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The persistent spin helix (PSH) is the stable spin state protected by SU(2) spin-rotation symmetry. Long-lived
spin textures, referred to as helical and homogeneous spin modes, emerge as a result of this symmetry. These
textures are potential candidates for the development of quantum and topological phenomena as well as informa-
tion carriers in semiconductors. To this end, revealing the lifetime of all spin modes is of great importance. We
experimentally reveal the lifetime of both helical and homogeneous spin modes in the vicinity of the PSH state
by fully electrical means through quantum corrections to the conductivity. In a (001)-grown GaAs/AlGaAs two-
dimensional electron gas, we measure the weak antilocalization in the condition where Rashba and Dresselhaus
spin-orbit (SO) interactions coexist. According to the latest theory on magnetoconductance [Kammermeier et al.,
Phys. Rev. B 104, 235430 (2021)], the Cooperon triplet mode in the quantum corrections can be decoupled
into helical and homogeneous spin modes in the vicinity of the PSH state, which allows each mode lifetime
to be determined from the quantum interference effect. By using a real-space simulation in tandem with the
experiment, we were able to simultaneously evaluate the relaxation rates of the two spin modes. Our results show
that the ratio of Rashba and Dresselhaus SO coefficients is modulated by the top gate and that this quadratically
changes the relaxation rates of the helical and homogeneous spin modes, which is consistent with theoretical
predictions. These findings pave the way for exploring electron spin textures in various bandgap materials from
semiconductors to metals.

DOI: 10.1103/PhysRevResearch.4.043217

I. INTRODUCTION

A better understanding of spatial spin textures is expected
to usher in a set of concepts in quantum and topological
phenomena in condensed matter physics. In magnetic ma-
terials, magnetic moments form various spatial structures,
including noncollinear, swirling, noncoplanar, and chiral spin
textures, and these are associated with the emergence of exotic
topological effects and states, such as the anomalous Hall
effect [1], topological Hall effect [2,3], chiral domain wall
[4,5], skyrmion [6,7], and chiral-spin rotation [8]. Because
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of the interaction between local magnetic moments and free
carriers, various ways to probe these emergent spin struc-
tures have been established through magnetoelectrical and
magneto-optical effects. In nonmagnetic materials such as
semiconductors, spin-orbit (SO) interaction acts as an effec-
tive magnetic field for electron spin and induces various spin
textures, which also play a critical role in the realization of
the coherent propagation of spin modes [9–18], the topo-
logical spin texture of electrons [19], exotic quasiparticles
[20,21], and the control of light propagation [22]. Despite
the emergence of these fascinating phenomena and physics,
in nonmagnetic materials, the equilibrium charge population
between up and down spins without local magnetic moments
makes it challenging to probe these spin textures.

Two different contributions of SO effective magnetic fields
are believed to play a role in the stabilization of spin textures
in III–V semiconductor heterostructures: the Rashba term
[23] α, which arises from structure inversion asymmetry in a
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FIG. 1. Schematic view of (a) helical and (b) homogeneous spin
textures. (c) Configuration of Rashba (red) and linear Dresselhaus
(blue) spin-orbit (SO) field in a (001)-grown quantum well (QW).
(d) Near the persistent spin helix (PSH) state, total SO field is
dominated by its large y component of SO field B(1)

SO,y (purple) with

SU(2) symmetry, while small x component B(1)
SO,x (orange) breaks the

symmetry and cause D’yakonov-Perel’ (DP) spin relaxation.

quantum well (QW), and the linear β1 and cubic β3 Dressel-
haus terms [24], which arise from bulk inversion asymmetry
in the crystal structure. While the momentum-dependent SO
fields BSO cause D’yakonov-Perel’ (DP) spin relaxation [25],
much research attention has been focused on the situation of
|α| = β1 − β3 in a (001)-grown QW, the so-called persistent
spin helix (PSH) state [9,10]. In this state, a uniaxial SO
field with spin SU(2) symmetry generates unique spin textures
which suppress DP spin relaxation [11] and enable coherent
spin propagation [12]. The induced spin textures under the
PSH state are classified into two modes according to the heli-
cal spin wave vector q: the helical (q �= 0) and homogeneous
(q = 0) modes shown in Figs. 1(a) and 1(b) respectively,
which correspond to the eigenstates of spin-diffusion equation
[10,26–31]. The helical mode is a spatially rotating spin tex-
ture with a spin-rotational plane perpendicular to the uniaxial
SO field [Fig. 1(a)]. The homogeneous mode is a spatially uni-
form spin texture along a uniaxial SO field which is developed
in the plane for a (001) QW [Fig. 1(b)].

By optically exciting nonequilibrium spin polarization per-
pendicular to a QW plane, the evolution of the helical spin
mode is observed via transient spin grating [11] and high-
resolution scanning Kerr rotation microscopy [12,32–35],
while the excitation of the homogeneous spin mode is difficult
through the optical selection rule for a (001) QW. In the case
of QWs grown along other crystal directions, the accessible
spin mode varies depending on the angle between the SO
field and growth direction, but only one of the spin modes
is accessible under optical spin pumping [31,36]. In addition,
the bandgap energy should correspond to the laser wavelength
for the efficient excitation of spin-polarized electrons. This
requirement limits the materials available.

In contrast, the quantum interference effect on magneto-
transport is highly sensitive to spin relaxation for equilibrium
spin population. This can be detected through conductance

modulation by the small out-of-plane magnetic field Bz, re-
sulting in weak localization (WL) and weak antilocalization
(WAL). In the vicinity of the PSH state, the magnetic field
at local minimum of magnetoconductance, denoted as Bdip,
varies with the balance between Rashba and Dresselhaus SO
field and becomes Bdip = 0 at the exact PSH point, resulting
in the transition from WAL to WL [13,15,37]. In this spin-
related interference effect, all the initial spin states contribute
to the conductance modulation. Because both the in-plane
and out-of-plane components contribute, it is reasonable to
assume that both the helical and homogeneous spin modes
can be realized even in a (001) QW. Furthermore, because
WL/WAL correction is a general phenomenon, it applies to
the PSH states in various semiconductor materials. However,
the relation between the WL/WAL signal and the long-lived
spin textures of electrons has not yet been clarified.

Here, we establish an approach for exploring the spin
textures by electrically revealing the lifetime of both helical
and homogeneous spin modes in a III–V semiconductor QW.
Based on the theoretical framework on the quantum correc-
tions to magnetoconductance in the vicinity of the PSH state
[38,39], we found that Cooperon triplet scattering in WAL is
decoupled into helical and homogeneous spin mode contribu-
tions. This separation enables the lifetime of each spin mode
to be quantitatively evaluated; this can be confirmed by real-
space simulations of both quantum interference and optical
spin-mode excitation. Next, we conduct magnetoconductance
measurements in a (001)-grown GaAs/AlGaAs QW. The first
step is to confirm the relative strength of the Rashba and Dres-
selhaus SO coefficients which are so close to the PSH condi-
tion by employing the anisotropic WL against in-plane exter-
nal magnetic field angle in wire structures. Then, in a Hall bar
device, we observe WAL signals in various gate voltages and
analyze the spin-mode lifetime. The evaluated lifetime of both
helical and homogeneous spin modes is in good agreement
with the theoretical calculation. These results are expected to
open pathways for the exploration of the long-lived spin tex-
tures which exist in various semiconductors and nonmagnetic
materials but are not accessible by optical means [40–55].

