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Bell inequality with a self-testing property has played an important role in quantum information processing
with both fundamental and practical significance. However, it is generally challenging to find Bell inequalities
used for self-testing multipartite states, and actually, there are not many known candidates. In this work we
propose a systematic framework to construct Bell inequalities from stabilizers which are maximally violated by
general stabilizer states, with two observables for each local party. We show that the constructed Bell inequalities
can self-test any stabilizer state if and only if these stabilizers can uniquely determine the state in a device-
dependent manner. This bridges the gap between device-independent and device-dependent verification methods.
Our framework can provide plenty of Bell inequalities for self-testing N-party stabilizer states. Among them, we
give two families of Bell inequalities with different advantages: (1) a family of Bell inequalities with a constant
ratio of quantum and classical bounds using 2N correlations, and (2) single pair inequalities improving on
all previous robustness self-testing bounds using N + 1 correlations, which are both efficient and robust for
realizations in multipartite systems.

DOI: 10.1103/PhysRevResearch.4.043215

I. INTRODUCTION

Bell inequalities, as a test for quantum correlations, can
distinguish quantum physics from its classical counterpart
[1,2]. They not only play a fundamental role in quantum
physics, but also can be utilized in many practical quantum
information processing tasks, such as the quantum key distri-
bution [3–6], quantum randomness generation [7–12], blind
quantum computing [13,14], and quantum resource detection
[15–17].

One of the most striking applications of Bell nonlocality
is the simultaneous verification of quantum states and mea-
surements, based on the maximal violation of Bell inequalities
[3,18]. The verification only relies on the input and output
statistics without the trust of the realization of devices, which
is different from traditional quantum tomography and other
device-dependent methods [19,20]. This phenomenon is usu-
ally referred to as self-testing. When the violation of Bell
inequality is only close to its maximal quantum value, one
can also estimate the fidelity between the underlying state
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and the target state, which is referred to as robust self-testing.
Tremendous efforts have been made to self-test various types
of quantum states [21–26] and improve robust self-testing
performance, which is helpful in the realistic implementation
[18,27,28].

Even though Bell inequality and self-testing are of funda-
mental and practical significance, it is generally challenging
and not clear to propose Bell inequalities used for self-testing,
especially for multipartite states, due to the exponential
increase of the dimension of total Hilbert space. Some in-
teresting and inspiring attempts have been made focusing on
high-dimensional maximally entangled states [24] and graph
states [25,26,29–31]. However, all the previous works either
proposed Bell inequalities without exploring their applica-
bility in self-testing or only show that a certain family of
proposed Bell inequalities is valid for self-testing. The candi-
dates for the Bell inequality of general stabilizer states which
can be used for self-testing are still limited.

Meanwhile, device-dependent multipartite entanglement
witnesses [32–34] and state verification methods [35,36] have
been extensively studied with the development of large-scale
entanglement preparations [37–39]. Many efforts have been
made aiming at graph states or general stabilizer states, which
are important resources in quantum information processing
tasks, e.g., measurement-based quantum computing [40,41],
quantum routing, and quantum networks [42–44]. The entan-
glement witness and the state verification of stabilizer states
can be greatly simplified by utilizing the property of stabiliz-
ers [35,45–51]. Focusing on the device-independent scenario,
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it is thus an interesting open problem to ask whether the same
properties can be applied for constructing Bell inequalities.

