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We take throughout Ma � 0 for all a and
∑

a Ma = 1S ,
with 1S being the identity operator on HS , so that FS is a
positive operator-valued measure (POVM) on HS . POVMs
define generalized (i.e., beyond von Neumann) measurements
[33,34]. This, together with Eq. (A1), allows us to express any
density operator � ∈ L(HS ) as

|�) =
∑

a

P�(a)|M̃a), (A2)

where P�(a) := (Ma|�) is the probability of measurement out-
come a on �. Equation (A2) is the basis of classical-shadow
tomography, a powerful technique to get compact classical
representations of states from measurements [21,35].

Note that Ma � 0 for all a implies M̃a � 0 in general
[22,23]. In addition, it will be useful to express the dual-frame
elements as an affine combination of elements of FS ,

|M̃a) =
∑

a′
Ta,a′ |Ma′ ), ∀ a, (A3)

for some adequately chosen T. With this parametrization, the
primal- and dual-frame overlap matrices T and T̃ , defined
as Ta,a′ := (Ma|Ma′ ) and T̃a,a′ := (M̃a|M̃a′ ), respectively, are
related as T̃ = TT T.

An experimentally convenient choice of FS and DS is
Ma = Ma1 ⊗ · · · ⊗ MaN and M̃a = M̃a1 ⊗ · · · ⊗ M̃aN , for a :=
(a1, . . . , aN ). Here, Maj is the jth element of a single-qubit
POVM frame, and M̃aj is that of the corresponding dual
frame. We refer to these as factorable frames. By virtue of
Eqs. (A2) and (A3), these allow one to express any � as an
affine combination of product states σa := Ma/ta, where ta :=
Tr[Ma] [20]. This fact has been used to reconstruct quantum
states [20], processes [37], and overlaps [38] from single-qubit
measurements. Additionally, this has been used to simulate
quantum circuits [39] with generative machine learning mod-
els, where T was taken as the canonical pseudoinverse of T .
However, other choices of T are possible. It can be seen (see
Appendix C) that Eq. (A3) defines a dual to FS if and only if
Ta,a′ ∈ R,

∑
a Ta,a′ = 1, and

T = T TT . (A4)

In general, the elements of T can be positive or negative.
As shown below, the negativity of T governs the sample
complexity of Monte Carlo estimations of expectation values
of observables. Finally, note also that if T fulfills Eq. (A4),
necessarily so does T̃ = TT T (T̃ and T collapsing to each
other for the canonical choice of T being a pseudoinverse of
T ).

2. Interfaces for hybrid classical-quantum circuits

Our goal is to simulate quantum circuits using hybrid
classical-quantum ones. More precisely, we are given an ob-
servable O, an N-qubit input state �0 := |0〉〈0|, and a target
circuit C := {Uk}k∈[ f ], with f ∈ N single- or two-qubit uni-
tary gates Uk . We denote by sk ⊂ S the subset of qubits
on which Uk acts and by ask a corresponding substring of
measurement outcomes on sk . In addition, we use the short-
hand notations sk := S \ sk for the qubits on which Uk does
not act and 1sk for the identity on Hsk . From the f gates,
l < f are particularly experimentally demanding for NISQ

implementations, and they are marked by the set of labels
L := {k1, k2, . . . , kl}. The case we explicitly study below is
that of two-qubit gates on qubits far apart in the connectiv-
ity graph in question. However, other relevant cases may be
due to, e.g., error-mitigation convenience or other hardware-
specific limitations. Either way, our goal is to estimate the
expectation value Tr[�K O] of O on the output state �K :=
Uf · · ·U1 �0 U †

1 · · ·U †
f by substituting every Uk with k ∈ L by

a classical simulation of it.
Our main tool to achieve this consists of interfaces between

quantum objects and their (classical) frame representations.
The first type of interface is based on Eq. (A2).