II. SPATIAL SPIN TEXTURES AND QUANTUM
CORRECTIONS TO CONDUCTIVITY NEAR THE

PERSISTENT SPIN HELIX STATE

In a (001)-grown III–V semiconductor QW, the SO field in
x ‖ [11̄0] and y ‖ [110] orientations is given by [Fig. 1(c)]

BSO = 2k

gμB

{[
(α + β1 − β3) sin θ

(−α + β1 − β3) cos θ

]
+

(
β3 sin 3θ

−β3 cos 3θ

)}

= B(1)
SO + B(3)

SO. (1)

Here, g(<0) is the electron g factor, μB is the Bohr mag-
neton, k is the electron wavenumber, θ is the angle of the
electron momentum from the [11̄0] direction, i.e., kx = k cos θ

and ky = k sin θ . Based on our previous result [56], we as-
sume a Rashba coefficient of α<0 and define the Dresselhaus
coefficients as β1 = −γ 〈k2

z 〉 and β3 = −γ k2
F/4 with a bulk

Dresselhaus coefficient γ (< 0), a Fermi wave number kF,
and 〈k2

z 〉 representing the expected value of the squared wave
number along the growth direction. Figure 1(d) shows the con-
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figuration of the SO field in the vicinity of the PSH state. The
total BSO is slightly tilted from the uniaxial orientation parallel
to ky due to the slight imbalance between α and β1 − β3

and/or cubic Dresselhaus contributions. Nevertheless, BSO is
dominated by large B(1)

SO,y = (2k/gμB)(−α + β1 − β3) cos θ ,
which preserves spin SU(2) symmetry and only contributes
to WL. This uniaxial SO field stabilizes helical and ho-
mogeneous spin modes with helical wave vectors q =
(q0, 0) and (0, 0), respectively [Figs. 1(a) and 1(b)], in
which the pitch of the helix is defined by λ0 = 2π/q0, with
q0 = (2m∗/h̄2)(−α + β1 − β3). In contrast, small B(1)

SO,x =
(2k/gμB)(α + β1 − β3) sin θ and B(3)

SO break the SU(2) sym-
metry of the uniaxial SO field, noted as symmetry-breaking
terms [38]. This results in enhanced spin relaxation and causes
the WAL contribution in quantum corrections to the con-
ductivity. The theoretical expression of the relaxation rate
for helical and homogeneous spin modes are obtained from
eigenvalues of spin-diffusion equation as [30,31]

�heli = 2D
m∗2

h̄4

{
[|α| − (β1 − β3)]2 + 3β2

3

}
, (2a)

�homo = 4D
m∗2

h̄4

{
[|α| − (β1 − β3)]2 + β2

3

}
. (2b)

Here, D is the diffusion constant, m∗ is the effective mass of
electron, and h̄ is the reduced Planck’s constant.

The quantum interference effect originating from WL and
WAL sensitively detects the SO induced spin relaxation in the
time-reversal symmetric path for a moving electron. Among
the many related quantum correction theories which have been
developed for decades, there are various types of analytical
and closed-form expressions for quantitatively evaluating SO
coefficients [38,39,57–63]. Near the PSH state, the closed-
form expression of magnetoconductance has been developed
by taking advantage of the decoupled Cooperon triplet scatter-
ing terms under collinear SO field [38]. We further formulate
the simplified Cooperon spectrum by explicitly considering
the lifetime of helical and homogeneous spin modes [39].
Detailed information for deriving the quantum correction to
the conductivity is shown in Appendix A:

	σ (Bz ) = − e2

4π2 h̄
(�̃singlet − 2�̃heli − �̃homo), (3a)

�̃singlet = �

(
1

2
+ Bφ

Bz

)
− ln

Btr

Bz
, (3b)

�̃heli = �

(
1

2
+ Bφ

Bz
+ h̄

4eDBz
�heli

)
− ln

Btr

Bz
, (3c)

�̃homo = �

(
1

2
+ Bφ

Bz
+ h̄

4eDBz
�homo

)
− ln

Btr

Bz
. (3d)

Here, e is the elementary charge, and � is the digamma func-
tion. Then �̃singlet corresponds to the Cooperon singlet mode,
and �̃heli and �̃homo correspond to the decoupled Cooperon
triplet modes. The characteristic fields Bφ and Btr are given by

Bφ = h̄

4eL2
φ

, (4a)

Btr = h̄

2el2
tr

, (4b)

with the electron phase coherence length Lφ , and the mean
free path ltr . It should be emphasized that �̃heli and �̃homo

are described by the spin-relaxation rate of helical �heli and
homogeneous �homo spin modes. This is because the eigen-
value spectrum of the spin-diffusion equation and the triplet
Cooperon are identical under time-reversal symmetry in the
absence of the magnetic field [27,39,64]. An intuitive picture
explaining the reasons for detecting the lifetime of specific
spin modes among various spin wave vectors is as follows:
The PSH state stabilizes the long-lived spin texture and pro-
longs the lifetime of helical and homogeneous spin modes
over other wave vectors. The spin interference contributing
to the quantum corrections to the conductivity takes place
within the length scale of the spin relaxation. Because of
the large difference in spin relaxation time between the heli-
cal/homogeneous spin mode and other wave vectors, the long
spin lifetime of helical and homogeneous spin modes mainly
contributes to the spin interference. In the case where only
Rashba or Dresselhaus are considered, the lifetime of eigen
spin modes is not so different from the other wave vectors.
Therefore, the averaged spin relaxation on the existing wave
vectors can be determined by the SO field. Consequently, in
the vicinity of the PSH state, the relaxation rate of both helical
�heli and homogeneous �homo spin modes can be evaluated
from the quantum interference effect in Eqs. (3a)–(3d). This
enables us to simultaneously access both helical and homoge-
neous spin textures by electrical means. Note that the optical
Kerr rotation approach is limited because of the difficulty in
detecting both spatial spin textures at the same time [31].

III. MONTE CARLO-BASED REAL-SPACE SIMULATIONS

To confirm that the lifetime of both helical and homoge-
neous spin modes can be clarified through electrical means
in III–V semiconductor heterostructures, we first perform
two independent real-space simulations based on the Monte
Carlo method. One is the WL/WAL correction established by
Sawada and Koga [65], and the other is spatiotemporal spin
dynamics assuming time-resolved Kerr rotation (TRKR) mi-
croscopy (detailed information of the simulation procedures
are shown in Appendix B). In the model of Sawada and
Koga [65], the quantum-interference amplitude is calculated
for numerous closed loops up to 100 000 and converted to
a magnetoconductance curve. Since this simulation captures
all SO fields, near the PSH state can be simulated, and
this can be achieved not only in the diffusive regime but
also in the ballistic regime. We fix the following parameters
for both simulations: carrier density Ns = 3.0 × 1015 m−2,
D = 0.043 m2/s, Lφ = 10 µm, β1 = 2.3 meV Å, and β3 =
0.40 meV Å, while α is varied from −0.75 to −5.7 meV Å. In
Fig. 2(a), the simulated magnetoconductance σ (Bz ) − σ (0) is
plotted as gray circles for various |α|/(β1 − β3) ratios. These
magnetoconductance curves are fitted with Eqs. (3a)–(3d),
setting �heli, �homo and Lφ as fitting parameters [blue lines
in Fig. 2(a)]. The WL/WAL behaviors are well described by
Eqs. (3a)–(3d) in all |α|/(β1 − β3) values. In Fig. 2(d), we
show the extracted mode relaxation rates �heli and �homo (blue
and green circles, respectively) as a function of |α|/(β1 − β3),
exhibiting quadratic behavior against |α|/(β1 − β3) and the
minimum value at the exact PSH point [|α|/(β1 − β3) = 1].
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FIG. 2. (a) Real-space simulated magnetoconductance σ (Bz ) −
σ (0) (gray) and fits with Eqs. (3a)–(3d) (blue) for various spin-
orbit (SO) ratios from |α|/(β1 − β3) = 0.6 to 3.0. Color-scale
plot of spatiotemporal evolution of (b) Sz into helical texture
and (c) Sy into homogeneous texture at |α|/(β1 − β3) = 1 ob-
tained by Monte Carlo simulation. (d) Relaxation rates of helical
�heli (blue) and homogeneous �homo (green) spin textures extracted
from weak localization/weak antilocalization (WL/WAL; circles),
time-resolved Kerr rotation (TRKR) simulation (diamonds), and cal-
culated from Eqs. (2a) and (2b) (dashed line) plotted as a function of
|α|/(β1 − β3).

