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Efficient diagnostics for quantum error correction
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Fault-tolerant quantum computing will require accurate estimates of the resource overhead under different
error correction strategies, but standard metrics such as gate fidelity and diamond distance have been shown to
be poor predictors of logical performance. We present a scalable experimental approach based on Pauli error
reconstruction to predict the performance of concatenated codes. Numerical evidence demonstrates that our
method significantly outperforms predictions based on standard error metrics for various error models, even
with limited data. We illustrate how this method assists in the selection of error correction schemes.
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I. INTRODUCTION

Noise is pervasive in quantum processing and must be
overcome to achieve the disruptive capabilities of quantum
computing. Fault tolerance (FT) guarantees reliable logi-
cal quantum computation in the presence of noise under
prescribed conditions often oversimplified as achieving a
threshold on gate error rates. However, achieving low logical
error rates (LERs) in practice is challenging, in part because
of the large overheads required in terms of the number of addi-
tional qubits and gates. Optimizing quantum error correction
(QEC) strategies for a particular platform requires accurate
prediction of its expected logical performance. For instance,
in the presence of biased noise [1–6], tailored codes have been
shown to outperform traditional codes that are designed to
correct unstructured noise. However, bias is only one of the
exponentially many parameters that describe the noise on n
physical qubits. This work addresses the lack of tools for pre-
dicting the logical performance of a fault tolerant architecture
based on a description of noise at the physical level.

The existing framework for choosing a FT scheme is cen-
tered around the threshold theorem [7,8] which provides a
threshold on the physical noise strength below which reliable
quantum computation can be guaranteed. However, directly
applying the theorem to realistic noise has several challenges.
The FT threshold is derived under oversimplified conditions
that implicitly model a physical noise process as an incoherent
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error model with the same diamond distance. This leads to
loose estimates of the logical performance when the noise
has coherence or strong correlations. Another is that diamond
distance, which is usually invoked for assessing error rates in
FT proofs, cannot be measured in a scalable way [9]. It has
been shown that the resource overheads for a fault tolerant
architecture depend critically on the precise relationship be-
tween the architecture and the underlying error model. While
there are several well-studied error metrics, none of them can
accurately predict the LER of a QEC [10]. In this work we
address this crucial deficiency prevalent in all these metrics.

Here, we present a new figure of merit specifically tai-
lored to predict the performance of a class of error correcting
codes, namely concatenated codes, which can be measured ef-
ficiently using experimental protocols. As opposed to average
gate fidelity and diamond distance, our approach captures the
interplay between the physical noise model and the choice of a
fault tolerant architecture. Our method leverages randomized
compiling (RC) [11] to create an effective Pauli noise on
the physical qubits, and then uses noise reconstruction (NR)
techniques [12–14] to estimate Pauli error probabilities. Using
these experimental data, we design a logical estimator that
predicts the total probability of Pauli errors that a code cannot
correct. While exactly computing this quantity is inefficient
for a generic code, we introduce an efficient approximation
for concatenated codes. We provide a bound on the efficiency
and demonstrate the accuracy of our method through numeri-
cal simulations in several noise scenarios of interest. Finally,
as an application, we demonstrate how the logical estimator
pinpoints the selection of a suitable error correcting code for
differing noise environments.

II. BACKGROUND

A wide class of Markovian noise processes is formally de-
scribed by completely positive trace preserving (CPTP) maps
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[15]. There are several inequivalent ways to define the strength
of noise modelled by a CPTP map E . Of these, the two most
widely used to study fault tolerance are the average gate in-
fidelity [16–18]: r(E ) = 1 − ∫

dψ tr[|ψ〉〈ψ | E (|ψ〉〈ψ |)], and
the diamond distance [19–23]: ||E − I||♦ = maxρ ||(E ⊗
I )ρ − ρ||1 . While the average gate infidelity can be effi-
ciently estimated using randomized benchmarking [24–27],
the diamond distance satisfies mathematical properties that
are needed in FT proofs [28–30]. Other standard error met-
rics include the 2-norm [31], Bures distance [32], Uhlmann
fidelity [33], unitarity [34], channel entropy [35,36] and the
adversarial error probability [7]. None of these reflect the
logical performance of a code [10,37].

The net effect of a physical noise process E0 together with
a quantum error correction (QEC) routine using an [[n, k]]
stabilizer code [38] is captured by the effective logical channel
E s

1 [39] acting on an encoded state ρ as

E s
1(ρ) = Rs �s E0(ρ) �s R†

s /Pr(s), (1)

where Pr(s) is the probability of measuring the syndrome
outcome s, �s is the syndrome projector and Rs is the cor-
responding recovery. The average logical channel E1 is given
by [10,40] E1(ρ) = ∑

s Pr(s)E s
1(ρ).

Concatenated quantum codes are a popular family of codes
of increasing sizes [41] often used to guarantee error sup-
pression in fault tolerance proofs [7,42]. Physical qubits of
a code C�+1 are encoded using a code C�, for 1 � � � L−1,
yielding a level-L concatenated code. The recursive encoding
structure is represented by a tree where the ith node at a depth
(L − �) denotes a quantum error correcting code block C�,i.
The subtree of the node is itself a concatenated code, denoted
by C�

�,i, consisting of (n�−1)/(n−1) code blocks. There are
n−1 independent stabilizer measurements corresponding to
each of the code blocks of C�

�,i. The resulting error syndrome
s(C�

�,i) has (n�−1) bits, which can be grouped into subsets of
n−1 bits that are identified by the code blocks. We identify
the subset of syndrome bits obtained by measurements on a
code block C�, j by s(C�, j ).

We consider the following iterative routine for QEC in con-
catenated codes. For each level � = 1, . . . , L: (i) syndromes
are extracted for each code block C�,1, . . . , C�,n, and (ii) a
minimum-weight correction [43] is applied in each case. Al-
though we assume the popular choice of minimum-weight
decoder in (ii), the methods prescribed in this work can be
adapted to any lookup table decoder [44]. The correction
applied at any level depends on the syndrome history of the
code blocks in the lower levels.

The effective channel for a level-� concatenated code can
also be computed in a recursive fashion using Eq. (1) where
E0 is replaced by effective channel on the level-(� − 1) code
blocks, i.e., E s

�−1,1 ⊗ · · · ⊗ E s
�−1,n [39,45]. The performance

of the level-� concatenated code can be quantified [10] by
the infidelity r(E�) = ∑

s Pr(s)r(E s
� ) of the average logical

channel E�. As the number of syndromes grow exponentially
with the number of levels, Monte Carlo sampling techniques
described in Appendix G can be used to estimate this average.

III. METHODS

While the special setting of Pauli errors drastically simpli-
fies the predictability problem, realistic noise processes are
nonetheless poorly described by Pauli error models. To cir-
cumvent this problem, we recall a straightforward application
of RC [11] to FT circuits, that allows us to model the effect
of complex noise processes by simple Pauli errors. In other
words, RC ensures that there is no effect on the LER from
parameters of the physical channel other than the Pauli error
probabilities. The physical twirling gates required to do RC
can be absorbed into the logical gadgets of FT circuits at no
additional cost in overhead.

A. Quantum error correction with RC

We now show how randomized compiling (RC) can be
performed in fault tolerant circuits. Note that a Pauli error
P can be decomposed with reference to a stabilizer code:
P = P SP EP, where SP is an element of the stabilizer group
S , P is a logical Pauli operator in L = N (S )/S , and EP is
an element of N (L)/S , usually called a pure error [45,46].
Unlike pure errors, stabilizers and logical operators commute
with QEC routines. A Pauli error P can be compiled into QEC
resulting in a new quantum error correction routine QEC(P)
in which the input to the decoder corresponding to a syndrome
outcome s is s ⊕ s(P) [47,48].