In this work, inspired by Ref. [25], which constructs the
Bell inequalities from the generators, we propose a system-
atical framework for constructing Bell inequalities with two
local observables from stabilizers. We show that the necessary
and sufficient condition to realize the self-testing is that a set
of stabilizers used in the construction can uniquely determine
the state device dependently, which closes the gap between
the device-dependent and -independent verifications. Taking
advantage of the framework, we provide more choices of Bell
inequalities with self-testing. As applications, two families
of Bell inequalities are proposed showing different advan-
tages. For any stabilizer state, we construct Bell inequalities
with constant ratio of quantum and classical bounds with a
linear number of correlations. To further enable the robust
self-testing, we take examples of quantum multipartite states
up to 6 qubits, including Greenberger-Horne-Zeilinger (GHZ)
states and cluster states, and give the fidelity lower bound
according to the Bell inequality violation. In particular, also
with a linear number of correlations, we construct a type of
Bell inequality, referred to as a single pair inequality, showing
the best-known robust self-testing bound, which outperforms
Mermin inequality [28,52] and Bell inequalities proposed in
[25]. As a side result, our Bell inequalities can also serve as
a device-independent entanglement witness, which provides
more alternatives for the entanglement detection in the device-
independent scenario.

II. GRAPH STATES AND THE STABILIZER FORMALISM

Stabilizer states [53,54] can be transformed to graph states
via local unitary operations [55]. Thus in the following we
discuss graph states without loss of generality. A graph state
can be defined based on a graph G = (V, E ), with vertices set
V = {1, 2, . . . , N} and edges set E ⊂ [V ]2. Two vertices i, j
are adjacent if there is an edge (i, j) connecting them, and the
adjacent set of vertex i is denoted as ni. Let the qubits take the
role of the vertices and the edges represent the controlled-Z
operations. Then a graph state can be written as

|ψG〉 =
∏

(i, j)∈E

CZ{i, j}|+〉⊗N , (1)

where |+〉 = (|0〉 + |1〉)/
√

2 is the eigenstate of the Pauli X
matrix and CZ{i, j} is the controlled-Z gate, CZ{i, j} = |0〉i〈0| ⊗
I j + |1〉i〈1| ⊗ Zj . Hereafter Xi,Yi, Zi denote the Pauli opera-
tors of the qubit i. Graph states can be uniquely determined by
N generators,

Gi = Xi

⊗
j∈ni

Z j, (2)

which commute with each other and satisfy Gi|ψG〉 = |ψG〉,
∀i, that is, the unique eigenstate with eigenvalue 1 for all the
N generators. As a result, a graph state can also be written as
a product of projectors of the generating operators:

|ψG〉〈ψG | =
N∏

i=1

Gi + I

2
. (3)

All the stabilizing operators can be generated by the multipli-
cation of these generators,

S =
∏

i

Gi, (4)

which satisfies S|ψG〉 = |ψG〉. For simplicity, we use the
phrase “stabilizers” to represent the stabilizing operators here-
after. The property of stabilizers can be utilized to verify the
graph states and construct the entanglement witness efficiently
[45,49].

III. CONSTRUCTING BELL INEQUALITIES
FROM PAIRABLE STABILIZERS

For an N-party graph state ψG from graph G, we label each
party with registers 1, 2 . . . , N . We refer to the graph as K-
colorable if one can label the graph with K different colors,
requiring that there is no pair of adjacent vertices of the same
color. According to this definition, we can divide all the N
vertices into K disjoint subsets Ck=1,2,··· ,K such that there is
no edge inside each Ck . The smallest K is referred to as the
chromatic number of G.

In this work we mainly explore the efficient Bell inequal-
ities with two local observables for each party. We transform
Pauli operators X and Z in the stabilizers to the observables in
Bell inequalities according to certain rules. For a graph state,
its generators only involve I , X , and Z operators, whereas the
multiplication of generators from different color subsets can
introduce Y operators in the stabilizers. Thus we only focus on
the stabilizers S which are generated by the generators from
the same color subset Ck:

S =
∏
i∈Ck

Gi. (5)

These stabilizers can be represented by the tensor product
of Pauli operators, S = ⊗

i Mi, where Mi ∈ {X, Z, I}. For
simplicity, we define a sequence (s1, . . . , sN ) to express a
stabilizer S with si = 1 when Mi = X , si = −1 when Mi = Z ,
and si = 0 when Mi = I. Before showing the construction of
Bell inequalities, let us first define a relationship between two
stabilizers.