This is in quantitatively good agreement with the theoretical
values calculated from Eqs. (2a) and (2b) [dashed blue and
green lines in Fig. 2(d)].

Next, we compare the mode relaxation rates obtained
from the WL/WAL simulation to Monte Carlo–based TRKR
microscopy. We initialize an ensemble of spins aligned either
along the z or y direction in Fig. 1(d) to excite the helical or ho-
mogeneous spin mode, respectively. In this simulation, since
one of the spin textures is selectively excited with the nonequi-
librium spin population, we can directly compare the lifetime
of helical and homogeneous spin modes with those evaluated
from the WL/WAL simulation. Initial spins are populated
at time t = 0 in a Gaussian distribution with the effective
sigma width of w0 = 0.71 µm. During the random motion of
electrons, each spin precesses around the SO field within the

mean scattering time τ = 2D/v2
F, where vF is the Fermi ve-

locity. As shown in the color-scale plot of the spatiotemporal
dynamics in Figs. 2(b) and 2(c) for |α|/(β1 − β3) = 1.0, the
spin ensemble aligned along z (y) at t = 0 is developed into a
helical (homogeneous) spatial texture in the x direction by the
uniaxial SO field. We conduct such a spatiotemporal sim-
ulation with different α values (detailed information for
simulating the spatiotemporal spin dynamics is shown in Ap-
pendix C). The mode relaxation rate is directly evaluated by
fitting the spatiotemporal map with the following equations
[30,31]:

Sz(x, y = 0, t ) = w2
0

w2
0 + 2Dt

exp

[
−x2 + 2Dq2

0w
2
0t

2
(
w2

0 + 2Dt
) ]

× exp(−�helit ) cos

(
2Dt

w2
0 + 2Dt

q0x

)
,

(5a)

Sy(x, y = 0, t ) = w2
0

w2
0 + 2Dt

exp

[
− x2

2
(
w2

0 + 2Dt
)]

× exp (−�homot ). (5b)

The obtained �heli and �homo are shown as open blue and
green diamonds in Fig. 2(d), respectively, and are compared
with those from the WL/WAL simulation and theoretical
values. We find good agreement of �heli and �homo be-
tween TRKR and WL/WAL simulation for the entire range
of |α|/(β1 − β3). These results indicate that the helical and
homogeneous spin modes simultaneously govern the spin-
relaxation phenomena in WL/WAL and that the relaxation
rates of these are identical with those in the TRKR simulation.
This is evidence that the relaxation rates of both spin modes
are electrically evaluated via WL/WAL measurement.

IV. MAGNETOCONDUCTANCE MEASUREMENTS

A. Experimental methods

In the experiment, we implemented the proposed elec-
trical detection of the spin-mode lifetime to a 20-nm-thick
GaAs/AlGaAs QW grown on a (001) GaAs substrate. The
Si-doped Al0.3Ga0.7As layer was placed at 10 nm above the
GaAs QW layer to make the QW asymmetric and induce a
small Rashba SO field close to the Dresselhaus SO field. We
processed the wafer into the Hall bar structure with a width
of 20 µm and a length of 160 µm using photo lithography and
wet-chemical etching [Fig. 3(a)]. The channels were covered
with a Cr (30 nm)/Au (100 nm) top gate to tune α and β3

as well as the carrier density Ns [66]. Magnetoconductance
was measured by a sweeping perpendicular magnetic field Bz

and by employing the standard lock-in technique to observe
the WAL at a sample temperature of T = 0.3 K. Modulation
of carrier density through the top gate voltage was confirmed
by Shubnikov–de Haas (SdH) oscillation, successfully modu-
lating Ns from 3.6 × 1015 to 6.5 × 1015 m−2. In addition to
the Hall bar structure, we also fabricated the 800-nm-wide
wire structure by electron beam lithography and reactive ion
etching along the [010] direction [Fig. 3(b)]. This allows us
to confirm that the designed QW is close to the PSH state:
the α/β1 ratio is evaluated through anisotropic WL under
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FIG. 3. Optical micrographs of (a) the Hall bar structure and (b)
the parallel wire structure. (a) Magnetoconductance was measured in
the Hall bar structure to demonstrate the electrical detection of the
spin-mode lifetime. (b) Parallel wire structure was prepared along
[11̄0] (left), [010] (middle), and [110] (right) orientations to measure
the anisotropic weak localization behavior under in-plane external
magnetic field. The [010]-oriented wire was used to evaluate the
spin-orbit (SO) ratio α/β1, as shown in the main text and Fig. 4,
while the [11̄0]- and [110]-oriented wires were for the confirmation
of the SO field direction [68,69]. Inset shows a scanning electron
microscope image of parallel wire structure.

an in-plane magnetic field [67,68]. We prepared 50 parallel
wires to average out the universal conductance fluctuation.
The effective wire width can be evaluated from the resistance
peak before starting the SdH oscillation [68,69]. Because
of the carrier depletion at the sidewalls, the effective wire
width is reduced to 350 nm, which is comparable with or
smaller than ltr = 195 to 1250 nm in given Ns. We fix the
in-plane magnetic field Bin = 2 T and rotate its direction from
θin = 0◦ to 180◦ ([11̄0] to [1̄10]) and measure the magneto-
conductance at T = 1.6 K.

B. Ratio between Rashba and Dresselhaus coefficients from
anisotropic weak localization in wire structures

Since the electrical detection of the spin-mode lifetime
given by Eqs. (3a)–(3d) is applicable near the PSH, we first
evaluate the relative ratio between the Rashba and Dressel-
haus coefficients based on the anisotropic WL behavior under
in-plane external magnetic field in wire structures [67,68].
When the electron spin is laterally confined in a wire with a
width narrower than the spin precession length, DP spin relax-
ation is suppressed due to the unidirectional BSO orientation
on the quasi-one-dimensional (quasi-1D) electron momentum
[70], resulting in WL in the magnetoconductance [71]. The
amplitude of WL is reduced when the applied in-plane mag-
netic field Bin breaks the unidirectional alignment of the total
magnetic field, i.e., Bin ∦ BSO. Therefore, by rotating Bin in
different angles θin, the direction of BSO is directly extracted
from the angle where the WL amplitude is maximized, i.e.,
Bin ‖ BSO (θin = θpeak) [Fig. 4(a)]. In the wire oriented along
the [010] axis, the Rashba BR field and linear Dresselhaus
BD1 field are mutually perpendicular to each other, where
the BR (BD1) points are perpendicular (parallel) to the wire
orientation [Fig. 4(a)]. This BSO configuration enables us to
evaluate the relative strength of Rashba and linear Dresselhaus

FIG. 4. (a) Schematic orientation of Rashba (red), Dressel-
haus (blue), and total spin-orbit (SO) field (pink) and in-plane
external magnetic field (green) for [010]-oriented wire. (b) Three-
dimensional plot of magnetoconductance σ (Bz ) − σ (0) in [010]-
oriented wire structure for various angles of in-plane magnetic field
θin at gate voltage Vg = 0.0 V (Ns = 4.2 × 1015 m−2). (c) Weak local-
ization (WL) amplitude δσ = σ (Bz = 20 mT) − σ (0) is normalized
by its maximum δσmax and plotted (δσ/δσmax) as a function of θin for
carrier densities Ns = 2.9, 4.2, and 6.4 × 1015 m−2. Each signal is
vertically shifted for clarity. (d) The ratio between Rashba and linear
Dresselhaus SO coefficients |α|/β1 as a function of Ns evaluated
from wire measurement (blue) and from SO coefficients on weak
antilocalization (WAL) analysis (pink). In wires, considering that
45◦ < θpeak < 90◦, α < 0 and |α| > β1 are obtained in measured Vg

range. The blue solid line shows the linear assumption of |α|/β1

against Ns [|α|/β1 = R(Ns) = ANs + C].

field α/β1, as simply described in [68,69,72],

α

β1
= − cot(θpeak − 45◦). (6)

The θpeak is defined from the [11̄0] axis. It should be noted
that, because the first- and third-harmonic β3 terms cancel
each other out in the [010] orientation (θ = 135◦), the SO field
is given with only α and β1 [see Eq. (1)].

