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Robustness versus sensitivity in non-Hermitian topological lattices probed by pseudospectra
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Non-Hermitian topological systems simultaneously possess two antagonistic features: ultrasensitivity due to
exceptional points and robustness of topological zero-energy modes, and it is unclear which one prevails under
different perturbations. We study that question by applying the pseudospectrum theory on the prototypical non-
Hermitian Su-Schrieffer-Heeger lattice. Topological modes around the underlying third-order exceptional point
(EP3) are robust with respect to chiral perturbations but sensitive to diagonal perturbations. In fact, exactly at the
EP3 the chiral symmetry leads to a suppressed sensitivity, that corresponds to an EP2. Finally, for nonlinearly
induced perturbations we provide a connection between the pseudospectrum approach and a nonlinear phase
shift, which is relevant for experiments.
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I. INTRODUCTION

Non-Hermitian Hamiltonians in classical and quantum
physics [1] describe the dynamics of open systems under the
influence of dissipation and/or amplification. One of their
intriguing characteristics is the existence of unique non-
Hermitian degeneracies [2], the so-called exceptional points
(EPs) [3], where two or more eigenvalues and eigenvectors
coalesce for a particular value of the system’s parameter [4,5],
forming thus a higher-order exceptional point (HEP). Moti-
vated by the recent introduction of the concept of parity-time
(PT ) symmetry [6–8] in optics [9–13], where the spatial com-
bination of gain and loss materials is physically accessible, the
new area of non-Hermitian photonics [14–26] has emerged
[27–31]. A plethora of experimental realizations of photonic
devices that operate around the HEPs is evident, and is mainly
based on the enhanced response of the system around such
degeneracies. Among the most impressive experiments are
these related to ultrasensitive sensors [25] and non-Hermitian
gyroscopes [26].

On the other hand, topological photonics [32–38] relies on
the key property of topological protection of the zero eigen-
state. Especially in two dimensions, such an effect leads to the
transport of optical waves along the edge of a photonic topo-
logical insulator, even under the presence of strong external
perturbations. Most studies are so far devoted to Floquet sys-
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tems with broken time-reversal symmetry that induce effective
pseudomagnetic fields [34].

Recently, however, a new frontier that can be named as
non-Hermitian topological photonics [39–43] has emerged,
based on the synergy between the two aforementioned areas.
This new direction has led to an explosion of theoretical and
experimental results that exploit the existence of chiral and
non-Hermitian symmetries on the same lattice. Among the
recent experiments that define this field is the demonstration
of PT -symmetry breaking in a non-Hermitian Su-Schrieffer-
Heeger (NHSSH) lattice [44,45], the topological insulator
lasers [40,41], and the non-Hermitian Haldane lattice [43].
Nonlinearity also plays an important role and provides a new
degree of freedom, as a relevant recent experiment demon-
strated [46]. In fact, it allows us to locally control not only
the real part of the index potential but the imaginary part as
well. In such systems the inclusion of gain and loss elements
makes the topological lattice non-Hermitian, and thus extends
the physics of topological insulators to the complex domain,
with no analog whatsoever in condensed matter physics. Since
most of the previous concepts of topological physics have
been built on the existence of conservation laws, based on
Hermitian operators, it means that one has to derive everything
from first principles by incorporating the intricate proper-
ties of non-Hermitian algebra. Indeed, Zak phases, Chern
numbers, bulk-edge correspondence, and all relevant topo-
logical quantities must be redefined through the prism of
non-Hermitian physics, leaving thus many open questions for
further investigation [47–52].

In this context of non-Hermitian topological photonics, we
examine the interplay between robustness (due to topology)
and sensitivity (due to non-Hermiticity) in the prototypical
system of an NHSSH lattice around the underlying HEPs [46].
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FIG. 1. Complex unstructured pseudospectra around the EPs of the three NHSSH lattices: infinite (left, k ∈ [−π,−π + 0.08]), finite
(center, N = 80) for γ = 2, and interface (right, N = 81) for γ = 2.0159 and γ0 = 0. In all cases c1 = 3 and c2 = 1. In the top row the
red, green, and gray colors illustrate the gainy, lossy, and neutral waveguides, respectively. In the bottom row, the modes that form the EPs
(conventional spectra, red dots) and corresponding 0.0001 pseudospectra (1000 realizations, yellow dots) for the three lattices are presented on
the complex plane and on the same axes. We note here that in the interface lattice, at the red dot at [0,0] three eigenvalues coalesce. We do not
show the edge states of the finite SSH, which are located at [0, ±2i] and the associated perturbations of the order ε/2.