In fault tolerant circuits, each logical gate G is sand-
wiched between QEC routines. Following the prescription
in Ref. [11], we divide logical gates into two sets: S1 and
S2, calling them easy and hard gates, respectively. A crucial
requirement for S1 and S2 is

G T G
†

QEC = QEC(T )C, (2)

for all easy logical gates C ∈ S1, n-qubit Pauli gates T , and
hard gates G. Recall that QEC(T ) refers to the compilation
of the Pauli gate T in the QEC routine, discussed in the
background section. The previous requirement follows from

GT G
†
QEC = GT G

†
ST ET QEC (3)

= GT G
†
QEC(ET ), (4)

where in Eq. (3) we have used the decomposition of Pauli
gates with reference to a stabilizer code. Note that the expres-
sion G T G

†
in Eq. (4) is guaranteed to be an easy gate for a

choice of easy and hard gate sets in Ref. [11].
Figure 1(a) shows a canonical presentation of a quan-

tum circuit, where the kth clock cycle is composed of an
easy gate Ck and a hard gate Gk , sandwiched between QEC
routines. Noise processes affecting easy and hard gates are
denoted by E1,k and E2,k , respectively. These complex pro-
cesses can be tailored to Pauli errors by inserting Pauli gates
T1,k, T †

1,k, T2,k, T †
2,k . However, to guarantee that they be applied

in a noiseless fashion, we compile them into the existing gates
in the fault tolerant circuit. This is achieved in two steps.
First, T †

1,k and T2,k are compiled into QEC following E1,k ,

resulting in QEC(T †
1,kT2,k ). Second, T †

2,k is propagated across
Gk , and compiled with QEC Ck+1Tk+1, resulting in a dressed

gate CD
k+1 = Gk Tk G

†
k QEC Ck+1 Tk+1. It follows from Eq. (2)
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FIG. 1. Compiling twirling (random physical Pauli) gates into fault tolerant gadgets. Panel (a) shows the noisy gates in the kth clock cycle
of a fault tolerant quantum algorithm presented in the standard form prescribed in Ref. [11]. Twirling gates are inserted in panel (b) to tailor
the noise processes to Pauli errors. These gates are compiled into existing gates by replacing easy gates by their dressed versions in panel (c).

that CD
k+1 is equivalent to quantum error correction followed

by an easy gate.
Figure 1(c) shows the result of compiling all of the twirling

gates into the easy gates and quantum error correction rou-
tines. Note that the compiled circuit is logically equivalent to
the original circuit in the absence of noise. However, in the
presence of noise, the average output of the circuit is dictated
by the performance of QEC(T ) averaged over the different
choices of Pauli gates T . This is what we refer to as QEC in
the RC setting. In practice, this average performance can be
achieved by repeating every iteration (shot) of the algorithm
with a different Pauli operation compiled into the constituent
QEC routines. For the purpose of numerical simulations in
this paper, we have used the performance of the QEC routine
under the twirled noise process, as a proxy to the performance
of QEC in the RC setting.

B. Logical estimator for concatenated codes

With a noise model described by Pauli errors, we first
develop the background needed to define notion of a logical
estimator that can accurately predict the LER. A stabilizer
code and a decoder pair is designed to correct a target
set of errors, called correctable errors [49,50] EC . For an
[[n, k]] code, EC can be partitioned into 2n−k disjoint subsets
EC,1, . . . , EC,2n−k , each of which can be identified with a unique
syndrome measurement outcome. The construction of the set
EC,s closely depends on the choice of a decoder. Recall that the
output of a decoder on input syndrome s is a Pauli recovery
operator Rs, i.e., Rs ∈ EC,s. A key observation to construct ele-
ments in EC,s besides Rs is that any error of the form RsS where
S is an element of the stabilizer group is also correctable, so,
EC,s = {RsS : S ∈ S}. Uncorrectable errors cause the quantum
error correction scheme to fail. We adopt the notation pc to
denote the total probability of correctable errors,

pc =
∑
E∈EC

χE ,E , (5)

and pu to denote the total probability of uncorrectable errors,
pu = 1 − pc. It is easy to note that pu is an upper bound to the
standard infidelity metric which is measured by randomized
benchmarking, i.e., r = 1 − χ0,0:

pu = r −
∑

E∈EC E �=I

χE ,E . (6)

In particular, for Pauli noise processes the following equa-
tions show that pu is exactly the average logical infidelity r:

r = 1 −
∑

E ,E ′∈EC

s(E )=s(E ′ ) , E=E
′

χE ,E ′ (7)

= r −
∑

E ,E ′∈EC , E ,E ′ �=I
s(E )=s(E ′ ) , E=E

′

χE ,E ′ (8)

= pu −
∑

E ,E ′∈EC , E �=E ′

s(E )=s(E ′ ) , E=E
′

χE ,E ′ . (9)

A detailed derivation of Eq. (7) is presented in Appendix A.
The expressions in Eqs. (8) and (9) point out a conceptual
difference between infidelity and the uncorrectable error prob-
ability. While on the one hand, r accounts for the effect of
only the trivial correctable error I, pu on the other hand
captures many more degrees of freedom—including all other
correctable errors in EC . Hence, we expect r to be a worse
predictor of the logical infidelity than pu.

It is generally infeasible to enumerate all the O(4n−k )
correctable errors for an [[n, k]] stabilizer code, to compute
pu exactly. Our logical estimator is the result of an efficient
heuristic to approximate pu, particularly for concatenated
code families. In particular, we use a coarse grained estimate
of the probability of a syndrome outcome—a joint probabil-
ity distribution over O(n�) syndrome bits—calculated as a
product of marginal probability distributions over the n code
blocks at level (� − 1). This procedure is recursed through the
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� levels of the concatenated code. Furthermore, its accuracy is
provably high for uncorrelated Pauli error models.

While for concatenated codes, the number of physical
qubits itself grows exponentially in the size of a code block
n, we can exploit its encoding structure to simplify the com-
plexity of computing pu. However, it turns out that despite
this simplification we cannot exactly compute pu efficiently,
i.e., in time that scales polynomially in the number of physical
qubits. This leads us to resort to a heuristic method for a rea-
sonable approximation of pu for concatenated codes. Here we
present a method to measure and compute an approximation,
denoted by p̃u(C�

� ), to the probability of uncorrectable errors
for a concatenated code C�

� : pu(C�
� ). For ease of notation we

also define the quantities pc(C�
� ) = 1 − pu(C�

� ) and p̃c(C�
� ) =

1 − p̃u(C�
� ).

An error E� for the level-� concatenated code C�
� can be

expressed as a tensor product of Pauli errors E�−1,i for the
level-� − 1 codes C�

�−1,i:

E� =
n⊗

i=1

E�−1,i. (10)

Let us define E� to be a correctable pattern if the above tensor
product corresponds to an encoded version of a correctable

error for the code block C�. For example, E2 = X ⊗ I
⊗6

is
a correctable pattern for the � = 2 concatenated Steane code
since X ⊗ I⊗6 is a correctable error for the Steane code block.