Figure 4(b) shows the three-dimensional plot of the ob-
tained magnetoconductance σ (Bz ) − σ (0) in various θin at
Vg = 0.0 V (Ns = 4.2 × 1015 m−2). The signals show WL
(the pink solid line), indicating the suppression of DP relax-
ation due to the lateral confinement. In addition, anisotropic
behavior is clearly observed in the WL amplitude against θin

(green curves). We conducted the same analysis in Fig. 4(b)
between Ns = 2.3 × 1015 and 7.2 × 1015 m−2 by changing
the top gate voltage. In Fig. 4(c), the WL amplitude δσ =
σ (Bz = 20 mT) − σ (0) is normalized by its maximum δσmax

and plotted (δσ/δσmax) as a function of θin in different Ns.
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FIG. 5. (a) Measured magnetoconductance σ (Bz ) − σ (0) (gray)
and fits with Eqs. (3a)–(3d) (blue) for various carrier densities from
Ns = 3.6 to 6.5 × 1015 m−2. (b) Full spin-orbit (SO) coefficients
|α|, β1, and β3 as a function of Ns evaluated via weak antilocal-
ization (WAL) analysis in combination with wire measurement. (c)
Pitch of the helical texture λ0 (blue) and phase coherence length
Lφ (orange) plotted against Ns. (d) Relaxation rates of helical �heli

(blue) and homogeneous �homo (green) spin textures extracted from
the fitting of WAL with Eqs. (3a)–(3d) (circles) and calculated from
SO coefficients using Eqs. (2a) and (2b) (square) plotted as a function
of |α|/(β1 − β3). The labeled numerals show the corresponding Ns.

The position of θpeak satisfying Bin ‖ BSO clearly shifts with
Ns [arrows in Fig. 4(c)], indicating the gate modulation of
the |α|/β1 ratio. As shown in the blue circles in Fig. 4(d),
the obtained |α|/β1 based on Eq. (6) varies linearly to Ns

from |α|/β1 = 1.28 to 2.36, close enough to the PSH state
(|α|/β1 = 1). The |α|/β1 ratio can be expressed as |α|/β1 =
R(Ns) = ANs + C by assuming that α is linearly modulated
against Ns, where A = 0.22 × 10−15 m2 and C = 0.86 [the
solid line in Fig. 4(d)].

C. Spin-mode lifetime probed by weak antilocalization
measurement

Then we explore the spin-mode lifetime through WAL in a
Hall bar device. In Fig. 5(a), we plot the measured magneto-
conductance σ (Bz ) − σ (0) (gray circles) with various carrier

densities Ns, where the WAL signal is weakened as Ns de-
creases. This is understood from Fig. 4(d) because the |α|/β1

ratio reaches 1 as Ns becomes lower, corresponding to the
transient regime from WAL to WL due to suppressed spin
relaxation near the PSH state. We fit the experimental WAL
with magnetoconductance correction 	σ (Bz ) described by
the spin-mode relaxation rate in Eqs. (3a)–(3d) and show the
results as blue solids in Fig. 5(a). The WAL fit shows good
agreement with the obtained experiment. The corresponding
relaxation rate for helical and homogeneous spin modes, �heli

and �homo, are extracted (the blue and green circles, respec-
tively) in Fig. 5(d). The |α|/(β1 − β3) in the horizontal axis
of Fig. 5(d) will be discussed and quantitatively evaluated
later in Fig. 5(b). The value for �homo is higher by a factor of
two than that for �heli, which is consistent with Eqs. (2a) and
(2b), and the quadratic dependence to the Rashba coefficient
α is well reproducible. These features capture the expected
dependence of the mode relaxation rate simulated in Fig. 2(d)
and strongly indicate that the helical and homogeneous spin
modes govern the WAL phenomena near the PSH state. It
should be noted that the largest contribution to the quantum in-
terference correction is always given by the longest-lived spin
states described by eigenvalues of the spin-diffusion equation.
Near the PSH state, these spin states correspond to helical
and homogeneous spin modes whose spin textures are well
defined and stably exist. However, it should be noted that these
spin states have a much shorter lifetime and a different texture
when they exist far from the PSH state, where there is only the
Rashba or Dresselhaus SO field, for example.

To further confirm the accuracy of the obtained mode relax-
ation rates, we quantitatively evaluate Rashba and Dresselhaus
coefficients for the theoretical �heli and �homo. Evaluating
all SO coefficients in the vicinity of the PSH is not straight
forward due to multiple variables for fitting with quantum
correction theory, involving ambiguity for extracted SO co-
efficients. To avoid this, we use the |α|/β1 ratio of the wire
to replace |α| with R(Ns)β1 in Fig. 4(d) and evaluate the
bulk Dresselhaus coefficient γ (<0) from the entire WAL
results in a Hall bar (details of the fitting procedure are
shown in Appendix D). We obtain γ = −8.4 eV Å3, which is
consistent with the previous results [17,56]. Next, we fit the
individual WAL data with |α| and Lφ as free fit parameters
for each Ns while keeping γ = −8.4 eV Å3 as a constant
(details of the fitting procedure are shown in Appendix D).
All the SO coefficients (|α|, β1, β3) can be fully evalu-
ated, as summarized in Fig. 5(b), where |α| and β3 increase
almost linearly with increasing Ns, while β1 remains con-
stant. Figure 5(c) shows the pitch of the helical texture λ0 =
2π/q0 = (π h̄2/m∗)/(−α + β1 − β3) calculated from SO co-
efficients, together with the phase coherence length Lφ . These
SO coefficients in Fig. 5(b) are consistent with the values
from the wire measurement by comparing the |α|/β1 ra-
tio (the pink squares) in Fig. 4(d). By confirming that the
SO coefficients are successfully obtained, the theoretical val-
ues of mode relaxation rates are calculated using Eqs. (2a)
and (2b) and are plotted as open blue and green squares in
Fig. 5(d). The relaxation rate of helical and homogeneous
spin modes revealed from WAL in Eqs. (3a)–(3d) is quan-
titatively in good agreement with the theoretically expected
values for the whole Ns range. These results strongly in-
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dicate that both helical and homogeneous spin modes are
reliably evaluated through WAL analysis in magnetotransport
measurements.

The above discussion on the lifetime of spatial spin textures
is also applicable in the previously reported magnetoconduc-
tance results such as Refs. [15,38]. In these results, Rashba
coefficient α and carrier density (i.e., cubic Dresselhaus co-
efficient β3) are independently tuned through top and back
gates in GaAs QWs, and the clear transition from WAL to WL
due to strongly suppressed spin relaxation is observed around
the exact PSH point. When the SO field reaches the exact
PSH point (|α| = β1 − β3), corresponding to that the cubic
Dresselhaus term becomes dominant in total spin relaxation
phenomena, the crossover of two spin-mode relaxation rates
from �heli < �homo to �heli > �homo would be expected [see
Eqs. (2a) and (2b)]. For a reliable parameter fitting, however,
it is desirable that the electron phase coherence time is still
larger than the spin-mode lifetime so that the WAL appears in
the magnetoconductance signal.