Definition 1. Two stabilizers S1 = ⊗
i M1

i , S2 = ⊗
i M2

i
are called pairable if there exists at least one position i such
that local operators are anticommutative, that is, ∃ i, M1

i =
Z, M2

i = X or M1
i = X, M2

i = Z (s1
i s2

i = −1).
Note that pairable stabilizers could have more than one an-

ticommutative position. Thus this definition is different with
anticommutative stabilizers. Hereafter, we use the subscript i
to represent ith party and use superscript to represent different
stabilizers. Here we choose one pair of pairable stabilizers
S1 and S2, and one anticommutative position T . For position
i = T , we replace the Pauli operators Xi and Zi in the stabiliz-
ers S1 and S2 by observables Ai + Bi and Ai − Bi, respectively.
As for all the other positions i 
= T , we replace Xi and Zi by Ai

and Bi, respectively. Consequently, the Bell inequality based
on pairable stabilizers S1 and S2 is shown as follows.

Lemma 1.

B1,2 =
∑
j=1,2

〈(
Ai + s j

i Bi
)

i=T

∏
i 
=T

Pi
(
s j

i

)〉
� βc, (6)
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FIG. 1. An example of P,R with a suitable AC for the four-
party cluster state. For a given ST = {1, 2, 3, 5, 6} where S1 = G1 =
X1Z2, S2 = G2 = Z1X2Z3, S3 = G3 = Z2X3Z4, S5 = G1G3, S6 =
G2G4, we can assign P = {(1, 2), (5, 6)}, R = {3} with AC = {1}.
We can also assign P = {(2, 3), (2, 5)}, R = {1, 6} with AC = {3}.

where Pi(0) = I, Pi(1) = Ai, Pi(−1) = Bi, Ai, Bi are all binary
observables. The classical bound for this Bell inequality is
βc = 2 and the quantum bound (the maximal quantum value)
βQ = 2

√
2, which can be reached by the graph state ψG .

The quantum bound is achieved by taking Ai = X+Z√
2

, Bi =
X−Z√

2
when i = T , and Ai = X, Bi = Z when i 
= T . Here the

choice of the measurement settings is the same with Ref. [25]
and Clauser-Horne-Shimony-Holt (CHSH) inequality [56].
Intuitively, we can choose a lot of pairable stabilizers to
construct Bell inequalities. We first choose a subset of the
stabilizer set as ST ⊂ S . According to the pairable property,
we define some pairable stabilizers in ST as

P = {(l, k)|Sl , Sk ∈ ST are pairable, l < k}. (7)

Note that for different pairs, they can share the same stabilizer,
for example, we allow (1, 2), (1, 3) ∈ P . Besides the pairable
stabilizers, we also define the set of all the other nonpairable
stabilizers in ST as R. Moreover, to be more general, we
define a vertex subset AC ⊂ V to replace the Pauli operators
X and Z on these positions with A − B and A + B, such as
AC = {T } in B1,2.

For given ST , P , R, we require that the set AC satisfies
(1) For every pair of pairable stabilizers, Sl and Sk ,

{l, k} ∈ P , there exists only one position Tl,k ∈ AC such that
the measurement setting of stabilizers, Sl and Sk in this po-
sition, are anticommutative. For other positions i ∈ AC{Tl,k},
the measurement settings in Sl and Sk are all I, sl

i = sk
i = 0.

(2) For every stabilizer Sr (r ∈ R), the measurements in
any position i ∈ AC are I, sr

i = 0.
These requirements are used to guarantee a large ratio

of quantum and classical bounds in the constructed Bell in-
equalities. Luckily, one can always find an AC for the chosen
stabilizer set ST , satisfying these requirements by the follow-
ing lemma.

Lemma 2. For any given stabilizer set ST containing
pairable stabilizers, one can always assign the stabilizers of
ST into the paring set P and the remaining subset R, and then
find a suitable AC satisfying two requirements listed above.

Thus it is generally feasible to construct Bell inequalities
from a stabilizer set ST . In order to make this construction
clearer, we show an example of a 4-qubit cluster state in Fig. 1.