A correctable error E� for the concatenated code C�
�

is either (i) corrected within the lower-level code blocks
C�

�−1,1, . . . , C�
�−1,n, or (ii) has a nontrivial correction applied

by the decoder of the level-� code block C�,1. Let us denote
the contribution to pc(C�

� ) = 1 − pu(C�
� ) from case (i) by �,

while that from case (ii) by 	; so that

pc(C�
� ) = �(C�

� ) + 	(C�
� ). (11)

Case (i) implies that each of the errors E�−1,i are correctable
errors for the codes C�

�−1,i. Therefore, the total probability of
correctable errors in case (i) admits a recursive definition:

�(C�
� ) = pc(C�

�−1,1)pc(C�
�−1,2) . . . pc(C�

�−1,n). (12)

Recall that case (ii) is the total probability of nontrivial
correctable patterns for C�

� , i.e.,

	(C�
� ) =

∑
E ∈EC\I

Pr(E�), (13)

=
∑

E ∈EC\I
Pr(E�−1,1 ⊗ E�−1,2 ⊗ . . . ⊗ E�−1,n),

(14)

where we have used the fact that each correctable error cor-
responds to a pattern according to Eq. (10). A logical error
E�−1,i occurs on the code block C�−1,i whenever the decoder
fails in correcting the physical errors in such a way that the
residual effect of the physical noise process affecting the
qubits of C�

�−1,i and the recovery operation applied by the
decoder results in E�−1,i. Let us denote the probability of
the decoder for C�

�−1,i to leave a residual E�−1,i, conditioned
on the syndrome measurements by PrD[E�−1,i | s(C�

�−1,i )]. We

can rewrite Eq. (14) as

	(C�
� ) =

∑
E ∈EC\I

∑
s(C�

� )

Pr[s(C�)s(C�
�−1,1) . . . s(C�

�−1,n)]

×
n∏

j=1

PrD[E�−1, j |s(C�
�−1, j )], (15)

=
∑

E ∈EC\I

∑
s(C�

� )

Pr[s(C�)|s(C�
�−1,1) . . . s(C�

�−1,n)]

×
n∏

j=1

PrD[E�−1, j |s(C�
�−1, j )]Pr[s(C�

�−1, j )], (16)

where Pr[s(C�)|s(C�
�−1,1) . . . s(C�

�−1,n)] is the conditional prob-
ability of measuring the syndrome outcomes s(C�) on the
code block C� when the outcomes on the lower-level code
blocks C�

�−1,1, . . . , C�
�−1,n are s(C�

�−1,1), . . . , s(C�
�−1,n), respec-

tively. Equivalently,

Pr[s(C�)|s(C�
�−1,1) . . . s(C�

�−1,n)]

= Pr
[
s(C�)

∣∣E s(C�
�−1,1 )

�−1,1 . . . E s(C�
�−1,n )

�−1,n

)]
. (17)

A major hurdle in computing 	 using Eq. (16) is the sum
over an exponentially large set of syndrome outcomes for
the concatenated code. To circumvent this difficultly, we will
apply an efficient heuristic to approximate the probability in
Eq. (17). In essence, we will replace the conditional channel

E s(C�
�−1,i )

�−1,i by the average logical channel Ê�−1,i, which is defined
as

Ê�−1,i =
∑

s(C�−1,i )

Pr[s(C�−1,i )]E s(C�−1,i )
�−1,i [Ê�−2,1 ⊗ . . . ⊗ Ê�−2,n].

(18)

Note that Ê0, j is the physical noise model while Ê1, j is the
exact average logical channel E1, j . However, in general for
� � 2, Ê� is a coarse-grained approximation for the exact
average logical channel E�. In other words, Ê�−1,i is computed
using the knowledge of the syndrome bits measured only at
level � − 1, while assuming the noise model: Ê�−2,1 ⊗ . . . ⊗
Ê�−2,n, that accounts for the average effect of all syndrome
measurements at lower levels.

Replacing the conditional channel E s(C�
�−1,i )

�−1,i in Eq. (16) by

the average channel Ê�−1,i defined in Eq. (C11) allows us to
approximate 	 by 	̃ defined as follows:

	̃(C�
� ) =

∑
E ∈EC\I

∑
s(C� )

∑
s(C�

�−1,1 )

. . .
∑

s(C�
�−1,n )

Pr[s(C�)|Ê�−1,1 . . .

Ê�−1,n]
n∏

j=1

PrD(E�−1, j | Ê�−1, j )Pr[s(C�
�−1, j )], (19)

=
∑

E ∈EC\I

n∏
j=1

PrD(E�−1, j | Ê�−1, j ). (20)

Denote R[s(C�−1,i ), P] to be the set of n-qubit errors on which
a lookup table decoder for the code block C�−1,i leaves a
residual logical error P when the error syndrome s(C�−1,i)
is encountered. Now PrD(E�−1,i | Ê�−1, j ) can be computed
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recursively:

PrD(E�−1,i | Ê�−1,i )

=
∑

Q∈R[s(C�−1,i ),E�−1,i]

n∏
j=1

PrD(Q�−2, j | Ê�−2, j ). (21)

Note that the probability of leaving a residual error at level 0 is
simply specified by the physical noise model, i.e., PrD(P|Ê0, j )
is the probability of the Pauli error P on the physical qubit
j. This concludes the method to efficiently compute 	̃, an
approximation to 	.

Recall that the total probability of correctable errors is
given by Eq. (11). An approximation to pc(C�

� ), is given by

p̃c(C�
� ) = �̃(C�

� ) + 	̃(C�
� ), (22)

where 	̃ is defined in Eq. (C8), while �̃ is defined in a similar
fashion to Eq. (12):

�̃(C�
� ) = p̃c(C�

�−1,1) p̃c(C�
�−1,2) . . . p̃c(C�

�−1,n). (23)

Using the approximation in Eq. (22), we can efficiently esti-
mate the logical estimator p̃u for concatenated codes.

For i.i.d. Pauli error models with sufficiently small single-
qubit infidelity r0, the quality of approximation is: |r� − p̃u| �
n�+1

C r2+
(dC+1)/2�
0 . Here, dC and nC describe the distance and

the size of a code block of a level-� concatenated code. For
instance, using an i.i.d. depolarizing error model with r0 =
10−3 and the level-2 concatenated Steane code, the above
expression yields |r2 − p̃u| � 5 × 10−10. This is validated by
numerics: p̃u = 4.24 × 10−9 and r2 = 4.20 × 10−9. A de-
tailed derivation of quality of approximation is provided in
Appendix C.

Notably, the time complexity of computing p̃u for the con-
catenated code: O(4nC+� n�), scales polynomially in the total
number of physical qubits n�, whereas an exact computation
of pu would scale doubly exponentially in �. We will now
prove this statement.

Recall that p̃u = 1 − p̃c(C�
� ), where p̃c(C�

� ) is an approxi-
mation to the total probability of correctable errors. Note that
p̃c(C�

� ) = �̃ + 	̃ where both �̃ and 	̃ are defined recursively.
So, if computing p̃c(C�

� ) takes time τ� and computing 	̃ takes
time κ�, we have

τ� = n τ�−1 + κ�. (24)

The recurrence relation in Eq. (C8) for computing 	̃(C�
� ) im-

plies

κ� = 4n κ�−1 + O(4n), (25)

= O(4n+� n�). (26)

Using the above solution in Eq. (24), we find that

τ� = O(4n+� n�). (27)

The last equation establishes that computing logical esti-
mator is linear in the total number of qubits i.e., n�.

IV. RESULTS AND DISCUSSION

We provide numerical evidence to highlight the improve-
ment offered by our methods developed for optimizing FT
schemes. We begin with the task of accurately predicting
the performance of concatenated Steane codes. We perform
numerical simulations of QEC in the RC and non-RC settings
under a large ensemble of random CPTP maps applied to the
physical qubits. Following Ref. [10], we generate a single
qubit CPTP map E from its Stinespring dilation: a random
unitary matrix U of size (8 × 8), given by U = e−iHt for a
complex Hermitian matrix H whose entries are sampled from
a Gaussian distribution of unit variance, centered at 0. We vary
the time parameter t between 0.001 and 0.1 to vary the noise
strength.