In order to systematically examine the lattice sensitivity, we
provide a mathematical framework ideal for non-Hermitian
systems, that is, the complex and structured pseudospectra
theory [53–56]. In particular, we consider three different lat-
tices, namely, an infinite, a finite, and a heterostructure of two
NHSSH lattices (see Fig. 1). The intricate relation between
the lattice symmetry and the symmetries of the perturbations
is revealed based on pseudospectra [53,54]. We find that for
chiral structured perturbations, the topological zero state is
indeed robust before the underlying EPn (the nth-order EP),
as is physically expected. Furthermore, we find that exactly
at EP3 the off-diagonal perturbations that respect chiral sym-
metry lead to a suppressed sensitivity that corresponds to
an EP2. Counterintuitively, the zero states turn out to be
most sensitive for unstructured complex perturbations, reveal-
ing the order of the pertinent exceptional point. At last we
consider the lattices sensitivity due to single-site local per-
turbations of the interface channel; something that has been
experimentally demonstrated using optical photorefractive
nonlinearity [46].

II. NON-HERMITIAN SSH LATTICES

Our starting point is the prototypical SSH model, in the
context of coupled mode theory. Under the paraxial approxi-
mation the wave evolution is governed by the coupled mode
equations, which are

i
∂ψn

∂ξ
+

∑
m

Hn,mψm = 0, (1)

where ξ is the propagation distance, ψn the complex am-
plitude of the field’s envelope at the nth channel, and Hn,m

the real-space Hamiltonian elements. The corresponding right
eigenvalue problem is H |uR

n 〉 = λn|uR
n 〉, where the eigenval-

ues λn define the spectrum of the problem. The underlying
symmetry of the lattices we examine here is HT = H , which
means that non-Hermiticity stems from the complex ele-
ments of Hamiltonian diagonal elements and not from any
other asymmetry. Furthermore, the corresponding left eigen-
value problem of the adjoint matrix is H†|uL

n 〉 = λ∗
n|uL

n 〉. We
note here that the biorthogonality condition is 〈uL

m|uR
n 〉 = δn,m

(where δn,m is the Kronecker delta) and since H† = H∗, the
left and right eigenfunctions are complex conjugate pairs. In
other words our matrix is symmetric. In general the spectrum
of such lattices is complex, unless they respect the PT sym-
metry. In this latter case, they may exhibit an entirely real
spectrum.

More specifically, the lattices that we consider are schemat-
ically depicted in Fig. 1. For the infinite lattice, the
Hamiltonian in k space reads

H inf(k) = (c2 + c1cosk)σx + c1sinkσy − iγ σz, (2)

where σx, σy, σz are the Pauli matrices and k is the Bloch
wavenumber in the first Brillouin zone. The coupling con-
stants are denoted by c1 and c2 for intra- and intercell
coupling, respectively. The global gain-loss amplitude of each
waveguide channel is described by the parameter γ , and thus
making the whole system non-Hermitian. For the finite lattice
the Hamiltonian matrix elements are

Hfin
nm = δn+1,mc(n mod2)+1 + δn,m+1c(m mod2)+1 + δnmiγn, (3)
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where γn = (−1)nγ , and n, m = 1, . . . , N (see Appendix A).
Regarding the last case of an interface SSH lattice, we con-
sider two SSH chains that are connected with an extra channel
at the interface that has a tunable gain-loss amplitude γ0. In
such a case the Hamiltonian matrix elements are given in the
Appendix B.

In all the three cases above, the associated matrices are
non-Hermitian and symmetric, meaning HT = H , unlike the
Hatano-Nelson problems [57]. Thus their eigenvalue spec-
trum ({λn}) is in general complex. Depending on the value
of the global gain-loss amplitude γ , we find that the first
two lattices exhibit an EP2 and the interface lattice an EP3
(see Appendices A and B).

III. COMPLEX UNSTRUCTURED PSEUDOSPECTRA

In the vast majority of previous studies, the sensitivity
of a non-Hermitian system under external perturbations was
analyzed using the semianalytical techniques based on per-
turbation theory, for systems of usually small number of
waveguides. For lattices of our type such an approach is
rather problematic and is not easily applicable, since we
do have to use different versions of perturbation theory de-
pending how close we are at the underlying EPs, and with
very limited types of perturbation strengths. Therefore we
introduce an alternative and general computational framework
based on pseudospectra [53]. The so-called pseudospectrum
is a systematic mathematical way to study the sensitivity
of a matrix/operator on external perturbations, without re-
lying on perturbation theory. It has been extensively used
in the context of fluid mechanics [54–56], non-normal net-
works [58], and transient growth physics [59–62]. However,
it is largely unknown in optics despite being ideal for study-
ing non-Hermitian systems [63–69]. For Hermitian matrices,
the spectrum and the pseudospectrum are almost identical,
whereas for non-Hermitian matrices they could be signifi-
cantly different. The measure of how different the two spectra
might be, depends on the degree of the nonorthogonality of
the corresponding eigenmodes. Thus the pseudospectrum of
a non-normal matrix provides us with complete information,
beyond the conventional spectrum. The most basic definition
of the ε pseudospectrum of a non-Hermitian matrix H , with a
σ (H ) spectrum, is the union of all spectra of the matrices H +
E , where E is a full complex random matrix (with respect
to its matrix elements), with ‖E‖ < ε, where ‖ · · · ‖ is the
matrix norm which is defined by ‖A‖ = sup

x �=0

‖Ax‖
‖x‖ [53]. More

specifically, σε(H ) is the set of z ∈ C such that z ∈ σ (H + E )
for some E ∈ CN×N with ‖E‖ < ε. Equivalently we have