There are also other constructions for this given stabilizer set
ST ; here we only give two constructions as examples.

For P , R with a suitable AC satisfying the above two
requirements, we construct the Bell inequalities for general
graph states as follows:

Theorem 1.∑
(l,k)∈P

Bl,k +
∑
r∈R

Br � βc = 2|P| + |R|,

Bl,k =
∑
j=l,k

〈∏
i∈AC

(
Ai + s j

i Bi
) ∏

i/∈AC
Pi

(
s j

i

)〉
, (8)

Br =
〈∏

i/∈AC
Pi(s

r
i )

〉
,

where Pi(s
j
i ) are defined in Lemma 1, and |P| and |R| denote

the number of elements in sets P and R, respectively. The
quantum bound βQ = 2

√
2|P| + |R| and the corresponding

graph state ψG can reach this maximal quantum value.
Note that novel CHSH-like multipartite Bell inequalities

proposed in [25] can be seen as special cases of Theorem 1 by
choosing all the stabilizers being generators in Eq. (2), that is,
ST = {Si|Si = Gi, i ∈ {1, . . . , N}}, where Gi is the generator
associated with the ith vertex. In particular, assuming the
first vertex is the one with the largest number of neighbors,
|n1| = maxi |ni|, the generators in ST are assigned into P =
{(1, j)| j ∈ n1}, R = {r|r 
= n1 ∪ 1} with AC = {1}.

Sufficient and necessary condition for self-testing. Besides
ruling out the classical hidden variable model, Bell inequal-
ities further provide us a method to verify quantum states
in a device-independent manner. Though the graph state ψG
can reach the maximal quantum value of all Bell inequalities
constructed from its stabilizers in Theorem 1, not all these Bell
inequalities can verify ψG uniquely. Here in this section, based
on the constructed Bell inequalities, we explore the sufficient
and necessary condition for the self-testing of graph states.

Definition 2. Suppose that the Bell inequality BG , con-
structed from the stabilizers of ψG , is maximally violated by
a state ψ and corresponding local observables Ai, Bi. If up
to local isometries, all states ψ and the corresponding local
observables which maximally violate the Bell inequalities BG
are equivalent to the graph state ψG , and Xi+Zi√

2
, Xi−Zi√

2
when

i ∈ AC; Xi, Zi when i /∈ AC, we say this Bell inequality BG
can self-test graph state ψG .

In the conventional device-dependent verification of graph
states, we have the following fact about determining the graph
state ψG with the trust of measurement devices.

Fact 1. [53,54] For the device-dependent verification, a set
of stabilizer measurements can uniquely determine the state
ψG , if and only if it contains N independent stabilizers. A set
of stabilizers is independent if they cannot generate each other
by multiplication and note that any other stabilizers can be
generated by N independent stabilizers.

Theorem 2. The family of Bell inequalities proposed in
Theorem 1 can self-test the graph state ψG , if and only if the
stabilizers in ST together can determine the graph state ψG .

Via this theorem, we make a close connection between
the device-independent and -dependent verifications. If the
stabilizers can determine the graph state under the trust of
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measurement devices, then one can always transform these
stabilizers to Bell inequalities and apply it to verify the state
without trusting the devices under our framework. Thus any
witnesses and state verification methods based on stabilizers
could inspire the construction of Bell inequalities.

IV. APPLICATIONS

Utilizing the above framework, we propose various fam-
ilies of Bell inequalities, which show the advantages in
different aspects. Note that in this section we only explore Bell
inequalities with the self-testing property.

A. Constant ratio of quantum and classical bounds βQ/βC

At first, we prefer to select Bell inequalities with a large
ratio of quantum and classical bounds βQ/βC , which is bene-
ficial for the experimental violation under practical setups and
can lead to good performance in cryptography tasks [5]. From
Theorem 1, it is clear that the maximal βQ/βC is

√
2 when

R = ∅ in our construction. Utilizing the properly designed
multiplications of generators from the graph state, we can
construct self-testing Bell inequalities with the maximal ratio
for any graph state.