Figure 2 shows that logical error rates can vary wildly
across physical noise processes with fixed infidelity and di-
amond distance in agreement with Ref. [10]. The variation,
captured by the amount of dispersion in the scatter plots, is
quantified using the ratio of the maximum and the minimum

FIG. 2. Predictability of logical infidelity for level-2 concatenated Steane code. Figures 1(a) and 1(b) compare the predictive powers of our
logical estimator (red) against two standard error metrics (gray): the average gate infidelity (a) and the diamond distance (b), under an ensemble
of 18 000 CPTP maps. Each point p = (xp, yp) corresponds to a physical noise process; xp is its physical error metric and yp, its LER. The
dispersion of points, quantified as � in the insets, indicates the predictive power of the physical error metric. While LERs can vary over several
orders of magnitude with respect to standard error metrics, our logical estimator is strongly correlated with the LER. (c) Correlated Pauli error
model.
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LERs across channels of similar physical error rate, denoted
by �. In other words, we partition the range of physical error
rates into bins bi and use �(bi ) to quantify the amount of dis-
persion: �(bi ) = (1/|bi|) (maxp∈bi yp)/(minp∈bi yp), where
|bi| is the number of channels in the bin bi. The large fluctua-
tions in the LERs can be attributed to two extreme features of
the error metrics. While infidelity controls only one parameter
out of the many that specify a noise process, diamond distance
suffers from being sensitive to the details of a noise process
that are irrelevant to the LER. In addition, standard error met-
rics can only reveal intrinsic properties of the underlying noise
process that are agnostic to the choice of an error correcting
code.

Logical estimator with RC, in contrast, is highly correlated
with the LER. This improvement can be attributed to two
features. First, RC provides a drastic reduction from O(12n)
parameters that specify an n-qubit Markovian noise process to
O(4n) Pauli error probabilities. Second, unlike standard error
metrics, p̃u carefully accounts for Pauli error probabilities that
contribute to the LER. Numerical evidence for drastic gains in
predictability using the logical estimator with RC for the class
of coherent errors is presented in Appendix D.

The special setting of i.i.d. noise hides the drastic advan-
tages provided by p̃u in predicting logical infidelity because
the dominant contribution to p̃u comes from χ0,0, which is
also well captured by r. However, for correlated error-models,
given only χ0,0, the uncertainty on the LER ranges between
extremities 0 and 1. While r is completely insensitive to either
of these scenarios, p̃u in contrast helps distinguish between
them, thereby providing a far more accurate estimate of the
LER.

We support the above argument by numerical studies
of correlated Pauli error models generated from a con-
vex combination of an i.i.d process of infidelity r0 and
multiqubit interactions. While the i.i.d. component Eiid is
specified by single qubit error probabilities, multiqubit inter-
actions are specified by an arbitrary subset S, so, Ecor(ρ) =∑

P∈S χP,PP ρ P, where χP,P is sampled from the normal dis-
tribution with mean and variance 4nr0. The combined Pauli
error model is therefore given by E (ρ) = qEiid(ρ) + (1 −
q)Ecor(ρ), where 0 � q � 1. Explicitly setting χ0,0 followed
by appropriate normalization, ensures that the infidelity of the
above noise model is r0. Figure 2(c) highlights the importance
of the p̃u over r for predicting the performance of the concate-
nated Steane code under correlated Pauli noise processes.

A. Limited noise reconstruction data

Even in the absence of correlations across the n-qubit code
blocks of a concatenated code, we require O(4n) Pauli error
rates from NR to compute p̃u. Extracting this exponential
sized NR dataset is a challenge for experimentalists. Refer-
ences [14,51] describe how to extract the leading K Pauli error
probabilities in a noise process, where K � 4n. We want to
combine a handful of leading Pauli error rates extracted by
NR with a simple method to extrapolate the remaining ones.
For a Pauli error Q that is not given in the NR dataset we set

Pr(Q) = (1 − r0)n−wt(Q)(r0/3)wt(Q), (28)

where wt(Q) is the Hamming weight of Q, and r0 is derived
from the infidelity of the noise process: r = 1 − (1 − r0)n. We

FIG. 3. Accuracy of the logical estimator based on limited NR
data, using a level-2 concatenated Steane code for an ensemble
of about 15 000 random correlated Pauli channels. The accuracy,
quantified by �, improves sharply with the number of Pauli error
rates (K) extracted using NR. We observe that for K = 200, which
is about 1.2% of all Pauli error rates on the Steane code block, the
accuracy closely matches the logical estimator computed using all
NR data, i.e., K = 47.

construct an adversarial error model where the above extrap-
olation is unlikely to perform well by setting some multiqubit
error probabilities that violate Eq. (28). Furthermore, when
errors are sampled uniformly from the set of correctable and
uncorrectable errors, we observe maximum fluctuations in the
LER. However, Fig. 3 presents strong numerical evidence
indicating that the simple extrapolation works well in practice
even for the adversarial example.

B. Code selection

Selecting a quantum error correcting code that has the
smallest LER under an existing physical noise process is
a crucial step in optimizing resources for fault tolerance.
To demonstrate the efficacy of the logical estimator for this
problem, we consider an example of an error model and
two different error-correcting codes: (i) concatenated Steane
code and (ii) concatenated version of a [[7,1,3]] code used in
Ref. [2] that we refer to as a Cyclic code. The error model
is obtained from a Pauli twirl on the i.i.d. application of
the CPTP map E : ρ → pIρ + ∑

Q∈{X,Y,Z} pQe−iθQρeiθQ,
where pX = rX (1 − rZ ), pZ = rZ (1 − rX ), pY = rX rZ , pI =
1 − pX − pY − pZ and set a bias specified by η = rZ/rX .
Based on Ref. [2], we expect the Steane code to outperform
the Cyclic code in one noise regime, and the converse in a
different regime. Our tool is successful if it produces a lower
value of p̃u for the code with lower logical infidelity, for any
noise rate. Last, to compute the logical estimator as well as
the LER estimates, we use a bias-adapted minimum-weight
decoder that assigns weights η, η, and 1 to each Pauli error of
type X , Y , and Z , respectively.
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FIG. 4. Using the logical estimator to select an optimal code.
The figure demonstrates the use of our tool in selecting an optimal
error correcting code under a biased Pauli error model. The choices
of codes include level-3 concatenated versions of the Steane code
and the cyclic code. While the solid lines depict the values of the
logical estimator, the dashed lines correspond to LERs estimated
using numerical simulations. We observe that p̃u accurately selects
the optimal code for all noise rates.

Figure 4 shows that the logical estimator correctly iden-
tifies the optimal code for all values of the physical error
rate (bias). It also replicates the functional form of the LER,
showing that the performance gain from the Cyclic code over
the Steane code increases with the bias.

V. CONCLUSION

We have shown how experimental data from NR, even
limited data, can be used to successfully predict the logical
performance of FT architectures based on concatenated codes.
It can be used to precisely and efficiently estimate the re-
source overhead required to achieve a target logical error rate
[2,52,53] for implementing quantum algorithms. Along with
informing the choice of an optimal code for an underlying
physical noise process, the logical estimator provides direc-
tives for other components in a FT scheme, such as a decoder.
Different lookup table decoders can be compared using our
logical estimator, similar to the work in Refs. [54–56].

Our scheme relies on RC to yield a Pauli error model, and
although in theory this requires twirling with the full Pauli
group, it has been observed that a handful of random compi-
lations of the original circuit are sufficient in practice [57,58].
A natural question that follows is whether RC also mitigates
the impact of physical noise on the logical qubit. There is no
persistent trend across the general class of Markovian noise
processes, and in some cases, RC degrades the performance of
the code. Developing noise tailoring techniques that guarantee
an improvement to the performance as well as predictability
is an interesting problem for future research.

Although the methods and techniques presented in the
paper address generic noise processes, there are a number
of roadblocks in broadening the scope of this study beyond
concatenated codes, where the complexity of computing the
logical estimator grows exponentially with the size of the
code. We have proposed an application for surface codes in

Appendix E. While these results are preliminary, they demon-
strate that our method may find broader application beyond
concatenated codes. Also, further research is needed to extend
these ideas to the context of multiple logical qubits.
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APPENDIX

The purpose of the Appendix is to aid and enhance the
understanding of the main text. It is organized as follows.
Appendix A presents a derivation of an expression for the
logical fidelity for a generic stabilizer code, as a function of
the code properties as well as the parameters of the underlying
physical noise process. In Appendix B, we review key ideas
from randomized compiling (RC) and noise reconstruction
(NR) for understanding our results. Appendix C derives the
accuracy of the logical estimator in estimating the logical error
rate. In Appendix D, we show how our tool improves the
predictability of logical performance under coherent errors.
While the abovementioned studies focus on the family of
concatenated codes, Appendix E discusses how our studies
can be applied to predict the performance of surface codes.
Appendices F and G describe techniques used for numerical
simulations, including importance sampling to yield accurate
estimates of average logical error rates with a reasonable
number of syndrome samples.