σε(H ) ≡
s⋃

j=1,‖Ej‖<ε

σ (H + Ej ), (4)

where s is the number of different realizations of the perturba-
tions. In particular,

E = ε
E

‖E‖ , (5)

where ε defines the perturbation strength and the matrix E is
the perturbation matrix before the normalization.

Our results for the three NHSSH lattices, are shown in
Fig. 1 for gain-loss amplitude almost at the HEP. The red dots
represent the spectrum and the yellow dots the corresponding
pseudospectra. As we can see, the corresponding pseudospec-
tra are extended patterns on the complex plane, and their size
is related to the sensitivity of the lattice. In particular, the
eigenstates close to the gap closing point are most sensitive
and those away from that gap are more robust. From the com-
plex eigenvalue bifurcation curves vs γ (see Appendices A
and B), we can identify the modes that coalesce and form the
HEPs. The geometrical size of the main lobe of the complex
pseudospectrum as a function of the perturbation strength ε,
has a square-root and cubic-root dependence, that are char-
acteristic signatures of the EP2 and EP3, respectively, for
small values of the perturbation strengths. Apart from char-
acterizing sensitivity, the geometrical characteristics of the
pseudospectrum can also provide information about the power
growth dynamics in the case of a dissipative spectrum (when
an overall gauge loss shift is applied to the whole lattice) [64].
As such, we want to find order of magnitude estimates for
the power growth in order to characterize our systems. By
applying the Kreiss matrix theorem of functional analysis of
non-normal operators an upper and lower bound of K(M̂ ) �
supz�0 ‖ezM̂‖ � eNK(M̂ ) can be estimated, where e is the Eu-
ler’s number, and the Kreiss-constant K of the matrix M̂ = iĤ
is defined as K(M̂ ) ≡ supRez>0{Rez‖zÎ − M̂‖−1}. For a global
shift of loss (≈0.05), the Kreiss constant is K(M̂ ) ≈ 233.

IV. STRUCTURED PSEUDOSPECTRA

Since the applied perturbations are complex and applied
everywhere, even in the zero entries of the H matrix, we need
to examine more realistic and experimentally relevant pertur-
bations. Such perturbations are called structured perturbations
and they define the structured pseudospectrum [53], which is
ideal for studying the sensitivity of our NHSSH lattice. We
define the structured pseudospectrum σ str

ε of the Hamiltonian
H , as

σ str
ε (H ) ≡

s⋃
j=1,E -structured,‖Ej‖<ε

σ (H + Ej ), (6)

where s is the number of different realizations of the structured
perturbations. The main difference from the unstructured
(full) pseudospectra is that the matrix E is not full but has a
particular structure that stems from the physics of the prob-
lem. For example, if the external perturbations are applied
only on the index modulation (on site potential strength), then
E is diagonal. If they are applied to the coupling coefficients
(perturbing the distances between channels), then the ±1
diagonals are nonzero. In other words, all the perturbations
(real or complex) that we consider are physically relevant
and experimentally realizable, since they are connected to
perturbations of actual quantities of the lattice, namely, in-
terchannel distance and on-site potential strength. One can
consider various different combinations of perturbations for
our three lattices (see Appendix C). But we focus our attention
on diagonal (Enm = δn,mzn) and off-diagonal (see Appendices)
perturbations on the interface lattice. The real and the imag-
inary parts of the complex numbers zn are drawn from the
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FIG. 2. (a)–(c) Structured diagonal pseudospectra σ str
10−6 (H ) of

the interface NHSSH lattice for the three eigenmodes that form the
EP3, before (γ = γEP3 − 5×10−5), at (γ = γEP3), and after (γ =
γEP3 + 5×10−5) the EP3, respectively, for γEP3 = 2.0159 293. We
also include diagonal complex (black dots) and real (green dots) per-
turbations for s = 1000 realizations, and we do not see a significant
difference. (d) Pseudospectral radius (red line) of (b) as a function of
ε. The blue line is ≈ε1/3 fit, shown for comparison.

normal distribution around zero, and their magnitudes are of
the order of one. What is important though, is the value of ε

that determines the physical strength of the applied perturba-
tions due to Eq. (5).