V. OUTLOOK AND CONCLUSION

In this paper, we experimentally clarify the relation be-
tween the magnetoconductance signal and the helical and
homogeneous spin mode in the vicinity of PSH state. These
results incite an interpretation of WL/WAL correction to
the conductivity based on the long-lived spatial electron
spin textures. The spatial spin textures are fundamental fea-
tures for further understanding of spintronic, quantum, and
topological phenomena in condensed matter physics. Pre-
viously, these spin textures in nonmagnetic semiconductor
heterostructures have been mainly investigated in optically
spin-polarized electron packet. Our results on electrical eval-
uation of the spin-mode lifetime indicates that the long-lived
spatial spin textures play an important role not only in
spin-polarized electron ensemble but even in the equilibrium
electron spin population without any spin polarization such
as those in magnetoconductance measurement. This approach
enables us to simultaneously access both helical and ho-
mogeneous spin modes. Moreover, since it does not require
any optical measurement, it is applicable in many different
materials.

Promising candidates for applying this approach are the
narrow bandgap semiconductor heterostructures, e.g., InGaAs
[13,37], InAs [40], and InSb [41,42]. Because of the small
bandgap, optical excitation of nonequilibrium electron spin
polarization is difficult in these materials. In addition, re-
cently, the existence of the PSH state was theoretically
predicted in a number of materials such as LaAlO3/SrTiO3

interface [43], wurtzite nanowires [18,44], ferroelectric thin
films [45–49], ferroelectric oxide materials [50–52], and other
materials discussed in Refs. [53,54]. The electrical switching
of the PSH at room temperature is demonstrated using the
circular photogalvanic effect in a van der Waals ferroelectric
halide perovskite in Ref. [55]. We envision a possibility to
explore the long-lived spatial spin textures in these materials
by employing the experimental approach of WL/WAL mea-
surement discussed in this paper.

In conclusion, we revealed the lifetime of the long-lived
spin textures in the vicinity of the PSH state by the quantum

corrections to the conductivity in a (001)-grown III–V semi-
conductor heterostructure. We first performed the real-space
simulations of magnetoconductance correction and spatiotem-
poral spin dynamics assuming TRKR microscopy. Both
helical and homogeneous spin modes governed the WAL,
whose mode lifetimes are identical to the spin-relaxation time
in the TRKR simulation. Next, we conducted the magneto-
conductance measurement to analyze WAL in a (001)-grown
GaAs/AlGaAs two-dimensional (2D) electron gas. Based on
the discussion in the real-space simulations, the mode re-
laxation rates of helical and homogeneous spin modes are
experimentally evaluated. A quantitative agreement of the
obtained mode relaxation rates with those theoretically cal-
culated from SO coefficients confirms that we reliably reveal
the lifetime of SO induced spin textures by electrical means.
Since this approach allows access to the long-lived spin tex-
tures without requiring any optical measurements, it can be
applied to various semiconductors and nonmagnetic materials
[40–55].
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APPENDIX A: DERIVATION OF
MAGNETOCONDUCTANCE CORRECTION DESCRIBED
BY THE LIFETIME OF HELICAL AND HOMOGENOUS

SPIN MODES

In the diffusive regime, the quantum correction to the con-
ductivity is described by using the Cooperon singlet and triplet
scattering terms [39,73]:

	σ = − e2D

2π2h̄

∫ 2π

0

dθ

2π

∫ 1/
√

Dτ

0
qdq

[
− 1

E0(q)
+

3∑
i=1

1

Ei(q)

]
.

(A1)

Here, D is the diffusion constant, τ is the mean scattering
time, and q = (qx, qy) = q(cos θ, sin θ ) is the wave vector.
The singlet eigenvalue E0 is given by

E0 = Dq2 + 1

τφ

. (A2)

The triplet eigenvalues Ei (i = 1, 2, 3) are sensitive to the
SO field. Near the PSH state with −α ≈ β1 − β3, the triplet
scattering modes can be decoupled, and their eigenvalues are
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FIG. 6. (a) The Cooperon triplet eigenvalues Ei (i = 1, 2, 3) and
(b) their inverse 1/Ei as functions of the wave vector ratio qx/q0

at Rashba coefficient α = −2.7 meV Å and Dresselhaus coefficients
β1 = 2.3 meV Å, β3 = 0.40 meV Å.

approximated by three parabolic functions:

E1 = Dq2
x + Dq2

y + 1

τφ

+ �homo = Dq2 + 1

τφ

+ �homo,

(A3a)

E2,3 = D(qx ± q0)2 + Dq2
y + 1

τφ

+ �heli. (A3b)

As shown in Fig. 6(a), E1 shows its minimum �homo at
q = 0, while E2,3 show their minima �heli at qx = ∓q0, re-
spectively, which correspond to the relaxation rates of helical
and homogeneous spin modes. It is worth noting that the
Cooperon is closely related to the spin-diffusion equation
[27,39]. In Fig. 6(b), the inverse of the eigenvalues 1/Ei are
plotted with the integration range of Eq. (A1) (color-shaded in
light blue). In the diffusive regime (q0 � 1/

√
Dτ ), the entire

peak region is inside the integration range, and the calculation
result is insensitive to the peak shift of ±q0 in E2,3. This
assumption enables us to neglect this wave vector shift and
simplify the expression of E2,3 in Eq. (A3b):

E2,3 ≈ Dq2
x + Dq2

y + 1

τφ

+ �heli = Dq2 + 1

τφ

+ �heli. (A4)

When the perpendicular magnetic field Bz is applied, q be-
comes no longer continuous due to the Landau quantization; it
is important to consider this for accurate modeling of the WAL
[39]. Therefore, we replace the integral over q in Eq. (A1) by
the sum over Landau level n:

1

2π

∫ 1/
√

Dτ

0
qdq → 1

4π

4eBz

h̄
. (A5)

Here, we use the relation q2 = (4eBz/h̄)(n + 1/2). The upper
cut-off of the sum is nm = h̄/(4eBzDτ ) = Btr/Bz. By substi-
tuting Eq. (A5) into Eq. (A1), we obtain

	σ = − e2D

4π2h̄

4eBz

h̄

nm∑
n=0

(
− 1

En,0
+

3∑
i=1

1

En,i

)
. (A6)

The Cooperon singlet and triplet eigenvalues in Eqs. (A2)–
(A4) are also rewritten using n as

En,0 = 4eDBz

h̄

[(
n + 1

2

)
+ Bφ

Bz

]
, (A7)

and

En,1 = 4eDBz

h̄

[(
n + 1

2

)
+ Bφ

Bz
+ h̄

4eDBz
�homo

]
, (A8a)

En,2 = En,3 = 4eDBz

h̄

[(
n + 1

2

)
+ Bφ

Bz
+ h̄

4eDBz
�heli

]
.

(A8b)

From Eq. (A6) to Eqs. (A8a) and (A8b) and the relation∑nm
n=0 1/(n + a) = −�(a) + ln nm, the final expressions of

the magnetoconductance shown in Eqs. (3a)–(3d) are derived:

	σ (Bz ) = − e2

4π2h̄
(�̃singlet − 2�̃heli − �̃homo), (A9a)

�̃singlet = �

(
1

2
+ Bφ

Bz

)
− ln

Btr

Bz
, (A9b)

�̃heli = �

(
1

2
+ Bφ

Bz
+ h̄

4eDBz
�heli

)
− ln

Btr

Bz
, (A9c)

�̃homo = �

(
1

2
+ Bφ

Bz
+ h̄

4eDBz
�homo

)
− ln

Btr

Bz
. (A9d)

Equations (A9a)–(A9d) are a (001)-QW case of the general
quantum correction model near the PSH state in Ref. [39], and
it is also equivalent to the expression derived by Weigele et al.
[38].