APPENDIX A: LOGICAL FIDELITY
AND CORRECTABLE ERRORS

The average logical channel E1, defined in the main text,
summarizes the effect of quantum error correction on a phys-
ical noise process E0 affecting an encoded state ρ. In this
section, we derive a closed form expression for the average
logical channel in terms of the physical channel and the error
correcting code parameters. Similar derivations have appeared
in Refs. [39,40,59]; however, we present ours for the sake of
completeness.

The action of the average logical channel on the logical
state is

E1(ρ) =
∑

s

Pr(s)E s
1(ρ),

=
∑

s

Rs�sE0(ρ)�sRs

=
∑

s

∑
i, j

χi, jRs�sPiρPj�sRs

=
∑

s

∑
i, j

s(Pi )=s(Pj ):=s

χi, jRsPiρPjRs, (A1)
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where in the last line we used the fact that �sPi = Pi�s⊕s(Pi ).
In other words, whenever s �= s(Pi ), the corresponding projec-
tor �s⊕s(Pi ) annihilates the encoded state ρ.

The χ matrix χ of the effective logical channel defined by

E1(ρ ) =
∑
l,m

χ lmPlρPm, (A2)

where Pl and Pm are logical operators of the code; can be
extracted from Eq. (A1).

The total probability of errors successfully corrected by
the decoder: χ00, can be estimated from the following obser-
vation. An error whose syndrome is s is corrected if the net
effect of applying the error along with a recovery prescribed
by the decoder results in an effective action of a stabilizer. In
other words, all the terms in Eq. (A1) where RsPi and PjRs are
stabilizers contribute to χ00. So,

χ0,0 =
∑

E ,E ′∈EC

s(E )=s(E ′ ) , E=E
′

φ(E ) φ�(E ′) χE ,E ′ , (A3)

where E is the logical component in the decomposition of E
with respect to the Stabilizer group and φ(E ) is specified by
Rs(E )E = φ(E ) S for any Pauli error E and some stabilizer S.
The average logical infidelity r is then given by 1 − χ00.

When a Pauli error is not correctable, the effect of applying
a recovery yields a logical operator. Hence, in general,

χ l,m =
∑

E ,E ′∈EC

s(E )=s(E ′ ) , E=E
′

φ(E , l ) φ�(E ′, m) χEPl ,PmE ′ , (A4)

where Rs(E ) |E Pl | = φ(E , l ) S |Pl |, for l ∈ {0, 1, 2, 3}, any
Pauli error E and some stabilizer S. Here |P| stands for the
bare Pauli without any associated global phase.

APPENDIX B: INTRODUCTION TO RANDOMIZED
COMPILING AND NOISE RECONSTRUCTION

Randomized compiling [11] is a noise-tailoring technique
that transforms coherent errors into stochastic errors with little
to no overhead. The basic idea is to insert Pauli randomizing
gates into the layers (called cycles) of a target circuit. To
ensure that the circuit depth remains the same, these gates are
compiled into the existing ones. Figure 5 illustrates the key
steps of Randomized compiling.

It can be shown that averaging over a number of different
compilations nullifies the effect of the coherent parts of the
noise on the results. Since coherent errors grow faster than
stochastic errors, this technique helps mitigate the effect of
noise on the output of the circuit.

Noise reconstruction (NR) is a technique introduced in
Refs. [12–14] to estimate Pauli error probabilities in a phys-
ical noise process. In particular, for a n-qubit physical error
channel E , NR is designed to first estimate the Pauli decay
rates, followed by post processing to obtain Pauli error proba-
bilities.

The diagonal elements in the Pauli Transfer Matrix [60]
of E are denoted by 	(E )i,i = tr[Pi · E (Pi )] for some 1 � i �
4n. The input Pi can be written in its eigenbasis, i.e., Pi =∑

λ cλ|λ〉〈λ|. In its simplest form, the experimental protocol

FIG. 5. Randomized compiling. The top panel shows a bare cir-
cuit with alternating easy and hard cycles. The middle panel shows
insertion of random Pauli gates in between easy and hard cycles. The
bottom panel shows that the extra randomization gates are compiled
into the existing gates resulting in a random compilation of the bare
circuit [11].

for NR can be summarized as follows. For each eigen value
cλ of the Pauli matrix Pi, we prepare an input in |λ〉, apply
two sequences, one of m1 random Pauli gates Q1, . . . , Qm1 ,
and likewise, another of m2 such that their product is the
identity operation. At the end of the sequence, we measure
the output in the eigenbasis of Pi, implying that the survival
probability of the input state is solely affected by a unique
Pauli error, and it decays exponentially with the sequence
length. In summary, we find two exponential decay laws, one
where the survival probability of the input state is given by
A f m1

i + B and other, A f m2
i + B, where fi = tr[PiE (Pi )] is the

decay rate of the Pauli whose eigenstate matches the input,
and A is the error associated with faulty state preparation and
measurement, a.k.a., SPAM. Solving the above equations for
unknowns yields the quantity of interest: fi. This decay pa-
rameter can be used to obtain the probability pi of error Pi

using the Walsh–Hadamard transform.

APPENDIX C: APPROXIMATION QUALITY FOR THE
UNCORRECTABLE ERROR PROBABILITY

In this section, we will quantity the accuracy of the ap-
proximating the uncorrectable error probability using p̃u for
concatenated codes. For simplicity, we will assume that the
code blocks in the concatenated code are all identical, and
equal to a [[n, 1, d]] quantum error correcting code, with
d � 3. Recall that the distance of a level-� concatenated code
scales as d�. We will use t� = 
(d� + 1)/2� to denote the
Hamming weight of the smallest uncorrectable error. Recall
that p̃u is defined recursively as the sum of two quantities: Q̃1

and Q̃2. We will use δ� to denote the inaccuracy in computing
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pu for a level-� concatenated code,

δ� = |pu(C�
�,1) − p̃u(C�

�,1)|, (C1)

and γ� to denote the inaccuracy in computing 	,

γ� = |	̃(C�
� ) − 	(C�

� )|. (C2)

Then it follows that

δ� � nδ�−1 + γ�. (C3)

The most important ingredient in computing δ� is γ�, defined
in Eq. (C2). For simplicity we will compute γ� for the i.i.d.
depolarizing error model. However, for generic i.i.d. Pauli
error models, we can replace the depolarizing rate p in our
analysis by the physical infidelity of the single qubit error
model, r0. The extension to correlated Pauli error models
remains unclear.

An i.i.d. application of the depolarizing channel on n-
qubits can be described by

E (ρ) =
∑

P ∈Pn

χP,PP ρ P, such that χP,P

= (1 − p)n−|P|
(

p

3

)|P|
, (C4)

where Pn is the n-qubit Pauli group, 0 � p � 1 is the depo-
larizing rate, and |P| is the Hamming weight of the Pauli error
P. In this case, we will show that

γ� = O(n�−1 pt�−1+2), (C5)

for a level-� concatenated code.
Combining Eq. (C5) with Eq. (C3), we arrive at an expres-

sion for δ�:

δ� = O(n�−1 p2+
(d+1)/2�), (C6)

where d is the distance of a code block.
In the rest of this section, we will derive Eq. (C5). Recall

the following Eq. (C8) that outlines the approximation made
by the heuristic to compute 	(C�

� ):

	̃(C�
� ) =

∑
E ∈EC\I

∑
s(C� )

∑
s(C�

�−1,1 )

. . .
∑

s(C�
�−1,n )

Pr[s(C�)|Ê�−1,1 . . . Ê�−1,n]
n∏

j=1

PrD(E�−1, j | Ê�−1, j )Pr[s(C�
�−1, j )], (C7)

=
∑

E ∈EC\I

n∏
j=1

PrD(E�−1, j | Ê�−1, j ). (C8)

It involves replacing the knowledge of conditional channels E s
�−1, j by the average channel, Ê�−1, j . We will prove the scaling

in Eq. (C5) two steps. First, is an observation that

n∏
j=1

PrD(E�−1, j |Ê�−1, j ) = O(pt�−1 ). (C9)

This follows from the fact that at least one of the errors E�−1, j in the error pattern E�−1,1 ⊗ . . . ⊗ E�−1,n must be nonidentity.
Note that a nonidentity logical error is left as a residual when the decoder for the subsequent lower level fails. Such an event will
not occur for errors whose weight is below t�−1.