Definition 4: Quantum-classical interfaces. A QC interface
on sk refers to the assignment of a classical snapshot M̃ask

to
sk according to the measurement outcome ask of a factorable
POVM frame Fsk on a state � ∈ HS , occurring with probabil-
ity P�(ask ) = (1sk |(Mask

|�).
The second type of interface is the reverse interface,

which simulates M̃ask
as a linear combination of states σbsk

:=
Mbsk

/tbsk
. This is done by importance-sampling bsk from T̃ (Isk ),

given ask , with T̃ (Isk ) being the dual-frame overlap matrix on
sk . To see this, we apply on |M̃ask

) the Hermitian conjugate of

Eq. (A1) and get |M̃ask
) = ∑

bsk
T̃

(Isk )
ask ,bsk

tbsk
|σbsk

). Then, using
a standard trick, we rewrite

T̃
(Isk )

ask ,bsk
=:

∥∥T̃
(Isk )

ask

∥∥
1 PIsk

(
bsk

∣∣ask

)
sgn

(
T̃

(Isk )
ask ,bsk

)
, (A5)

where T̃
(Isk )

ask
is a shorthand notation for the vector given by the

ask th row of T̃ (Isk ), ‖T̃
(Isk )

ask
‖1 := ∑

bsk
|T̃ (Isk )

ask ,bsk
| is its l1 norm,

and PIsk
(bsk |ask ) := |T̃ (Isk )

ask ,bsk
|/‖T̃

(Isk )
ask

‖1.
By construction, PIsk

(◦|ask ) is a valid probability distribu-
tion, from which bsk can be sampled. This can be used to
quantum-Monte-Carlo-simulate M̃ask

[26].
Definition 5: Classical-quantum interface. A CQ inter-

face on sk refers to the repreparation of sk in the state
σbsk

, with probability PIsk
(bsk |ask ), given a classical snapshot

M̃ask
. Each sampled duple (ask , bsk ) is assigned the value

‖T̃
(Isk )

ask
‖1 tbsk

sgn(T̃
(Isk )

ask ,bsk
).

The third and final ingredient integrates QC and CQ in-
terfaces with a classical simulation of Uk . We denote by Uk

the superoperator representing the action of the unitary Uk on
L(HS ). Multiplying Uk from the right by Eq. (A1) and from
the left by the Hermitian conjugate of Eq. (A1), we get Uk =∑

ask ,bsk
|Mbsk

) T̃ (Uk )
bsk ,ask

(Mask
|, where T̃ (Uk )

bsk ,ask
:= (M̃bsk

|Uk |M̃ask
).

With this, we get

Uk|�k−1) =
∑
a,a′

T̃ (Uk )
ask ,bsk

tbsk

∣∣σbsk

) (
Mask

∣∣�k−1
)
, (A6)

where �k−1 = Uk−1 · · ·U1 �0 U †
1 · · ·U †

k−1. That is, the action
of Uk is absorbed into the repreparation by sampling from
T̃ (Uk ) instead of T̃ (Isk ). This leads to the following definition.

Definition 6: Quantum-classical-quantum interface. A
QCQ interface for Uk on sk refers to the measurement of
Fsk , with outcome ask , followed by the repreparation of

σbsk
with probability PUk (bsk |ask ) := |T̃ (Uk )

ask ,bsk
|/‖T̃ (Uk )

ask
‖1. Each

sampled duple (ask , bsk ) is assigned the value vask ,bsk
:=
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‖T̃ (Uk )
ask

‖1 tbsk
sgn(T̃ (Uk )

ask ,bsk
), and the corresponding interface re-

alized in such an experimental run is thus mathematically
represented by the operator Vk (ask , bsk ) := vask ,bsk

|σbsk
)(Mask

|.
Our hybrid-circuit simulation then applies on �k−1 the gate

Uk if k /∈ L, but it applies a QCQ interface for Uk instead if
k ∈ L. Introducing the terminology

Wk
(
ask , bsk

) =
{
Uk if k /∈ L

Vk
(
ask , bsk

)
if k ∈ L

(A7)

and using the fact that O is Hermitian, we can express the
target expectation value Tr[�K O] as

(O|�K ) =
∑
αsL

(
O

∣∣∣∣∣
f∏

k=1

Wk
(
ask , bsk

)∣∣∣∣∣�0

)
, (A8)

with the shorthand notation αsL := (askl
, bskl

, . . . , ask1
, bsk1

).
Equation (A8) can be experimentally estimated through an

average O∗
Ms

over Ms ∈ N runs. Ms is chosen to guarantee that
the statistical error and significance level (failure probability)
of the estimation are given by the target values ε and δ,
respectively. We refer to Ms as the sample complexity of the
protocol, and its explicit value is given in Theorem 2 below.