As shown in Fig. 7, the total magnetoconductance
curve 	σ (Bz ) (black bold) consists of three terms: a
singlet term −e2�̃singlet/4π2 h̄ (orange), a triplet helical
term 2e2�̃heli/4π2h̄ (blue), and a triplet homogeneous term
e2�̃homo/4π2h̄ (green). The factor 2 in the helical term is
because this term corresponds to two Cooperon triplet eigen-
values E2 and E3. As out-of-plane magnetic field Bz increases,
the singlet term reduces the conductivity, while the triplet
terms enhance the conductivity. The total magnetoconduc-
tance signal is determined by the balance between these
contributions. In the exact PSH point [|α|/(β1 − β3) = 1.0]
[Fig. 7(a)], the triplet contribution outweighs the singlet con-
tribution in the whole Bz range and shows WL in the quantum
correction to the conductivity. When the SO ratio shifts
to |α|/(β1 − β3) = 2.0 [Fig. 7(b)] and 3.0 [Fig. 7(c)], the
contributions of triplet terms become small due to large spin-
relaxation rates �heli, �homo. This results in the local minimum
of magnetoconductance at Bz �= 0, showing WAL. Conse-
quently, we conclude that both the helical and homogeneous
spin modes govern the quantum-interference phenomena near
the PSH state.

APPENDIX B: MONTE CARLO–BASED
REAL-SPACE SIMULATION OF THE

MAGNETOCONDUCTANCE CORRECTION

The Monte Carlo–based simulation method of WL/WAL
was established by Sawada and Koga [65]. This method is a
powerful tool to simulate the WL/WAL phenomena because
it can include all SO fields and is applicable in both diffusive
and ballistic regimes. The simulation procedure starts with
the preparation of closed-loop paths of an electron by the
pseudorandom number generator assuming a Boltzmannian
picture. The number of scatterings required for the electron
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FIG. 7. The magnetoconductance 	σ (Bz ) obtained by Eqs. (3a)–(3d) in the main text (black bold) and its singlet term −e2�̃singlet/4π 2 h̄
(orange), triplet helical term 2e2�̃heli/4π 2 h̄ (blue), and triplet homogeneous term e2�̃homo/4π 2 h̄ (green) for (a) |α|/(β1 − β3) = 1.0, (b) 2.0,
and (c) 3.0.

to return in each path nscat is set to nscat � Nscat = 5000. The
number of prepared closed loops is Nloop = 100000. Next,
we calculate the quantum interference in each closed-loop
path. Figure 8 exemplarily shows the jth loop of electron

trajectory with nscat = 5. This consists of line segments
−→
lm =

lm(cos φm, sin φm) with m = 1, 2, . . . , 5, where lm and φm

are the ballistic length and the momentum angle from the x
axis at the mth scattering event, respectively. The quantum-
interference amplitude x j of this trajectory is expressed as

x j = exp

(
− Lj

L′
φ

)
1

2
Tr

{
R2

tot

}
(1 + cos φ′

j ), (B1)

FIG. 8. The jth closed loop of electron trajectory with the

number of scatterings nscat = 5. This consists of line segments
−→
lm

with m = 1, 2, . . . , 5. The encircling area Sj is given by Sj =
|S+

1 + S+
2 − S−

1 | when S+
1 , S+

2 , and S−
1 are defined to be positive.

Here, Lj = ∑nscat
m=1 lm is the total length of the trajectory, L′

φ =
vFτφ is the phase coherence length, and φ′

j = φnscat is the
azimuthal angle for the returning electron. Then Tr{A} is the
trace of matrix A. The total spin rotation operator Rtot is
calculated by [74]

Rtot = Rnscat × Rnscat−1 · · · × Rm × · · · × R2 × R1, (B2)

with

Rm =
(

cos Qtot lm
2 −i Qx−iQy

Qtot
sin Qtot lm

2

−i Qx+iQy

Qtot
sin Qtot lm

2 cos Qtot lm
2

)
, (B3a)

Qtot =
√

Q2
x + Q2

y . (B3b)

The SO wave numbers Qx and Qy at (001) QW are described
by

Qx = (Qα + Qβ ) sin φm + Qβ3 sin 3φm, (B4a)

Qy = (−Qα + Qβ ) cos φm + Qβ3 cos 3φm. (B4b)

with Qα = 2mα/h̄2, Qβ = 2m(β1 − β3)/h̄2, and Qβ3 =
2mβ3/h̄2. Based on the quantum-interference amplitude x j for
each electron trajectory, the magnetoconductance is calculated
by the following equation:

	σ (Bz ) = − e2

2π2h̄

(
Nscat∑
n=3

1

n − 2

)
1

Nloop

Nloop∑
j=1

x j cos

(
Bz

Btr
S j

)
.

(B5)

Here, Btr = h̄/(2el2
tr ) is the transport field, ltr is the mean free

path, and S j is the encircling area for each closed trajectory.
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FIG. 9. Color-scale plots of spatiotemporal evolution of Sz into helical textures obtained by the Monte Carlo simulation for (a)
|α|/(β1 − β3) = 0.4, (b) 1.0, and (c) 1.6, respectively. (d)–(f) Corresponding fits of Sz to (a)–(c) using Eq. (5a) in the main text.

APPENDIX C: SIMULATION OF SPATIOTEMPORAL SPIN
DYNAMICS

The spin-mode relaxation rates obtained from WL/WAL
simulation are validated by comparing with the Monte
Carlo–based spatiotemporal spin dynamics simulation, which
corresponds TRKR microscopy. We initialize an ensemble of
spins aligned either along the z or y direction at time t = 0
in a Gaussian distribution with the effective sigma width
of w0 = 0.71 µm. The semiclassical random walk model of
electron is employed with isotropic scattering on the Fermi
circle, which is characterized by the mean scattering time
τ = 2D/v2

F = 1.52 ps with the Fermi velocity vF. Dressel-
haus SO coefficient β1 = 2.3 meV Å and β3 = 0.40 meV Å
are fixed, while the Rashba SO coefficient α is varied from
−0.75 to −5.7 meV Å. Each electron spin s moves with vF

between scattering events and precesses about the SO field

BSO following

∂

∂t
s = gμB

h̄
BSO × s. (C1)

Because α < 0 and |α| ≈ β1 − β3 in this paper, BSO is
dominated by its large y component [see Eq. (1) and Fig. 1(d)],
which preserves spin SU(2) symmetry and stabilizes the spa-
tial spin textures. The spin ensemble initialized along the z
direction starts to precess within x-z plane and evolves into the
helical mode, while the spin ensemble initialized along the y
direction is pinned to the y axis and forms the homogeneous
mode [see Figs. 1(a) and 1(b)]. It should be noted that, in the
TRKR experiment, only the out-of-plane (z) component (i.e.,
the helical mode) is accessible. Here, we examine both z and
y components in TRKR simulation because spin-relaxation
rates obtained in WL/WAL simulation are helical (z) and
homogenous (y) spin textures. We locally detect the spin

FIG. 10. Color-scale plots of spatiotemporal evolution of Sy into homogeneous textures obtained by Monte Carlo simulation for (a)
|α|/(β1 − β3) = 0.4, (b) 1.0, and (c) 1.6, respectively. (d)–(f) Corresponding fits of Sy to (a)–(c) using Eq. (5b) in the main text.
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FIG. 11. Flowchart of the extraction of full spin-orbit (SO) co-
efficients from experimental weak antilocalization (WAL) results by
combination of wire measurement.

projection and density at varying time delay t , and the spa-
tiotemporal dynamics of the two spatial textures are observed.

Figures 9(a)–9(c) show the color-scale plots of spatiotem-
poral evolution of the helical texture for |α|/(β1 − β3) =
0.4, 1.0, and 1.6, respectively. As |α| increases with fixed
β1 and β3, the pitch of the precession becomes shorter as
the spin wave vector q0 = (2m/h̄2)(−α + β1 − β3) increases
monotonically, while the spin relaxation is mostly suppressed
at |α|/(β1 − β3) = 1, corresponding to the exact PSH state.
In Figs. 10(a)–10(c), the spatiotemporal evolutions of homo-
geneous spin texture are plotted. In analogy to the helical

spin mode, the spin-relaxation time becomes the longest at
|α|/(β1 − β3) = 1. These spatiotemporal maps are fitted with
Eqs. (5a) and (5b) to evaluate the mode relaxation rates �heli

and �homo. As shown in Figs. 9(d)–9(f) for the helical mode
and in Figs. 10(d)–10(f) for the homogeneous mode, Eqs. (5a)
and (5b) reproduce the precession and relaxation behavior
very well. The obtained mode relaxation rates are plotted and
compared with those from WL/WAL simulation in Fig. 2(d).