Second, by showing that

Pr
[
s(C�,i)|E s(C�

�−1,1 )
�−1,1 . . . E s(C�

�−1,n )
�−1,n

] n∏
i=1

Pr[s(C�
�−1, j )] = Pr[s(C�,i)|Ê�−1,1 . . . Ê�−1,n]

n∏
i=1

Pr[s(C�
�−1, j )] + O(n�−1 p2). (C10)

Recall from the following equation that the average channel Ê�,i is defined recursively in terms of Ê�−1, j :

Ê�−1,i =
∑

s(C�−1,i )

Pr[s(C�−1,i )]E s(C�−1,i )
�−1,i [Ê�−2,1 ⊗ . . . ⊗ Ê�−2,n]. (C11)

While the term corresponding to s(C�,i) = 0 describes the effect of stabilizers on the input state, the other terms include the effect
of nontrivial errors. Note that the nontrivial error E� has weight at least t�−1, equal to the weight of the smallest uncorrectable
error of the concatenated code C�

�−1, j . Carrying this idea from level � − 1 to level 1, we find

Ê�,i = E s(C�,i )=0
�,i [Ê�−1,1 ⊗ . . . ⊗ Ê�−1,n] + O(pt�−1 ), (C12)

= (Ê�−1,1 ⊗ . . . ⊗ Ê�−1,n) + O(pt�−2 ), (C13)

= (Ê1,1 ⊗ . . . ⊗ Ê1,n�−1 ) + O(pt1 ), (C14)

where in Eq. (C13) we have used the fact that the leading contribution to the conditional channel for the trivial syndrome, is the
physical channel itself. Equation (C14) describes the recursion until level � = 1, where Ê1, j = E1, j .
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Recall that the conditional channel for an error-syndrome s(C�
�−1,i ),

E s(C�
�−1,i )

�−1,i = E s(C�−1,i )s(C�−2,1 )...s(C�−2,n )...s(C1,1 )...s(C1,n�−1 )
�−1,i , (C15)

is defined by applying quantum error correction routines corresponding to the syndrome outcomes in the respective code blocks
of C�

�−1,i. Note that an error is detected (by means of a nontrivial syndrome outcome) in a code block at level � when the decoder
operating on the code block at level � − 1 leaves a nontrivial residue. Hence, for a leading order analysis, we will consider
conditional channels that correspond to trivial syndromes in all the code blocks except for those at level 1, i.e., s(C�,i) = 0 for
all � > 1 in Eq. (C15). In other words, we will consider errors that are corrected within the code blocks in level 1:

E s(C�−1,i )=0, s(C�−2,1 )=0, ..., s(C�−2,n )=0, ..., s(C1,1 )...s(C1,n�−1 )
�−1,i = E s(C1,1 )

1,1 ⊗ . . . ⊗ E s(C1,n�−1 )

1,n�−1 + O(pt1 ). (C16)

Using Eqs. (C14) and (C16), we note that the quality of the approximation in Eq. (C10) can be bounded as follows:

{
Pr

[
s(C�)

∣∣E s(C1,1 )
1 . . . E s(C1,n�−1 )

1

] − Pr[s(C�)|Ê1,1 . . . Ê1,n�−1 ]
} n�−1∏

j=1

Pr[s(C1, j )]

= tr
{
�s(C� ) · [(

E s(C1,1 )
1 ⊗ . . . ⊗ E s(C1,n�−1 )

1

)
(ρ) − (Ê1,1 ⊗ . . . ⊗ Ê1,n�−1 )(ρ)

]} n�−1∏
j=1

Pr[s(C1, j )], (C17)

=
∑

i

[(
χ

s(C1,1 )
1,1 ⊗ . . . ⊗ χ

s(C1,n�−1 )

1,n�−1

)
i,i − (χ̂1,1 ⊗ . . . ⊗ χ̂1,n�−1 )i,i

]
tr[�s(C� ) · PiρPi]

n�−1∏
j=1

Pr[s(C1, j )], (C18)

� n�−1 max
s ∈Zn−k

2

∣∣∣∣χ s
1 − χ̂1

∣∣∣∣
∞Pr(s), (C19)

where χ s
1 refers to the χ matrix of the conditional channel E s

1

while χ̂1 refers to the χ matrix of the average channel Ê1. In
Eq. (C19), we have used the matrix norm ||A||∞ to refer to the
maximum absolute value in the matrix.

To establish the scaling in Eq. (C10) it remains to show that

max
s ∈Zn−k

2

∣∣∣∣χ s
1 − χ̂1

∣∣∣∣
∞Pr(s) = O(p2). (C20)

Recall that the effective channel for a given syndrome s: E s
1,

describes the composite effect of the physical noise process
and quantum error correction conditioned on the measure-
ment outcome s. Comparing Eq. (A1) to the general form in
Eq. (A2), we find an expression similar to Eq. (A4):[

χ s
1

]
i,i = 1

Pr(s)

∑
E∈EC
s(E )=s

χPiE ,PiE . (C21)

For the specific case of the depolarizing channel in
Eq. (C4) we can express [χ s

1]i,i, Pr(s) and χ̂i,i as polynomials
in the depolarizing rate p:

[
χ s

1

]
i,i = 1

Pr(s)

n∑
w=1

As
i,w(1 − p)n−w

(
p

3

)w

, (C22)

Pr(s) =
∑

i

n∑
w=1

As
i,w(1 − p)n−w

(
p

3

)w

, (C23)

χ̂i,i =
∑

s

n∑
w=0

As
i,w(1 − p)n−w

(
p

3

)w

, (C24)

where As
i,w is the number of Pauli errors Q of Hamming

weight w on which the action of the decoder leaves a residual
logical error Pi. In other words, Q = PiRsS where Rs is the

recovery operation prescribed by the decoder for the error-
syndrome s and S is any stabilizer. We can use two simple
facts about errors to simplify the coefficients As

i,w. First, since
the only error of Hamming weight zero is the identity which
has s = 0, we find As

i,0 = δs,0δi,0. Second, since all errors of
Hamming weight up to 
(d − 1)/2� are correctable, we find
As

i,w = δi,0As
0,w for all w � 
(d − 1)/2�. Using these simpli-

fications,

[
χ s

1

]
i,i = 1

Pr(s)

[
(1 − p)n−1

(
p

3

)
As

0,1 + O(n2 p2)

]
, (C25)

Pr(s) = As
0,1(1 − p)n−w

(
p

3

)
+ O(n2 p2), (C26)

χ̂i,i = δi,0(1 − p)n + 3n(1 − p)n−1

(
p

3

)
δi,0 + O(n2 p2).

(C27)

It is now straightforward to see that Eq. (C20) follows from
the above set of equations.