Let us now examine the effect of diagonal perturbations on
the interface lattice (Fig. 2), by calculating the corresponding
structured pseudospectra before [Fig. 2(a)], at [Fig. 2(b)],
and after the EP3 [Fig. 2(c)] on the complex plane. One
characteristic signature of an EP3 is its extreme sensitivity,
which we can clearly see in Fig. 2(c). Moreover, the size of
the pseudospectrum can be quantitatively described by the
pseudospectral radius ρε [53], which is defined here locally as
ρε ≡ maxz∈B|z|, with the z belonging on the subset B ⊂ σε (H )
of interest. In Fig. 2(d) we calculate the pseudospectral radius
of the central cloud at the gap ρε of Fig. 2(c) for different val-
ues of ε. Such a radius is of the order of ε1/3, as is known from
the Lidskii perturbation theory of Jordan matrices, for very
small perturbation strength [70]. Under this type of perturba-
tions it is clear that the non-Hermitian sensitivity determines
the behavior of our lattice close to EP3.

Let us now continue with off-diagonal perturbations
(Fig. 3), by calculating the corresponding structured pseu-
dospectra before [Fig. 3(a)], at [Fig. 3(b)], and after the EP3
[Fig. 3(c)] on the complex plane. Since they respect the chiral
symmetry of the lattice, we expect the zero mode to be robust
to such external perturbations for open gap, but what would
happen exactly at EP3 for zero gap is a highly nontrivial
problem. As we can see at Fig. 3(b) the pseudospectrum is

FIG. 3. (a)–(c) Structured off-diagonal pseudospectra σ str
10−6 (H )

of the interface NHSSH lattice for the three eigenmodes that form
the EP3, before (γ = γEP3 − 1.3×10−6), at (γ = γEP3), and after
(γ = γEP3 + 1.3×10−6) the EP3, respectively. In comparison to
Fig. 2(b) the sensitivity corresponds to an EP2. Therefore the chiral
perturbations reduce the sensitivity of the EP. (d) Pseudospectral
radius (red line) of (b) as a function of ε. The blue line is ≈ε1/2

shown for comparison.

quite different than that of Fig. 2(b) for the same value of ε.
Even more interestingly, from Fig. 3(d), we deduce that the
corresponding sensitivity is that of an EP2. Thus we arrive
at the striking and unexpected conclusion that even though
the spectrum is the same in both cases, the pseudospectrum
is not and reveals information about the reduced sensitivity
of the system. Such reduction of the order of EP in terms of
its sensitivity affects the sensitivity of other supermodes, as is
evident from Figs. 3(a) and 3(c).

V. NONLINEARITY-INDUCED PERTURBATIONS

Until now we have examined structured or unstructured
perturbations that are globally applied on the whole lattice,
where the gain-loss amplitude of the interface channel γ0 is
equal to zero. It has been recently demonstrated experimen-
tally [46], that by using the photorefractive nonlinear effect,
we can control not only the real but also the imaginary value
of the potential strength of the interface channel, namely
H(N−1)/2+1,(N−1)/2+1 = x0 + iγ0 = z0. Therefore, by tuning
the nonlinearity we can effectively induce two different lat-
tices: a lossy lattice if the interface channel is lossy (γ0 > 0),
and a gainy lattice when the interface channel is gainy (γ0 <

0) (see Appendix F). Now we are interested to obtain the
structured pseudospectra under nonlinearity-induced pertur-
bations for chiral off-diagonal and real perturbations (Fig. 4).
We find that the topological robustness of the zero mode
is conserved, if and only if, our system has zero gain-loss
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FIG. 4. Topological robustness and non-Hermitian sensitivity for
chiral perturbations. (a) We vary locally the interface channel’s po-
tential strength for γ = 1. Magenta dots correspond to |z0| = 0.7,
while yellow dots correspond to |z0| = 0.4. Green and black dots
denote the corresponding eigenvalue fluctuations for 200 realizations
of added perturbations of strength ε = 20%. (b) Dynamical computa-
tion of nonlinear phase shift of the zero mode, for different strengths
of nonlinearity A. The agreement with (a) is excellent.

amplitude at the interface channel, γ0 = 0 [Fig. 4(a)]. No-
tice the robustness of the zero mode is also gradually lost
as we move away from the value zero. Surprisingly, the
change in the eigenvalue seems to have a preferred radial
direction in the complex plane. From the experimental point of
view, one could argue how to measure such a response based
on the setup of [46]. In Fig. 4(b) we calculate the response
of the zero mode under actual dynamics, under the action of
cubic nonlinearity in the interface channel.

The dynamics is governed by the relation

i
∂ψn

∂ξ
+

∑
m

Hn,mψm + Aδn,d |ψd |2ψd = 0, (7)

where A is the nonlinearity strength and ψd denotes the field
amplitude at the defect channel. We find that the sensitivity
of the zero mode is imprinted in the nonlinear phase due to
the self-phase modulation effect. We calculate it as the angle
between the input normalized zero mode ψi and the resulting
final one ψ f after some distance ξ , for each value of A. In other
words, the pseudospectrum approach and the full dynamics
converge for relative weak values of nonlinearity, and such
a connection provides a direct link to our whole approach
to measurable quantities. For higher values of the nonlin-
earity coefficient A the agreement becomes less apparent as
expected.