APPENDIX D: EXTRACTION OF SPIN-ORBIT
INTERACTION COEFFICIENTS FROM WEAK

ANTILOCALIZATION BY COMBINATION
OF WIRE MEASUREMENTS

To quantitatively evaluate Rashba and Dresselhaus SO
coefficients, we focus on the different spin relaxation (i.e.,
magnetoconductance) behaviors between 2D and quasi-1D
structures. In a 2D system near the PSH state, the collinear SO
field stabilizes the spatial spin textures, while the imbalance
between the linear field [|α| − (β1 − β3)] and cubic Dressel-
haus field (β3) causes DP spin relaxation and leads to WAL in
the magnetoconductance. In contrast, in the quasi-1D system,
the electron motion is laterally confined along the direction
of the wire length, and the total SO field becomes unidi-
rectional. Therefore, electron spins form the stable spatial
textures and strongly suppress the spin relaxation, resulting
in WL even in the case of the non-PSH state [70,71]. The
additional application of in-plane magnetic field Bin breaks
the unidirectional alignment of SO field BSO and shows the
anisotropic WL amplitude against the Bin angle, enabling us
to directly extract the direction of SO field BSO [67,68]. For a
[010] wire, since the Rashba (linear Dresselhaus) field points
perpendicular (parallel) to the wire direction, the ratio of α/β1

FIG. 12. (a) Measured weak antilocalization (WAL) signals and fits with single common γ and individually set Lφ as fit parameters. (b)
Measured signals and fits with |α| and Lφ as free fit parameters. (c) The real-space simulated WAL curves corresponding to the experiments in
each Ns.
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can be obtained using Eq. (6). Once we determine the α/β1

ratio which reduces the fitting parameter for WAL, we can
quantify the full SO coefficients (α, β1, β3) by combining
the results of 2D and quasi-1D measurements.

The flowchart of the extraction of full SO coefficients
from WAL by combination of wire measurements is shown
in Fig. 11. Firstly, we obtain |α|/β1 for all the measured
carrier density Ns in the wire measurement. Next, we assume
the linear dependence of |α|/β1 against Ns and obtain the
relation of |α|/β1 = R(Ns) = ANS + C with constant values
A = 0.22 × 10−15 m2 and C = 0.86 [see Fig. 4(d)]. Accord-
ing to secured linear variation of |α|/β1 = R(Ns) = ANs + C
in Fig. 4(d), we first replace |α| with R(Ns)β1 so that we can
rewrite all the SO coefficients in Eqs. (3a)–(3d) with only
bulk Dresselhaus coefficient γ . Then, we fit all the WAL
results with a single common γ as a fit parameter, while Lφ

is individually set as a fit parameter for each Ns. As shown
in Fig. 12(a), the fits (green solids) agree well with the ex-
perimental WAL signals (gray circles) in all measured Ns.
This enables us to minimize the error of bulk Dresselhaus
coefficient γ in each WAL curve and obtain the accurate value
of γ = −8.4 eV Å3 which is consistent with the previous
results [17,56].

Next, to correct the small deviation of |α| from the linear
assumption, we fit the WAL signals with |α| and Lφ as free
fit parameters for each Ns, while keeping γ = −8.4 eV Å3

as a constant. The fits (purple solids) and the experiments
(gray circles) are shown in Fig. 12(b). According to calculated
〈k2

z 〉 = 2.7 × 1016 m−2 as a virtually constant value on the
present gate modulation and k2

F = 2πNs, all the SO coeffi-
cients (|α|, β1, β3) can be fully evaluated, as summarized
in Fig. 5(b).

Finally, we further perform the real-space simulation
(Sawada and Koga [65] model) using the experimentally ob-
tained SO coefficients (|α|, β1, β3) and phase coherence
length Lφ [Fig. 12(c)]. We reproduce the experimentally
obtained WAL very well by the Sawada and Koga [65]
model. Since the positions of conductance minimum in the
WAL curve describing the SO strength are in qualitative
agreement with the experiments for the entire Ns range, we
conclude that the SO coefficients are successfully evaluated.
It should be noted that because of the different interpretation
of Lφ between the magnetoconductance correction expression
[Eqs. (3a)–(3d)] and the real-space simulation (Sawada and
Koga [65] model), the reduction of conductance near Bz =
0 mT differs slightly from the experimental results.

[1] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N.
P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539
(2010).

[2] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y.
Tokura, Spin chirality, Berry phase, and anomalous Hall effect
in a frustrated ferromagnet, Science 291, 2573 (2001).

[3] Y. Machida, S. Nakatsuji, Y. Maeno, T. Tayama, T. Sakakibara,
and S. Onoda, Unconventional Anomalous Hall Effect En-
hanced by a Noncoplanar Spin Texture in the Frustrated Kondo
Lattice Pr2Ir2O7, Phys. Rev. Lett. 98, 057203 (2007).

[4] M. Heide, G. Bihlmayer, and S. Blügel, Dzyaloshinskii-Moriya
interaction accounting for the orientation of magnetic domains
in ultrathin films: Fe/W(110), Phys. Rev. B 78, 140403(R)
(2008).

[5] A. Thiaville, S. Rohart, É. Jué, V. Cros, and A. Fert, Dynamics
of Dzyaloshinskii domain walls in ultrathin magnetic films,
Europhys. Lett. 100, 57002 (2012).

[6] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral
magnet, Science 323, 915 (2009).

[7] C. Pappas, E. Lelièvre-Berna, P. Falus, P. M. Bentley, E.
Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Chiral Para-
magnetic Skyrmion-like Phase in MnSi, Phys. Rev. Lett. 102,
197202 (2009).

[8] Y. Takeuchi, Y. Yamane, J-Y. Yoon, R. Itoh, B. Jinnai, S. Kanai,
J. Ieda, S. Fukami, and H. Ohno, Chiral-spin rotation of non-
collinear antiferromagnet by spin-orbit torque, Nat. Mater. 20,
1364 (2021).

[9] J. Schliemann, J. C. Egues, and D. Loss, Nonballistic Spin-
Field-Effect Transistor, Phys. Rev. Lett. 90, 146801 (2003).

[10] B. A. Bernevig, J. Orenstein, and S-C. Zhang, Exact SU(2)
Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled
System, Phys. Rev. Lett. 97, 236601 (2006).

[11] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-
C. Zhang, S. Mack, and D. D. Awschalom, Emergence of the
persistent spin helix in semiconductor quantum wells, Nature
(London) 458, 610 (2009).

[12] M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis, Direct
mapping of the formation of a persistent spin helix, Nat. Phys.
8, 757 (2012).

[13] M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich,
C. Schönhuber, I. Caspers, V. V. Bel’kov, L. E. Golub, D. Weiss
et al., Gate-controlled persistent spin helix state in (In,Ga)As
quantum wells, Phys. Rev. B 86, 081306 (2012).

[14] P. Wenk, M. Kammermeier, and J. Schliemann, Conserved spin
quantity in strained hole systems with Rashba and Dresselhaus
spin-orbit coupling, Phys. Rev. B 93, 115312 (2016).

[15] F. Dettwiler, J. Fu, S. Mack, P. J. Weigele, J. C. Egues, D. D.
Awschalom, and D. M. Zumbühl, Stretchable Persistent Spin
Helices in GaAs Quantum Wells, Phys. Rev. X 7, 031010
(2017).

[16] J. Schliemann, Colloquium: Persistent spin textures in semi-
conductor nanostructures, Rev. Mod. Phys. 89, 011001
(2017).