The procedure is sketched by the pseudocode in
Algorithm 2.

To quantify the runtime of the algorithm, we define the in-
terface negativity of the gate Uk and the total forward interface
negativity of the entire circuit C as

nUk
:= max

ask ,bsk

∥∥T̃
(Usk )

ask

∥∥
1 tbsk

and n→ :=
∏
k∈L

nUk , (A9)

respectively. This allows us to state the following theorem.
Theorem 2: Correctness and sample complexity. The finite-

statistics average O∗
Ms

of Algorithm 2 is an unbiased estimator

Algorithm 2. Hybrid classical-quantum simulation with QCQ
interfaces.

Input: �0, C, O, ε, δ

Output: O∗
Ms

such that |O∗
Ms

− Tr[O �K ]| � ε with probability at
least 1 − δ

Initialize O∗
Ms

= 0, v = 1, and Ms as in Eq. (A10).
for m ∈ (1, . . . , Ms ) do

for k ∈ (1, . . . , f ) do
if k ∈ L them

Apply a QCQ interface for Uk on qubits sk ,
obtaining the duple (ask , bsk );
v ← v × vask ,bsk

, with vask ,bsk
as in Definition 6.

else
Apply the gate Uk on qubits sk .

end
end
Measure O, obtaining the measurement outcome
(eigenvalue of O) o;
O∗

Ms
← O∗

Ms
+ o × v.

end

O∗
Ms

← O∗
Ms

Ms
.

of Tr[�K O] (see Appendix D). Moreover, if

M � n2
→ × 2 ‖O‖2 ln (2/δ)

ε2
, (A10)

with ‖O‖ being the operator norm of O, then, with probability
at least 1 − δ, the statistical error of O∗

Ms
is at most ε.

The proof follows straightforwardly from the Hoeffding
bound. We note that the factor 2 ‖O‖2 ln (2/δ)

ε2 in Eq. (A10)
is the equivalent sample-complexity bound one would ob-
tain if Tr[�K O] was estimated from measurements on the
actual state �K . Hence n2

→ quantifies the runtime overhead
introduced by the interfaces. In that regard, the interface neg-
ativities play the same role in our hybrid classical-quantum
simulation as the negativities of Ref. [26] in fully classical
simulations with quasiprobability representations. An inno-
vative and advantageous feature of Eq. (A9) is the presence
of the POVM-element trace tbsk

in nUk , which comes from
the state repreparation. Indeed, since tbsk

< 1, the nUk ’s (and
therefore also n→) are significantly smaller than their coun-
terparts for fully classical simulations [26]. This is consistent
with the intuition that hybrid classical-quantum Monte Carlo
simulations should cause lower sample-complexity increases
than fully classical ones.

Either way, the most relevant property for our purposes
is that n2

→ (and therefore also Ms) is independent not only
of the numbers of gates f or qubits N but also, and most
importantly, of the connectivity-graph distance between the
qubits on which the interfaces act. In other words, for a fixed
budget of measurement runs, simulating a gate Uk with a QCQ
interface increases the statistical error at most by a constant
factor nUk , regardless of how far apart in the circuit the qubits
sk are. In contrast, experimentally synthesizing Uk with noisy
nearest-neighbor gates would give a systematic error due to
infidelity accumulation that grows linearly with the distance
between those qubits. Clearly, the drawback is that n2

→ grows
exponentially with the number l of interfaces used. However,
for many circuits, Algorithm 2 constitutes a better alternative
than the bare NISQ implementation.