VI. DISCUSSION AND CONCLUSIONS

As a general conclusion, non-Hermiticity has an immediate
impact on a lattice’s sensitivity rather than its topological
structure. More specifically, we studied the effect of symme-
tries of the applied perturbations on the overall sensitivity in
NHSSH lattices in terms of pseudospectra. In particular, for
the interface lattice, the complex-unstructured and diagonal-
structured pseudospectra describe the enhanced sensitivity
(algebraic root dependence) before the EP3 and the chiral
structured perturbations uncover the topological protection of
the zero mode. Exactly at the EP3 (zero gap) the situation is
more complex. In fact, chiral perturbations lead to reduction

FIG. 5. (a),(b) Real (blue lines) and imaginary (red lines) parts
of bifurcation eigenvalue curves vs the gain-loss amplitude of the
infinite (for k = −π ) and finite lattice, respectively. We only show
the curves for the modes that form the EP2.

of the apparent sensitivity of the EP3 by one order (EP3 to
EP2). Finally, we have examined the nonlinearly controlled
pseudospectrum of the zero mode, spectrally and dynamically,
where sensitivity and memory of the topological robustness
coexist. Our results highlight the fundamental question of the
interplay between ultrasensitivity and topological protection
in the unique framework of pseudospectrum theory and may
provide insight for the study of other lattices of non-Hermitian
topological physics.
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APPENDIX A: SPECTRAL BIFURCATION CURVES
OF INFINITE AND FINITE LATTICES

We demonstrate the existence of a second-order EP in the
finite and infinite lattices. We plot the bifurcation curves of
the real and imaginary parts of the eigenvalues of each lattice
versus its gain-loss amplitude γ . The matrix Hamiltonians for
the infinite and finite lattices are

H inf =
[ −iγ c2 + c1e−ik

c2 + c1eik iγ

]
, (A1)

Hfin =

⎡
⎢⎢⎢⎢⎣

−iγ c2 0 0 . . .

c2 iγ c1 0 . . .

0 c1 −iγ c2 . . .

0 0 c2 iγ . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦, (A2)

respectively.
Our results are shown in Fig. 5. In particular, Fig. 5(a) cor-

responds to the bifurcation eigenvalue curves for the infinite
lattice that is described by the 2 × 2 Bloch Hamiltonian, while

043219-5



IOANNIS KOMIS et al. PHYSICAL REVIEW RESEARCH 4, 043219 (2022)

Fig. 5(b) for the finite lattice of N = 100 waveguides. The
coupling constants are c1 = 3 and c2 = 1. We plot the real
(blue line) and imaginary (red line) parts of the eigenvalues
that form the EP. As we can see, the two systems exhibit an
EP2 at γ = 2. For the finite lattice it is closer to γ ≈ 2.004
since we only have 100 channels. Increasing the number of
channels leads to a value closer to two.

APPENDIX B: SPECTRAL BIFURCATION CURVES
OF INTERFACE LATTICE

Now we study the spectrum of interface lattice, which
consists of two SSH chains and one interface channel. We
assume coupling constants c1 = 3 and c2 = 1 and 40 sites for
each SSH chain, i.e., 81 sites total. The gain-loss amplitude
of the lattice is γ = 1 while, for the interface channel it is
γ0 = 0. With these parameters we calculate the eigenmodes
and eigenvalues (λn) of the matrix Hamiltonian which is given
by the relation H int =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iγ c1 0 0 . . . . . . . . . . . . . . . . . . 0
c1 iγ c2 0 . . . . . . . . . . . . . . . . . . 0
0 c2 −iγ c1 . . . . . . . . . . . . . . . . . . 0
...

...
...

. . .
...

...
...

...
...

...
...

0 . . . . . . c1 iγ c2 . . . . . . . . . . . . 0
0 . . . . . . . . . c2 iγ0 c2 . . . . . . . . . 0
0 . . . . . . . . . . . . c2 −iγ c1 . . . . . . 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

... c1 iγ c2 0
...

...
...

...
...

...
... 0 c2 −iγ c1

0 . . . . . . . . . . . . . . . . . . 0 0 c1 iγ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B1)

In Fig. 6(a) we show the eigenvalues in the complex plane.
The red dots represent the five modes that form the first EPs
of our system. These five modes coalesce in different ways,
as we change γ and form the first EPs. The one in the mid-
dle, i.e., Re(λ) = Im(λ) = 0, is the defect mode. Since we
know which modes form the EPs, we plot the corresponding
bifurcation eigenvalue curves, which show how the system
behaves as a function of a bifurcation parameter (global gain-
loss amplitude here). Hence, if we plot the eigenvalues of the
eigenmodes versus the gain-loss of the system we can find if
there is any preferred point that all the curves meet. In general
there can be many such points or even none.