Corollary 1. For any N-party graph state ψG , based on our
framework one can construct Bell inequalities using 2N corre-
lations to reach the maximal βQ/βC = √

2 with a self-testing
property at the same time.

The proof and detailed constructions are shown in Ap-
pendix C. In Ref. [25], only an asymptotic case (infinity
large N) and some special states, for example, a GHZ state,
can reach this ratio βQ/βC = √

2. Due to flexible choices
of stabilizers, instead of only using generators, our frame-
work provides Bell inequalities with generally larger βQ/βC

than the constructions in [25], also using a linear number
of correlations, which are efficient and scalable for practical
demonstrations in multipartite systems.

B. Improved robust self-testing bounds

In the robust self-testing, one would like to lower bound
the state fidelity to the target graph state ψG (under local
isometries), only on account of the Bell inequality value which
deviates from the maximal quantum value. We give a formal
definition of robust self-testing as follows.

Definition 3. Bell inequality BG and a Bell value β self-test
the graph state ψG with fidelity f if for any underlying state ρ

TABLE I. Three-qubit GHZ (cluster) state with with generators
G1 = X1Z2, G2 = Z1X2Z3, and G3 = Z2X3. And we choose stabilizers
as S1 = G1, S2 = G2, S3 = G3, and S4 = G1G3. According to our
framework, actually we can construct totally 12 Bell inequalities
with self-testing. Here we only take a few of them as examples. Our
constructions are shown in bold.

GHZ3 AC P R βQ/βC

1 {1} {(1, 2)} {3} (2
√

2 + 1)/3
2 {1} {(1, 2), (2, 4)} {3} (4

√
2 + 1)/5

3 {1} {(1, 2), (2, 4)} ∅

√
2

4 [25] {2} {(1, 2), (2, 3)} ∅

√
2

TABLE II. Four-qubit GHZ state with generators G1 =
X1Z2Z3Z4, G2 = Z1X2, G3 = Z1X3, and G4 = Z1X4. And we choose
stabilizers as S1 = G1, S2 = G2, S3 = G3, S4 = G4, S5 = G2G3, and
S6 = G2G4. Our constructions are shown in bold.

GHZ4 AC P R βQ/βC

1 {1} {(1, 2)} {5, 6} (
√

2 + 1)/2
2 {2} {(1, 2)} {3, 4} (

√
2 + 1)/2

3 {1} {(1, 2), (1, 3)} {6} (4
√

2 + 1)/5
4 [25] {1} {(1, 2), (1, 3), (1, 4)} ∅

√
2

achieves the Bell value β and satisfies that

F (�(ρ), ψG ) � f , (9)

where � is a local isometry.
Here we expect that Bell inequalities can show good per-

formance in the robust self-testing task. Benefiting from the
flexibility of our construction, one can have many choices
of Bell inequalities at hand. We give constructions of some
typical examples, 3-qubit and 4-qubit GHZ states, and 4-qubit
one-dimensional (1D) cluster states in Tables I, II, and III,
respectively, with different AC,P,R and βQ/βC . Based on
the method in [25,28], in Fig. 2, we numerically show their
performance in robust self-testing and also compare with the
Mermin inequality, which is widely used for self-testing GHZ
states [28,52].

In principle, the robustness analysis can be extended to
more qubits, and one can explore more possible Bell inequal-
ities via our framework. The limitation to the extension is
due to the difficulty of numerical optimization for large-qubit-
number cases. Here we also show some examples of 5-qubit
and 6-qubit graph states in Fig. 3. The results are shown in
Fig. 4, and Tables IV and VIII.