Finally, note that n2
→ is frame dependent. This is crucial to

the efficiency of classical simulations [27–29]. For instance,
in the quantum Monte Carlo method, it is known that the
statistical overhead due to negative (quasi)probabilities can be
ameliorated [32] or even removed [31] by local base changes.
Something similar applies here: The interface negativities de-
pend not only on the primal frame but also on the choice of
dual to it.

APPENDIX B: INFORMATIONALLY COMPLETE POVMS

A positive operator-valued measure (POVM) is a set of
operators {Ma}a with Ma � 0 that satisfies the condition∑

a

Ma = I. (B1)

A POVM is informationally complete if {Ma}a spans L(HS ).
Let {Mai}ai be a POVM that acts on a single-qubit Hilbert
space. We can define a factorable POVM as a tensor product
of a single-qubit POVM element as

Ma = Ma1 ⊗ · · · ⊗ MaN , (B2)
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for a := (a1, . . . , aN ). Clearly, if all Mai are informationally
complete, then so is Ma. An example of an informationally
complete POVM is the Pauli-6 POVM, which is defined as

{Ma}Pauli-6
a :=

⋃
i=x.y,z

{
1

3
|↑i〉〈↑i|, 1

3
|↓i〉〈↓i|

}
, (B3)

where the vectors |↑i〉, |↓i〉 correspond to the eigenvectors
of the Pauli operators with eigenvalue ±1, respectively. We
can implement this POVM by rotating to the Pauli basis with
probability 1/3. For the {X,Y, Z} Pauli operators this means
applying the gates {H, HS, I}, where H is a Hadamard gate,
S is a Z-phase gate, and I is the identity gate. Measuring in
the computational basis then produces outcomes a according
to the Pauli-6 POVM.

APPENDIX C: DUAL-FRAME DECOMPOSITION

Here, we show that Eq. (A3) defines a dual frame with
respect to FS if Eq. (A4) holds. For the forward direction of
this statement, we start with Eq. (A1) and plug in Eq. (A3) to
obtain

I =
∑
a,b

Ta,b|Mb)(Ma|. (C1)

Applying (Mc| and |Md ) to the left and right of Eq. (C1) then
gives

(Mc|Md ) =
∑
a,b

Ta,b(Mc|Mb)(Ma|Md ); (C2)

therefore we see that T = TTT as required.
For the converse direction, we start with a map J on

L(HS ),

J =
∑
a,b

Ta,b|Mb)(Ma|. (C3)

Applying (Mc| and |Md ) to the left and right of Eq. (C3) then
gives

(Mc|J |Md ) =
∑
a,b

Ta,b(Mc|Mb)(Ma|Md ). (C4)

If we then plug in Eq. (A4), we find

(Mc|J |Md ) = (Mc|Md ), (C5)

from which we conclude that J ≡ I, i.e., J equals the iden-
tity map, and so Eq (A1) holds.

APPENDIX D: FINITE-STATISTICS ESTIMATOR

Let O be a generic observable we wish to measure,
with support on an arbitrary subset of S and with arbitrary
spectral norm ‖O‖sp := omax. Hence it admits a spectral de-
composition as |O) = ∑

λ oλ|λ), where oλ and |λ) are its
λth eigenvalue and eigenvector projector, respectively, with
|oλ| � omax for all λ. Using Eq. (A8), we write the finite-
statistics estimator of the expectation value 〈O〉 := Tr[O �f ]
of O as

O∗
M := 1

M

M∑
i=1

o
λ(i),α

(i)
sL

∏
k∈L

va(i)
sk ,b(i)

sk
, (D1)

where o
λ(i),α

(i)
sL

is the eigenvalue obtained from the single-shot i
obtained from a state that is measured and reprepared accord-
ing to α(i)

sL
. The probability of observing o

λ(i),α
(i)
sL

is given by

P
(
o

λ(i),α
(i)
sL

) =
(

λ(i)

∣∣∣∣∣
f∏

k=1

Wk
(
a(i)

sk
, b(i)

sk

)∣∣∣∣∣�0

)
, (D2)

with a(i)
sk

∼ P�k−1 (ask ) and b(i)
sk

∼ PUk (bsk |ask ), where

|�k−1) =
l−1∏
k=1

Wl
(
a(i)

sl
, b(i)

sl

)|�0). (D3)

Importantly, O∗
M is an unbiased estimator.