In Fig. 6(b) we plot the real part (blue lines) and the
imaginary part (red lines) of the eigenvalues as a function
of the gain-loss amplitude of the system while keeping the
gain-loss of the interface channel fixed. Notice that there are
two EPs very close to each other for a gain-loss amplitude at
around 2.015. Both of the EPs are of order three. The exact
value for the first third-order EP is at γEP3 = 2.015 929 3. For
this one, we also plot the difference of the corresponding
mode profiles. Figure 6(c) shows the difference between the
absolute value of their amplitudes as pairs of two. Since there
are three eigenmodes and the corresponding eigenvalues that
coalesce, this is indeed a third-order EP. We refer to the nth
element ud,n of the defect mode |ud〉 and compare it with its
neighboring modes.

Another criterion we use to determine the EP3 is to calcu-
late the cosine of the angle between the corresponding modes
that participate in the creation of the EP3, add them, and then
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FIG. 6. (a) Spectrum of interface lattice for γ0 = 0 in the com-
plex plane. Red dots are the five modes for which we plot the
bifurcation curves. (b) Real (blue lines) and imaginary (red lines)
parts of bifurcation eigenvalue curves vs the gain-loss amplitude of
the lattice, only for the red dots of (a). Green dots represent the EPs.
(c) The difference between the three modes at the first EP3 as pairs
of two. (d) The quantity φ as a function of the gain-loss amplitude of
the lattice. Inset depicts a magnified view around the first EP3, and
as we can see, φ = 0.

subtract them from three. We define this quantity φ as

φ = 3 − (cos θd,d+1 + cos θd,d−1 + cos θd+1,d−1), (B2)

where cos(θi, j ) = |〈ui|u j〉|
‖ui‖‖u j‖ with |ui〉 being the eigenvectors of

H . We expect in the Hermitian case, i.e., γ = 0, φ to be equal
to three while, if there is an EP3, φ must be equal to zero since
the modes are parallel and equal to each other. In Fig. 6(d) we
plot the quantity φ as a function of gain-loss amplitude and
in the inset we can see that indeed it is zero at the expected
value.

APPENDIX C: DEFINITIONS OF PSEUDOSPECTRUM

The pseudospectrum of a system can either be structured
or unstructured as we mentioned in the main text. We have
also explained the advantages and disadvantages of each
one. In this section we present the three different definitions
of unstructured (complex) pseudospectrum that we used to
compute our results, and in order to further demonstrate the
efficiency of our method we compare them. It is crucial to
remember that unstructured/full and complex pseudospectrum
refer to the exact same definition.

If the norm of the operator is the Euclidean norm, which
is always the case for the system that we examine here, the
definition we mentioned in the main text is equivalent to the
following one. The ε pseudospectrum is the set of z ∈ C
such that smin(zI − H ) � ε, where smin denotes the minimum
singular value, computed via singular value decomposition
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FIG. 7. Comparison of the different definitions of pseudospectra for a perturbation ε = 10−5. As we expect, they are equivalent. In each
plot the magenta line is the SVD method, the black dashed line the definition that uses the resolvent of the matrix, and the blue dots the
“poor man’s” pseudospectrum. Finally, the red dots represent the eigenvalues of each lattice. (a) Comparison for the infinite lattice, where we
consider only one Bloch momentum k = −π , at the EP. (b) Same for the finite lattice. Notice that the sizes are the same with (a) since both
lattices exhibit an EP2. (c) Comparison of the methods for the interface lattice. At the center there are three different eigenvalues that coalesce.
As we can see, for such a perturbation only the poor man’s method distinguishes the five eigenvalues close to zero. We compare the sensitivity
due to the order of the EPs by comparing the size between the clouds of these three eigenvalues and the eigenvalues of the other two lattices
(red dashed lines).

(SVD) of the matrix zI − H for every different number z in the
complex plane. It describes how an external perturbation af-
fects our system without performing perturbation theory. This
definition is given in mathematical terms by the following
relation, where σ (H ) denotes the eigenvalue spectrum of the
Hamiltonian,

σε(H ) = {z ∈ C : smin(zI − H ) � ε}, (C1)

and equivalently using the resolvent of the matrix we get the
following definition:

σε(H ) = {z ∈ C :
∥∥(zI − H )−1

∥∥ � ε−1}, (C2)

where ‖(zI − H )−1‖ is the resolvent of the matrix zI − H .
Finally, the so-called “poor man’s” pseudospectrum is the

one we used for our main results. In a more rigorous way it is

σε(H ) = {z ∈ C : z ∈ σ (H + E ) with ||E || � ε}. (C3)

This is the only definition that accounts for structured pertur-
bations.