In summary, this section establishes that the approxima-
tion used by the heuristic to compute p̃u(C�

�,1), is accurate
to O(n�+1 p2+
(d+1)/2�) for the i.i.d. depolarizing physical
error model with error rate p. To get a sense for this ap-
proximation quality, we can plug in relevant numbers for
an i.i.d. Pauli error model and level-2 concatenated Steane
code: p = 10−3, n = 7, � = 2, d = 3. Numerical simulations
of quantum error correction yield an estimate of the logical
infidelity given by 4.2 × 10−9. The analytical bound sug-
gests that the logical estimator derived from the our heuristic
method agrees with the logical infidelity up to O(10−11).
However, the scaling suggests that the heuristic may not be not
accurate for large codes in the high noise regime. Nonethe-
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FIG. 6. Predicting the performance of level-2 concatenated Steane code under unitary errors. Panels (a) and (b) compare the predictive
powers of our tool (red) with the standard error metrics: infidelity and the diamond distance, respectively, under an ensemble of 16 000 random
unitary channels. These are similar to Figs. 2(a) and 2(b) in the main text. The dispersion in the scatter corresponding to a metric (� in the
insets) is indicative of its predictive power. The gains in predictability offered by our tool is drastic for the above case of unitary errors when
compared to CPTP maps.

less, we have strong numerical evidence to support that
the logical estimator predicts the functional form of logical
infidelity.

APPENDIX D: PREDICTABILITY RESULTS FOR
CONCATENATED CODES UNDER COHERENT ERRORS

Numerical results presented in the results and discussion
section highlight the predictive power of the tools developed
in this work with respect to the standard error metrics, under
random CPTP maps. Although CPTP maps encompass a wide
range of physical noise processes, our method of generating
random CPTP maps does not draw attention to an important
class of noise processes—coherent errors—a special case of
CPTP maps under which the evolution of a qubit is described
by a unitary matrix. They occur due to imperfect control quan-
tum devices and calibration errors [61,62]. Various methods
such as dynamical decoupling [63,64], designing pulses using
optimal control theory [65], and machine learning approaches
[66] are used to mitigate these errors. However, each of these
methods have their shortcomings and unitary errors continue
to form a major part of the total error budget [67–69]. The
methods presented in this paper will be particularly advanta-
geous in these cases.

In this section we highlight the predictive power of our
tool, over standard error metrics, under different coherent
noise processes. We choose a simple class of coherent errors
modeled by an unknown unitary Ui on each physical qubit i, of
the form U = e−i π

2 δn̂·�σ , where δ is the angle of rotation about
an axis n̂ on the Bloch sphere. With a slight loss of generality,
we will consider n-qubit unitary errors of the form ⊗n

i=1Ui. We
control the noise strength by rotation angles δi drawn from a
normal distribution of mean and variance equal to μδ where
10−3 � μδ � 10−1.

Figure 6 shows that logical error rates vary over several or-
ders of magnitudes across coherent errors with noise strength

as measured by standard error metrics such as infidelity and
the diamond distance. In contrast, our tools provide an ac-
curate prediction using the logical estimator. Moreover, we
observe a drastic gain in in predictability using our tools for
this case of unitary errors, when compared to CPTP maps in
Fig. 2 of the main text.

APPENDIX E: PREDICTING THE PERFORMANCE
OF SURFACE CODES

In this section we outline an extension of the techniques to
predict the performance of concatenated codes using the logi-
cal estimator to surface codes. In summary, we make a crucial
ansatz of a concatenated structure for surface codes. This
assumption is motivated by a renormalization group-based
decoding algorithm developed in Ref. [70] whose threshold
is comparable to the optimal decoder. Hence, to define the
logical estimator for surface codes, we must first specify a
concatenated code structure for it.

For simplicity, we will illustrate the definition of the log-
ical estimator using the square lattice rotated planar code
in Ref. [71]. Let us consider the rotated planar code on a
3� × 3� lattice for some integer � > 0, denoted by S3�×3� .
The 3� × 3� square lattice has a self-similar structure in the
bulk (ignoring boundaries) where a choice for the unit cell
is the 3 × 3 lattice that specifies the smallest nontrivial code
S3×3 shown in Fig. 7(a). Based on this observation, we will
construct a concatenated code shown in Fig. 7(b) that will
serve as a proxy for the surface code to compute the logical
estimator. The surface code on the 3 × 3 unit cell, S3×3 forms
the smallest code block of the concatenated code, and there
are � levels in total. Following the notation introduced in
the background section, the resulting concatenated code is:
S3×3 × . . . × . . .S3×3.

It is important to iterate that the concatenated code
S3×3 × . . . × . . .S3×3 and the surface code S3�×3� have
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FIG. 7. Panel (a) shows the stabilizer generators for the 3 × 3 rotated planar code denoted by S3×3. Panel (b) depicts an enforced
concatenated structure on a rotated planar code. The blue, red, and green lattice depict levels 0, 1, and 2, respectively, of the concatenated
code corresponding to the underlying rotated planar code. For concatenated levels � > 1, the generators in panel (a) are replaced by the
corresponding logicals at level � − 1.

fundamentally different encoding structures. Despite this dif-
ference, we use the former concatenated code to define the
logical estimator for the latter surface code. Not to our sur-
prise, we find that the logical estimator for the concatenated
code S3×3 × . . . × . . .S3×3 is significantly different from the
average logical fidelity of the corresponding rotated planar
surface code S3�×3� . In contrast, we find that our heuristic
for computing logical estimator for the surface codes plays
a crucial role in selecting an optimal code. Recall that in the
code selection section, we discussed how the logical estimator
is crucial for selecting an optimal concatenated code for an
underlying error model. In what follows, we have a similar
illustration comparing logical estimators computed for two
different surface codes along with their logical infidelities
estimated through numerical simulations [71]. The underlying
error model is identical to the error model in Fig. 4—the
twirl of a convex sum of rotations with a bias η between
X and Z errors. We now consider two surface codes, one,
S9×12—with the ability to correct more X than Z errors,
and another, S16×9—which corrects more Z than X errors.
The logical estimator verifies the expectation that the S16×9

performs better as the bias for the Z errors increases relative
X errors. Our results are summarized in Fig. 8.

It is important to note that these results are preliminary
and a first step toward efficiently and accurately estimating
the performance of surface codes. We believe that some of the
ideas presented here using the logical estimator would guide
the future research in this direction.

APPENDIX F: NUMERICAL SIMULATION DETAILS

The key steps involved in the simulation of an error
correcting circuit include encoding, syndrome detection and
application of recovery. In our simulations we assume each of
these steps to be perfect and model the noise as an explicit
step after encoding. Since we deal with coherent errors, we
perform a full density matrix simulation. After application of
the noise E to the encoded state ρ, a syndrome s is sampled
with probability tr[�sE (ρ)], where �s is the syndrome pro-

jector. The state after syndrome detection is given by

E (ρ) → ρs = �sE (ρ )�s

tr[�sE (ρ )]
. (F1)

Followed by this, we apply a recovery based on minimum
weight decoding and pass the resulting channel to the next
level of the concatenated code. At the last level �, we calcu-
late the infidelity of the average logical channel. We report
the mean of the infidelity over a large number of syndrome
samples. More details about this procedure can be found in
Refs. [10,37]. Finally, we employ importance sampling for
faster convergence detailed in Appendix G.

So far, we discussed the simulation details for concatenated
codes. Simulating surface codes require a slightly different
machinery due to the difference in code structure. For deriving
the logical error rates in Appendix E, we used a software
package called qecsim [71], which is also based on Monte

FIG. 8. Using the logical estimator to select optimal surface
code. The figure demonstrates the use of our tool in selecting an op-
timal surface under a biased Pauli error model. The choices of codes
include rotated planar code of dimensions 9 × 12 and 16 × 9. While
the solid lines depict the values of the logical estimator, the dashed
lines correspond to LERs estimated using numerical simulations. We
observe that p̃u helps select the optimal code for all noise rates.
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FIG. 9. The figures highlight the rapid convergence rate of the importance sampler as compared to the direct sampler, under CPTP noise
processes in Fig. 6(a) and coherent errors in Fig. 6(b). Each trend line in the figures is associated to a physical noise rate. While different
colors are used to identify different physical error rates, the solid and dashed lines are used to distinguish between the sampling techniques.
Note that while the direct sampler takes a large number to syndrome samples to provide a reliable estimate of r(E�), the importance sampler
achieves this task with far lesser syndrome samples. The speedup offered by importance sampling is quite drastic. The case for r = 4 × 10−3

in Fig. 6(b) is a good example. The direct sampler shows signs of convergence around 107 syndrome samples, whereas the importance sampler
converges with just 104 samples. Notice however that with only 104 samples, the direct sampler underestimates r(E�) by almost two orders of
magnitude.