APPENDIX E: THE CLAUSER-HORNE-SHIMONY-HOLT
INEQUALITIES

The CHSH inequalities constrain a set of four correlators
in an experiment of Alice (A) and Bob (B) type and provide
a condition to check whether the correlations between the ob-
servations of Alice and Bob can be explained by a local theory
or necessitate a nonlocal theory such as quantum mechanics
[51]. Consider the quantity

S(A, B) = C00(A, B) + C01(A, B) + C10(A, B) (E1)

−C11(A, B), (E2)

where

C00(A, B) = 1√
2

(−〈ZAZB〉 − 〈ZAXB〉), (E3)

C01(A, B) = 1√
2

(−〈XAZB〉 − 〈XAXB〉), (E4)

C10(A, B) = 1√
2

(〈ZAZB〉 − 〈ZAXB〉), (E5)

C11(A, B) = 1√
2

(〈XAZB〉 − 〈ZAXB〉) (E6)

are the correlations obtained from the state shared by Alice
and Bob. The observables X and Z are the Pauli matrices.
We call S(A, B) the Bell polynomial. The CHSH inequality is
given by S(A, B) � 2, which, if satisfied, implies that a local
hidden variable theory can explain the observed correlations.
On the other hand, for S(A, B) > 2 we have to invoke quantum
theory to explain the correlations. The maximum value of
S(A, B) is 2

√
2, which is obtained for a maximally entangled

two-qubit state.

APPENDIX F: LOCALLY PURIFIED
DENSITY OPERATORS

Numerical simulations with a full density matrix of size
2N × 2N quickly become prohibitive due to the large memory
requirements. Hence we have to resort to tensor networks to
find efficient representations of mixed quantum states. The
canonical choice for representing operators with tensor net-
works is the matrix product operator (MPO) [52]. A drawback
of this approach is that applying completely positive maps
to the state can still lead to the MPO becoming nonpositive
due to truncation errors. The locally purified density operator

043221-10



CIRCUIT CONNECTIVITY BOOSTS … PHYSICAL REVIEW RESEARCH 4, 043221 (2022)

(LPDO) tensor network solves this issue by representing the
state as � = χχ†, where the purification operator χ is given
by a tensor network

[χ ]p1,...,pN
κ1,...,κN

=
∑

b1,...,bN−1

A[1]p1,κ1

b1
A[2]p2,κ2

b1,b2
· · · A[N]pN κN

bN−1
, (F1)

with 1 � pl � P, 1 � κl � κ , and 1 � bl � D [41]. Here, P
is called the physical dimension, κ is the Kraus dimension,
and D is the bond dimension.

Analogous to the bond dimension truncation in MPOs,
truncating the Kraus dimension after applying a channel leads
to errors in our state representation that can affect the accu-
racy of numerical simulations. However, we can control the
accuracy of the simulation by increasing D and κ and keeping
track of a runtime lower bound estimate of the state fidelity.
Let � = χ†χ and σ = η†η; then the fidelity is given by

F (�, σ ) = Tr
√√

σ�
√

σ . (F2)

From Lemma 1 in Ref. [41] we know that

F (�, σ ) � 1
2

(
2 − ‖χ − η‖2

2

)
. (F3)

Let χ be a locally purified description of a quantum state
with local tensors {A[N]} that is in mixed canonical form
with respect to a local tensor A[lcp]. If a single tensor A[l] is
compressed by discarding singular values in either the Kraus
or bond dimensions, then by Lemma 6 of Ref. [41] we know
that