[17] M. Kohda and G. Salis, Physics and application of persistent
spin helix state in semiconductor heterostructures, Semicond.
Sci. Technol. 32, 073002 (2017).

[18] M. Kammermeier, A. Seith, P. Wenk, and J. Schliemann, Per-
sistent spin textures and currents in wurtzite nanowire-based
quantum structures, Phys. Rev. B 101, 195418 (2020).

[19] J. Fu, P. H. Penteado, M. O. Hachiya, D. Loss, and J. C. Egues,
Persistent Skyrmion Lattice of Noninteracting Electrons with
Spin-Orbit Coupling, Phys. Rev. Lett. 117, 226401 (2016).

[20] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

043217-12

https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1126/science.1058161
https://doi.org/10.1103/PhysRevLett.98.057203
https://doi.org/10.1103/PhysRevB.78.140403
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1126/science.1166767
https://doi.org/10.1103/PhysRevLett.102.197202
https://doi.org/10.1038/s41563-021-01005-3
https://doi.org/10.1103/PhysRevLett.90.146801
https://doi.org/10.1103/PhysRevLett.97.236601
https://doi.org/10.1038/nature07871
https://doi.org/10.1038/nphys2383
https://doi.org/10.1103/PhysRevB.86.081306
https://doi.org/10.1103/PhysRevB.93.115312
https://doi.org/10.1103/PhysRevX.7.031010
https://doi.org/10.1103/RevModPhys.89.011001
https://doi.org/10.1088/1361-6641/aa5dd6
https://doi.org/10.1103/PhysRevB.101.195418
https://doi.org/10.1103/PhysRevLett.117.226401
https://doi.org/10.1103/PhysRevLett.105.177002


LIFETIME OF SPIN-ORBIT INDUCED SPIN TEXTURES … PHYSICAL REVIEW RESEARCH 4, 043217 (2022)

[21] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[22] Z. Li, F. Marsiglio, and J. P. Carbotte, Vanishing of interband
light absorption in a persistent spin helix state, Sci. Rep. 3, 2828
(2013).

[23] Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the
magnetic susceptibility of carriers in inversion layers, J. Phys.
C: Solid State Phys. 17, 6039 (1984).

[24] G. Dresselhaus, Spin-orbit coupling effects in zinc blende struc-
tures, Phys. Rev. 100, 580 (1955).

[25] M. I. D’yakonov and V. I. Perel’, Spin relaxation of conduction
electrons in noncentrosymmetric semiconductors, Sov. Phys.
Solid State 13, 3023 (1972).

[26] T. D. Stanescu and V. Galitski, Spin relaxation in a generic
two-dimensional spin-orbit coupled system, Phys. Rev. B 75,
125307 (2007).

[27] P. Wenk and S. Kettemann, Dimensional dependence of weak
localization corrections and spin relaxation in quantum wires
with Rashba spin-orbit coupling, Phys. Rev. B 81, 125309
(2010).

[28] L. Yang, J. Orenstein, and D.-H. Lee, Random walk approach to
spin dynamics in a two-dimensional electron gas with spin-orbit
coupling, Phys. Rev. B 82, 155324 (2010).

[29] M. C. Lüffe, J. Kailasvuori, and T. S. Nunner, Relaxation mech-
anisms of the persistent spin helix, Phys. Rev. B 84, 075326
(2011).

[30] G. Salis, M. P. Walser, P. Altmann, C. Reichl, and W.
Wegscheider, Dynamics of a localized spin excitation close to
the spin-helix regime, Phys. Rev. B 89, 045304 (2014).

[31] D. Iizasa, M. Kohda, U. Zülicke, J. Nitta, and M. Kammermeier,
Enhanced longevity of the spin helix in low-symmetry quantum
wells, Phys. Rev. B 101, 245417 (2020).

[32] J. Ishihara, Y. Ohno, and H. Ohno, Direct imaging of gate-
controlled persistent spin helix state in a modulation-doped
GaAs/AlGaAs quantum well, Appl. Phys. Express 7, 013001
(2014).

[33] Y. Kunihashi, H. Sanada, H. Gotoh, K. Onomitsu, M. Kohda, J.
Nitta, and T. Sogawa, Drift transport of helical spin coherence
with tailored spin-orbit interactions, Nat. Commun. 7, 10722
(2016).

[34] M. Luengo-Kovac, F. C. D. Moraes, G. J. Ferreira, A. S.
L. Ribeiro, G. M. Gusev, A. K. Bakarov, V. Sih, and F. G.
G. Hernandez, Gate control of the spin mobility through the
modification of the spin-orbit interaction in two-dimensional
systems, Phys. Rev. B 95, 245315 (2017).

[35] F. Passmann, S. Anghel, C. Ruppert, A. D. Bristow, A. V.
Poshakinskiy, S. A. Tarasenko, and M. Betz, Dynamical for-
mation and active control of persistent spin helices in III-V
and II-VI quantum wells, Semicond. Sci. Technol. 34, 093002
(2019).

[36] Y. S. Chen, S. Fält, W. Wegscheider, and G. Salis, Uni-
directional spin-orbit interaction and spin-helix state in a
(110)-oriented GaAs/(Al,Ga)As quantum well, Phys. Rev. B 90,
121304(R) (2014).

[37] K. Yoshizumi, A. Sasaki, M. Kohda, and J. Nitta, Gate-
controlled switching between persistent and inverse per-
sistent spin helix states, Appl. Phys. Lett. 108, 132402
(2016).

[38] P. J. Weigele, D. C. Marinescu, F. Dettwiler, J. Fu, S. Mack,
J. C. Egues, D. D. Awschalom, and D. M. Zumbühl, Symmetry
breaking of the persistent spin helix in quantum transport, Phys.
Rev. B 101, 035414 (2020).

[39] M. Kammermeier, T. Saito, D. Iizasa, U. Zülicke, and M.
Kohda, Reliable modeling of weak antilocalization for accurate
spin-lifetime extraction, Phys. Rev. B 104, 235430 (2021).

[40] A. E. Hansen, M. T. Björk, C. Fasth, C. Thelander, and L.
Samuelson, Spin relaxation in InAs nanowires studied by tun-
able weak antilocalization, Phys. Rev. B 71, 205328 (2005).

[41] R. L. Kallaher, J. J. Heremans, N. Goel, S. J. Chung, and M. B.
Santos, Spin-orbit interaction determined by antilocalization in
an InSb quantum well, Phys. Rev. B 81, 075303 (2010).

[42] Z. Lei, E. Cheah, K. Rubi, M. E. Bal, C. Adam, R. Schott, U.
Zeitler, W. Wegscheider, T. Ihn, and K. Ensslin, High-quality
two-dimensional electron gas in undoped InSb quantum wells,
Phys. Rev. Res. 4, 013039 (2022).

[43] N. Yamaguchi and F. Ishii, Strain-induced large spin splitting
and persistent spin helix at LaAlO3/SrTiO3 interface, Appl.
Phys. Express 10, 123003 (2017).

[44] M. A. U. Absor, F. Ishii, H. Kotaka, and M. Saito, Persistent
spin helix on a wurtzite ZnO(1010) surface: first-principles
density-functional study, Appl. Phys. Express 8, 073006
(2015).

[45] M. A. U. Absor and F. Ishii, Doping-induced persistent spin
helix with a large spin splitting in monolayer SnSe, Phys. Rev.
B 99, 075136 (2019).

[46] M. A. U. Absor and F. Ishii, Intrinsic persistent spin helix state
in two-dimensional group-IV monochalcogenide MX monolay-
ers (M = Sn or Ge and X = S, Se, or Te), Phys. Rev. B 100,
115104 (2019).

[47] H. Lee, J. Im, and H. Jin, Emergence of the giant out-of-plane
Rashba effect and tunable nanoscale persistent spin helix in
ferroelectric SnTe thin films, Appl. Phys. Lett. 116, 022411
(2020).
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