The comparison between the different methods we men-
tioned above is shown in Fig. 7 for the three different lattices.
Figures 7(a)–7(c) correspond to the infinite, finite, and inter-
face lattice, respectively. As expected, all the definitions are
equivalent. The cloud size of the interface lattice is larger than
the other two (that are equal) due to the existence of an EP3
instead of an EP2.

Now we focus more on Eq. (C3). In particular, for the
infinite and finite lattices we consider perturbations on the
coupling coefficients, i.e., Enm = δn+1,mzn + δn,m+1z∗

m (in or-
der to preserve the PT symmetry), diagonal perturbations
with Enm = δn,mzn, and a combination of the previous two.
The reason is that a full pseudospectrum of the infinite lattice
corresponds to a structured for the finite lattice. In more detail,

we have

Ec =

⎡
⎢⎢⎢⎢⎣

0 z1 0 0 · · ·
z∗

1 0 z2 0 · · ·
0 z∗

2 0 z1 · · ·
0 0 z∗

1 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦, (C4)

where ‘‘c” stands for couplings and for diagonal (“d”) we
have

Ed =

⎡
⎢⎢⎢⎢⎣

z1 0 0 0 · · ·
0 z2 0 0 · · ·
0 0 z3 0 · · ·
0 0 0 z4 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ (C5)

We have to note here that our results for perturbations on the
couplings are the same even when we do not preserve the PT
symmetry.

For the case of the interface lattice we perturb the diagonal
the same way as above, while the coupling constants are as
follows:

Eint
c =

⎡
⎢⎢⎢⎢⎣

0 z1 0 0 · · ·
z1 0 z2 0 · · ·
0 z2 0 z1 · · ·
0 0 z1 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦. (C6)

Until now we have seen results for random perturbations on
the diagonal that do not respect any symmetry. However, one
might ask what happens if they do. Since our system is PT
symmetric we also demand the added diagonal perturbations
to be PT symmetric. In this case the perturbed matrix takes

043219-7
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FIG. 8. Structured pseudospectra σ str
0.01(H ), s = 60 of infinite (black dots) and finite (green dots, N = 200, γ = 2) NHSSH lattices. Red

dots represent the conventional spectra. (a)–(c) correspond to off-diagonal (on coupling constants), on-diagonal, and combined perturbations,
respectively. For each type of perturbations one of the edge states of the finite lattice is shown in the right column with s = 1000 realizations.

the form

EPT
d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z1 0 0 · · · · · · · · · · · · · · · 0
0 z2 0 · · · · · · · · · · · · · · · 0
...

...
. . . · · · · · · · · · · · · · · · ...

0 · · · · · · z(N−1)/2 · · · · · · · · · · · · 0
0 · · · · · · · · · α(N−1)/2+1 · · · · · · · · · 0
0 · · · · · · · · · · · · z∗

(N−1)/2 · · · · · · 0
...

...
...

...
...

...
. . . · · · ...

0 · · · · · · · · · · · · · · · · · · z∗
2 0

0 · · · · · · · · · · · · · · · · · · · · · z∗
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(C7)

where the element E(N−1)/2+1,(N−1)/2+1 = α(N−1)/2+1 has to
be a real number, which is drawn from the standard normal
distribution as the complex numbers zn.

APPENDIX D: STRUCTURED PSEUDOSPECTRUM
OF INFINITE AND FINITE LATTICES

Let us now consider the infinite and finite NHSSH. In
the main text, we showed the corresponding complex pseu-
dospectrum in Figs. 1(a) and 1(b), respectively. Regarding the
structured pseudospectrum, we have calculated three different
types of σ str

0.01(H ), which are shown in Fig. 8. In particular,
Figs. 8(a)–8(c) correspond to coupling [Eq. (C4)], diagonal
[Eq. (C5)] with only the first two diagonal elements random,
and the rest ones as copies of these two, combined perturba-
tions (Ec + Ed ), respectively. In terms of the EP’s sensitivity,
both approaches give us similar results, something that is
expected [53] for symmetric matrices. The difference from
the complex pseudospectra is that the structured perturbations
on the couplings reveal the topological robustness of the edge
states, as is evident from Fig. 8(a).

APPENDIX E: COMPLEX AND STRUCTURED
PSEUDOSPECTRUM

OF THE INTERFACE LATTICE

Now we focus more on the interface lattice and present
some additional results. One of the advantages of the contour

pseudospectrum [Eq. (C1)] is its capability to estimate the
sensitivity of many and different perturbation strengths. In
Fig. 9 we plot the pseudospectrum of the interface lattice using
this method. The perturbation matrix E is a random complex
matrix with size N × N , i.e., E ∈ CN×N and we are at the EP.

Computing the pseudospectral radius ρε around the EP for
all values of ε is straightforward. Our results are shown in
Fig. 10. The inset depicts small values of perturbation strength
ε. As we expect, for small values we get a third root behavior
(blue line) while for higher values the dependence becomes
linear (black line). Retrieving such a result with other tech-
niques can be challenging and time-consuming.