δ :=
⎛
⎝ ∑

i,discarded

s2
i

⎞
⎠

1
2

, (F4)

and subsequently

‖χ − χ ′‖2
2 = 2(1 −

√
1 − δ2), (F5)

where χ ′ is the compressed tensor. By the triangle inequal-
ity, the two norm errors introduced by the discarded weights
can at most sum up. Hence the true operator norm is lower
bounded by the sum of all discarded weight errors

‖�exact − �truncated‖2 �
∑

d

√
2
(
1 −

√
1 − δ2

d

)
, (F6)

with d being the number of truncations and δk being the dis-
carded weights. This brings the final runtime fidelity estimate
to

F (�, σ ) � 1

2

(
2 − ‖χ − η‖2

2

)
(F7)

� 1

2

⎛
⎝2 −

(∑
d

√
2
(
1 −

√
1 − δ2

d

))2
⎞
⎠. (F8)

In all our experiments, we apply depolarizing channels to both
qubits only after applying a two-qubit gate, since single-qubit
gate noise tends to be small in experimental settings. The
single-qubit depolarizing channel is given by

� =
M∑

m=1

κm�K†
m, (F9)

FIG. 7. Illustration of the lower bound of Eq. (F8). The circuit
consists of an initial state |+〉⊗4 to which we apply a varying number
of CNOT gates with random control and target qubits. We set the noise
to λ = 0.005 and take D = 4 and κ = 16. The red line indicates
the true accuracy of the LPDO simulation by comparing it with
the exact full density matrix simulation. The orange line gives the
runtime fidelity estimate. We see that the accuracy of the simulation
degrades as we add more two-qubit gates and depolarizing channels.
The runtime fidelity gives an estimate two orders of magnitude above
the exact error, indicating that for this example, the bound is a
conservative estimate of the simulation error.

where {Km} is a set of Kraus operators with

K1 =
√

(4 − 3λ)

4
1, K2 =

√
λ

4
X, (F10)

K3 =
√

λ

4
Y, K4 =

√
λ

4
Z. (F11)

Here, {X,Y, Z} are the Pauli matrices, and 1 is the identity.
The scalar λ ∈ [0, 1] controls the strength of the depolariza-
tion. With these channels, illustrate the bound of Eq. (F8)
by comparing the final state overlap of an exact full density
matrix simulation and a LPDO simulation for a random four-
qubit circuit with a varying number of CNOT gates. In Fig. 7,
we see that the runtime estimate of the fidelity is about two
orders of magnitude above the true fidelity.

APPENDIX G: RANDOM WALK METROPOLIS-HASTINGS
ALGORITHM FOR NEGATIVITY MINIMIZATION

In this Appendix, we present a method to minimize the
sample-complexity overhead by the interface of a unitary
gate U exploiting the freedom in the choice of dual POVM,
namely, the choice of T subject to Eq. (A4). For concreteness,
we focus on the case where all POVM elements have the same
trace, so Tr[Mb] = 1/D for all b, with D being the number of
POVM elements. Moreover, we optimize a modified version
of the interface negativity nU where, instead of maximizing
‖T̃ U

a ‖1 over a [as in Eq. (A9)], we average ‖T̃ U
a ‖2

1 over a.
Such an average is the sample-complexity overhead directly
given by the Hoeffding bound for when the sampled random
variables can lie within segments of different lengths. The
reason for this modification is that, while in Theorem 2 we are
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FIG. 8. Monte Carlo random walk for interface negativity opti-
mization of the ZZ gate used in Sec. IV B of the main text. The
total number of steps in the annealing schedule is 5000. The gray
dashed line indicates the mean average squared negativity of the
pseudoinverse, whereas the blue line indicates the one for the newly
accepted T’s during the Monte Carlo random walk. The inset shows
the adaptive scheme that fine-tunes the search with the temperature
and variance, given in black and red, respectively.

interested in the worst-case complexity, here we are interested
in the more practical problem of the average case.