Carlo simulation of error correcting circuits. The package also
assumes perfect encoding, syndrome extraction and recovery
application similar to the setting for concatenated codes. We
used the minimum weight perfect matching (MWPM) de-
coder to obtain these results.

APPENDIX G: IMPORTANCE SAMPLING

A straightforward technique to estimate the logical error
rate involves sampling syndrome outcomes according to the
syndrome probability distribution for a quantum error cor-
recting code and a physical noise process pair. However,
there are serious drawbacks to this sampling method, due to
the presence of rare syndromes—whose probability is typi-
cally less than the inverse number of syndrome samples. A
detailed account of this can be found in Ref. [10] and in
Sec. 3.3 of Ref. [37]. We briefly review the technique here for
completeness.

In summary the average logical error rate is grossly under-
estimated unless an unreasonably large number of outcomes
are sampled. We will resort to an importance sampling tech-
nique proposed in Ref. [10], to improve our estimate of the
average logical error rate. Previously, similar techniques have
also been discussed for Pauli noise processes in Refs. [72,73].
Instead of choosing to sample the syndrome probability dis-
tribution, we sample an alternate distribution Q(s), which
we will simply refer to as the importance distribution. The
corresponding sampling methods with Pr(s) and Q(s) will
be referred to as direct sampling and importance sampling,
respectively.

The expression for the average logical error rate estimated
by the importance sampler takes the form

r(Ê�) =
∑

ŝ

r(E ŝ
� )

Pr(s)

Q(s)
, (G1)

where ŝ is a random syndrome outcome drawn from the
importance distribution Q(s). The average estimated by im-
portance sampling coincides with r(E�) which is estimated by
the direct sampling technique. The crucial difference between
the two sampling techniques is that the variance of the esti-
mated average can be significantly lowered by an appropriate
choice for the importance distribution Q(s), which in our case,
takes the form

Q(s) = P(s)1/k

Z
, (G2)

where Z is a normalization factor

Z =
∑

s

P(s)1/k, (G3)

and k ∈ (0, 1] is chosen such that the total probability of
nontrivial syndrome outcomes, s �= 00 . . . 0, is above a fixed
threshold λ0, i.e.,

∑
s �=00...0

Pr(s)1/k

Z
� λ0. (G4)

Figure 9 shows that our heuristic for the importance distribu-
tion provides a rapid convergence to r(E�), when compared
to the direct sampling method. Note that the noise processes
in these figures are the same as those used to compare the
predictive powers of physical error metrics in Fig. 2 of the
main text and Fig. 6. Hence, the employment of importance
sampling is key to an honest comparison of the predictive
powers of the physical error metrics.

043218-13



IYER, JAIN, BARTLETT, AND EMERSON PHYSICAL REVIEW RESEARCH 4, 043218 (2022)

[1] P. Aliferis and J. Preskill, Fault-tolerant quantum computation
against biased noise, Phys. Rev. A 78, 052331 (2008).

[2] A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia,
Tailored Codes for Small Quantum Memories, Phys. Rev. Appl.
8, 064004 (2017).

[3] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh Error
Threshold for Surface Codes with Biased Noise, Phys. Rev.
Lett. 120, 050505 (2018).

[4] J. Guillaud and M. Mirrahimi, Repetition Cat Qubits for
Fault-Tolerant Quantum Computation, Phys. Rev. X 9, 041053
(2019).

[5] D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J. Brown,
Fault-Tolerant Thresholds for the Surface Code in Excess
of 5% Under Biased Noise, Phys. Rev. Lett. 124, 130501
(2020).

[6] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[7] P. Aliferis, D. Gottesman, and J. Preskill, Accuracy threshold
for postselected quantum computation, Quantum Info. Comput.
8, 0181 (2008).

[8] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards
fault-tolerant universal quantum computation, Nature (London)
549, 172 (2017).

[9] E. Magesan and P. Cappellaro, Experimentally efficient meth-
ods for estimating the performance of quantum measurements,
Phys. Rev. A 88, 022127 (2013).

[10] P. Iyer and D. Poulin, A small quantum computer is needed
to optimize fault-tolerant protocols, Quant. Sci. Technol. 3,
030504 (2018).

[11] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys. Rev. A
94, 052325 (2016).

[12] A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker,
E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R.
Blatt, Characterizing large-scale quantum computers via cycle
benchmarking, Nat. Commun. 10, 5347 (2019).

[13] S. T. Flammia and J. J. Wallman, Efficient estimation
of Pauli channels, ACM Trans. Quant. Comput. 1, 1
(2020).

[14] A. Carignan-Dugas, I. Hincks, E. Ospadov, D. Dahlen, J.
Skanes-Norman, S. J. Beale, S. Ferracin, J. Emerson, and J. J.
Wallman, The learning and compiled calibration of cycle errors
in quantum computing architectures (unpublished).

[15] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Linear Alg. Appl. 10, 285 (1975).

[16] M. A. Nielsen, The entanglement fidelity and quantum error
correction, arXiv:quant-ph/9606012.

[17] B. Schumacher, Sending entanglement through noisy quantum
channels, Phys. Rev. A 54, 2614 (1996).

[18] M. Raginsky, A fidelity measure for quantum channels, Phys.
Lett. A 290, 11 (2001).

[19] A. Y. Kitaev, Quantum computations: Algorithms and error
correction, Russian Math. Surveys 52, 1191 (1997).

[20] A. Y. Kitaev, Quantum Error Correction with Imperfect Gates
(Springer, Boston, MA, 1997), pp. 181–188.

[21] J. Watrous, Semidefinite programs for completely bounded
norms, Theory Comput. 5, 217 (2009).

[22] A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical
and Quantum Computation, Graduate studies in mathe-

matics (American Mathematical Society, Providence, RI,
2002).

[23] G. Gutoski, On a measure of distance for quantum strategies,
J. Math. Phys. 53, 032202 (2012).

[24] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Distance
measures to compare real and ideal quantum processes, Phys.
Rev. A 71, 062310 (2005).

[25] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad,
J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland,
Randomized benchmarking of quantum gates, Phys. Rev. A 77,
012307 (2008).

[26] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and Ro-
bust Randomized Benchmarking of Quantum Processes, Phys.
Rev. Lett. 106, 180504 (2011).

[27] E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing
quantum gates via randomized benchmarking, Phys. Rev. A 85,
042311 (2012).

[28] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computa-
tion with constant error rate, SIAM J. Comput. 38, 1207 (2008).

[29] K. M. Svore, D. P. DiVincenzo, and B. M. Terhal, Noise thresh-
old for a fault-tolerant two-dimensional lattice architecture,
Quant. Info. Comput. 7, 297 (2007).

[30] P. Aliferis and J. Preskill, Fibonacci scheme for fault-tolerant
quantum computation, Phys. Rev. A 79, 012332 (2009).

[31] B. M. Terhal and G. Burkard, Fault-tolerant quantum compu-
tation for local non-Markovian noise, Phys. Rev. A 71, 012336
(2005).

[32] D. Bures, An extension of Kakutani’s theorem on infinite prod-
uct measures to the tensor product of semifinite w*-algebras,
Trans. Amer. Math. Soc. 135, 199 (1969).

[33] A. Uhlmann, The “transition probability” in the state space of a
*-algebra, Rep. Math. Phys. 9, 273 (1976).

[34] J. Wallman, C. Granade, R. Harper, and S. T. Flammia, Estimat-
ing the coherence of noise, New J. Phys. 17, 113020 (2015).
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