Let us now focus on structured pseudospectra. First, we
examine the case when we perturb only one lattice site. We
choose the lattice site next to the defect one, which is one of
the three that forms the third-order EP. For different values of
real perturbations we study the dependence of the eigenvalues

FIG. 9. The contour plot for different ε pseudospectra of the
interface lattice in the complex plane for γ = 2.015 929 3. Red dots
represent the eigenvalue spectrum of our unperturbed system. This
is the full pseudospectrum of the whole spectrum using the SVD
method we mentioned above. As expected, the sensitivity drops as
we move away from the first gap.
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FIG. 10. Pseudospectral radius as a function of ε ∈ [10−6, 1]
for the interface lattice. The blue line is ≈ε1/3 and is shown for
comparison while the black line is ≈ε. The inset corresponds to
values of ε ∈ [10−6, 10−4] where as we can see, we have excellent
agreement with the third root behavior.

on them. The results are shown in Fig. 11, where the linear
fit corresponds to a line with slope approximately 1/3. We
expected this result since we have a third-order EP in our
lattice.

Secondly, we present our results for diagonal PT -
symmetric perturbations using Eq. (C7). In this case we have

FIG. 11. Logarithmic plot of the dependence of the perturbed
eigenvalue on the single site perturbation strength. Red dots corre-
spond to the eigenvalues for different perturbations and the blue line
is a linear fit. The slope is approximately 1/3 as expected for an EP3.

FIG. 12. Structured pseudospectra σ str
10−6 (H ), s = 1000 of the in-

terface NHSSH lattice for PT -symmetric diagonal perturbations.
(a) and (b) correspond to the unbroken (γ = 2.015) and broken
(γ = 2.0159) regime, respectively. Insets depict the eigenvalue of
the defect mode. As expected, it is perturbed only on the x axis
(black dots) in the unbroken regime, while in the broken regime the
eigenvalues become complex as seen for the three eigenvalues that
form the EP3.

to examine two different regimes: the unbroken and the bro-
ken one. If we are close to the EP and the perturbations
are small enough, then we are at the unbroken regime of
the PT symmetry. However, as we get closer to the EP
and the band gap closes even more, such small perturbations
can lead us to the broken regime. Our results are shown in
Fig. 12. Figure 12(a) corresponds to the unbroken regime,
while Fig. 12(b) corresponds to the broken one.

APPENDIX F: SPECTRAL BIFURCATION CURVES OF
THE DETUNED INTERFACE LATTICE

One important aspect of the systems we consider, which
was partially examined in the last part of the main text, is
the possibility to create two extra lattices from the interface
lattice. By tuning the gain-loss amplitude of the interface
channel γ0, we can effectively induce two different lattices:
a lossy lattice if the interface channel is lossy (γ0 > 0, green),

FIG. 13. Schematic illustration of three different interface lat-
tices. Notice that the only difference is at the interface channel, which
can be lossy (top), gainy (bottom), or neutral (middle). Only the
middle system is PT symmetric.
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FIG. 14. Bifurcation diagram of the (a) Real part, (b) Imaginary
part of the defect mode and its four neighboring modes vs the
gain-loss amplitude for the gainy lattice (γ0 = −0.3). (c) and (d) are
magnified view of the dashed rectangular in (a) and (b) to clearly see
the two different EPs that are formed. Green dots represent the EPs.

and a gainy lattice (γ0 < 0, red) if the interface channel has
gain, as shown in Fig. 13. These two different lattices are a
complex conjugate pair and are not PT symmetric.

The Hamiltonians of these three different lattices are re-
lated. If we denote as HG the gainy Hamiltonian, HL the
lossy one, and finally HN the neutral, the relation between
them is trivially derived, i.e., HN = HG+HL

2 . If we act with
the PT operators on the Hamiltonians, then we get the re-
lations P̂T̂ HG = HL, P̂T̂ HL = HG, and P̂T̂ HN = HN . This is
expected since only the middle lattice HN is PT symmetric
as we mentioned before. Furthermore, the spectra of these
three lattices are quite similar. The real part of the eigenvalues
will be the same for the three lattices and only the imaginary
part will be different, since the new lattices are complex
conjugate.

The bifurcation curves of the gainy lattice are shown in
Fig. 14. As we can see from Figs. 14(c) and 14(d), we first
cross a second-order EP and then the third-order EP. However,
the value for the third-order EP is still the same as it was for
the PT lattice, i.e., γ = 2.015 929 3. Depending on the value
of γ0, the second-order EP is moving either away from the
third order one or towards it. However, it never goes after the
third-order EP. Despite these two EPs being very close to each
other, we can still distinguish the eigenmodes that form them
and their corresponding amplitudes.
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