For optimizing T̃ U over T, we express it as T̃ U =
T1 T UT2, with T U given by T Uk := Tr[UkMask

U †
k Mbsk

]. Note
that by not enforcing that T1 = T2, we are explicitly allowing
for the more general case of possibly different input and
output dual POVMs. Hence we wish to solve the constrained
nonconvex optimization

min
T

1

D

∑
a

‖(T1 T UT2)a‖2
1, (G1)

such that T = TTiT, for i = 1, 2, (G2)

where (T1 T UT2)a is a shorthand notation for the ath row of
T1 T UT2 and ‖(T1 T UT2)a‖1 is its l1 norm. Equation (G2) is a
necessary but not sufficient condition for Ti to be the Penrose-
Moore pseudoinverse of T . Indeed, such a condition implies
that Ti is a so-called generalized inverse of T [36,53]. So,
the first question we need to consider is how to variationally
explore the space of generalized inverses of T in a practical
way.

Fortunately, this question has been previously studied. In
particular, in Ref. [30] it was shown that for an arbitrary
matrix A ∈ Rm×n and given any particular generalized inverse
A− of it, every generalized inverse B− can be obtained from
some C ∈ Rm×n by the map

B−(C) := A− + C − A−ACAA−. (G3)

That is, the entire space of generalized inverses is
parametrized by C. This leads us to a practical way to obtain a
random walk across the space of generalized inverses: In the
first iteration, take the Penrose-Moore pseudoinverse A−1 as
the starting generalized inverse and a randomly sampled C.
This produces the first B−. As inputs for the second iteration,

FIG. 9. Improvement of energy-estimator variance for the eight-
qubit TFIM circuit experiment of Fig. 4(b) in the main text. Sample
variance is estimated over 50 runs. The red line shows the sample
variance corresponding to the canonical dual frame given by the
pseudoinverse of T . In blue we see the variance of the energy cor-
responding to the dual frame obtained from the Monte Carlo search.

use the first iteration’s output B− as the generalized inverse
and a fresh, independently sampled C. This produces a new
B−. Then continue to iterate.

Using this recipe for A = T and A−1 = T −1, we can
ergodically explore the space of generalized inverses Ti

of T . In turn, the resulting random walk can be used
as Markov chain Monte Carlo (MCMC) dynamics for
a simulated-annealing optimization [54,55] that approxi-
mates a solution to Eq. (G1). More precisely, for each
random walk iteration, we (probabilistically) accept or
reject the newly produced Ti via a standard Metropolis-
Hastings algorithm with 1

D

∑
a ‖(T1 T UT2)a‖2

1 as the energy
function.

For a two-qubit gate U and the Pauli-6 POVM, each dual-
overlap matrix can be expressed as Ti = T

(1)
i ⊗ T

(2)
i , where

T
(1)
i and T

(2)
i are the 6 × 6 real dual-overlap matrices of the

two qubits on which U acts. We can independently sample
all four matrices, T(1)

1 , T(2)
1 , T(1)

2 , and T
(2)
2 . Hence the search-

space dimension is 4 × 6 × 6 = 142.
For the simulated-annealing schedule, we take random ma-

trices C ∼ N (0, σ 2)6×6. We set the initial temperature to be
T = 10 and decrease it by a factor of 0.999 at each Monte
Carlo step (MCS). In addition to the temperature, the Monte
dynamics are controlled by the variance σ 2 of the normal
distribution N (0, σ 2)6×6 for C. We start with a large ini-
tial σ 2 = 0.1 to coarsely explore the search space. However,
as the temperature decreases, we want to refine the search
without freezing the Monte Carlo dynamics. Therefore we
use an adaptive scheme where σ 2 is decreased according to
the acceptance ratio. Specifically, we halve the value of σ

if the acceptance ratio per 100 MCSs is smaller than 0.23,
a well-known heuristic for continuous-variable MCMC [56].
The search is terminated if the negativity decreases less than
10−2 after 100 accepted steps.
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As a result, we consistently find dual frames whose av-
eraged squared negativities are about half the value of the
canonical dual frame from the pseudoinverse (see Fig. 8). This

is also observed to greatly improve the sample complexity in
practice (see Fig. 9).
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