From Fig. 2 one can find that larger βQ/βC value does
not necessarily lead to a better performance in the robust
self-testing, which is characterized by the slope of the curves.
The reason behind this phenomenon may be that the method
of estimating fidelity is not tight or optimal. In our examples,
we find that the best robust self-testing Bell inequality share
the same property, that is, they are constructed from only one
pairable stabilizers, i.e., |P| = 1, and other stabilizers all in
R. (See Bell inequality 1 in Table I, Bell inequalities 1 and 2
in Table II, Bell inequality 1 in Table III.) We name them as
single pair Bell inequalities,

B1,2 +
∑
r∈R

Br � 2 + |R|. (10)

TABLE III. Four-qubit 1D cluster state with generators G1 =
X1Z2, G2 = Z1X2Z3, G3 = Z2X3Z4, G4 = Z3X4. We choose stabilizers
as S1 = G1, S2 = G2, S3 = G3, S4 = G4, S5 = G1G3, S6 = G2G4.
Our constructions are shown in bold.

Cluster4 AC P R βQ/βC

1 {1} {(1, 2)} {3, 4} (
√

2 + 1)/2
2 [25] {2} {(1, 2), (2, 3)} {4} (4

√
2 + 1)/5

3 {1} {(1, 2), (5, 6)} ∅

√
2

4 {2} {(1, 2), (3, 6)} ∅

√
2
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FIG. 2. Numerical estimation of the lower bound of fidelity to the target graph state vs normalized Bell inequality value β−βC
βQ−βC

: (a) 3-qubit
GHZ state, (b) 4-qubit GHZ state, and (c) 4-qubit cluster state. We compare different constructions of Bell inequalities from our framework
with previous results. The best candidates for robust self-testing are single pair inequalities, which are the blue curves in the figure, where it
shows the best-known robustness self-testing performance, surpassing Mermin inequality in [28] and Bell inequalities proposed in [25], which
are shown in the red curve and yellow curve, respectively.

From these examples and the realizable lower bounds of
the fidelity, one can see that our constructed single pair Bell
inequalities provide the best-known robust self-testing bound,
improving the previous self-test bound in [25,28]. Note that
compared to Mermin inequality with 2N correlations, single
pair Bell inequalities only contain N + 1 correlations, which
is more efficient and scalable for large-scale system verifica-
tion. This shows the potentiality of our framework.

C. Device-independent entanglement witness

As a side result of the robust self-testing bound, one
can also construct a device-independent genuine entangle-
ment witness by applying the linear self-testing fidelity bound
F � a β−βC

βQ−βC
+ b with slope a and intercept b.

(a) (c)

(b) (d)

FIG. 3. Different 5-qubit and 6-qubit graph states: (a) 5-qubit
cluster state, (b) 5-qubit GHZ state, (c) 5-qubit graph state G5, and
(d) 6-qubit graph state G6.

Corollary 2. ∑
(l,k)∈P

Bl,k +
∑
r∈R

Br

bi-sep.
� β 1

2
,

β 1
2
= (0.5 − b)(βQ − βC )

a
+ βC, (11)

where Bi and Br are Bell correlations shown in Theorem 1,
β 1

2
is the threshold Bell value. The violation of this inequality

implies the existence of genuine entanglement.
This corollary is due to the fact that the underlying state

possesses genuine entanglement when fidelity with a certain
graph state exceeds 1

2 [45,49]. The Bell value β 1
2

corresponds

to a fidelity lower bound 1
2 . Thus any Bell value greater than

β 1
2

implies the existence of genuine entanglement.
In the following we give genuine entanglement bounds β 1

2

and the detailed construction for single pair inequality with
the best-known robustness bound. The device-independent
genuine entanglement witness of three-party, four-party GHZ
and four-party cluster are shown, respectively, in Eq. (12).
Note that here the bound β 1

2
are from numerical results,

not the accurate theoretical bound. Any violation of these
inequalities implies the existence of genuine entanglement,
and a similar method can also be used to detect more detailed
entanglement structures in a device-independent manner:

〈(A1 + B1)B2〉 + 〈(A1 − B1)A2B3〉

+ 〈B2A3〉
bi-sep.
� 3.2766,

〈(A1 + B1)B2B3B4〉 + 〈(A1 − B1)A2〉

+ 〈A2A3〉 + 〈A2A4〉
bi-sep.
� 3

2 + 2
√

2,

〈(A1 + B1)B2〉 + 〈(A1 − B1)A2B3〉 + 〈B2A3B4〉

+ 〈B3A4〉
bi-sep.
� 3

2 + 2
√

2. (12)

V. DISCUSSION

In summary, we propose a systematical framework to con-
struct Bell inequalities directly from stabilizers and further
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FIG. 4. Numerical estimation of the lower bound of fidelity to the target graph state vs normalized Bell inequality value β−βC
βQ−βC

: (a) 5-qubit
GHZ state, (b) 5-qubit cluster state, (c) 5-qubit graph state G5, and (d) 6-qubit graph state G6. The best candidates for robust self-testing are
single pair inequalities, which are the blue curves in the figure. Bell inequalities 1 and Bell inequalities 2 are shown in Table IV.

provide a one-to-one map from the device-dependent verifica-
tion to the self-testing one. The framework can provide us with
a large number of Bell inequalities to select for different ap-
plication scenarios, for instance, a single pair Bell inequality
for robust self-testing. Even though the fidelity lower bounds
for robust self-testing are obtained by numerics, these results
are also instructive for obtaining a (tight) analytical bound for

TABLE IV. Five- and six-qubit graph states in Fig. 3; Bell in-
equalities constructed with generators. {i} denotes the generator Gi

associated to the ith qubit.

Cluster4 AC P R βQ/βC

1 {1} {(1, 2)} {3, 4, 5} (2
√

2 + 3)/5
2 {2} {(1, 2), (2, 3)} {4,5} (4

√
2 + 2)/6

GHZ5 AC P R βQ/βC

1 {1} {(1, 2)} {3, 4, 5} (2
√

2 + 3)/5
2 {2} {(1, 2), (2, 3), (2, 4), (2, 5)} ∅

√
2

G5 AC P R βQ/βC

1 {1} {(1, 2)} {3, 4, 5} (2
√

2 + 3)/5
2 {2} {(1, 2), (2, 3), (2, 4)} {5} (6

√
2 + 1)/7

G6 AC P R βQ/βC

1 {1} {(1, 2)} {3, 4, 5, 6} (2
√

2 + 4)/6
2 {2} {(1, 2), (2, 3), (2, 5)} {4, 6} (6

√
2 + 2)/8

general graph states in the future [28]. One may also find other
interesting inequalities with other advantages. Our proposed
Bell inequalities have been applied to self-test multiparticle
graph states [57,58]. Similar to the entanglement witness, a
modification of coefficients between different Bell expres-
sions may be beneficial for improving the ratio of quantum
and classical bounds and the robust self-testing performance
[48,49,59].

Via the proposed framework, we close the gap between
device-independent and -dependent witness and verification,
and borrow the experience from device-dependent study.
This connection can inspire more complicated Bell inequality
constructions, for instance, ones with more than two local
measurements, applying Y operators in stabilizers. It would
also be interesting to extend the method to hypergraph states,
nonstabilizer states, high-dimensional entangled states, and
entangled subspaces [60–64], or explore a weak form of self-
testing which verifies the state without a full self-testing of
measurements [65,66].

Under the context of entanglement detection, like the
entanglement witnesses shown above, one can also ob-
tain device-independent entanglement (structure) witnesses
[16,48,49,67], and we leave these problems to future work.
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APPENDIX A: PROOF FOR CONSTRUCTED
BELL INEQUALITIES

1. Proof for Lemma 1

For any pairable stabilizers S1 and S2, we choose one of
its anticommutative position, e.g., T , such that s1

T s2
T = −1. It

is not hard to see that the classical value of B1,2 cannot be
greater than 〈AT + BT 〉 + 〈AT − BT 〉 � 2. Then we prove the
quantum bound by expressing the difference as

2
√

2 − B1,2 =
〈

1√
2

[
I −

(
AT + BT√

2

) ∏
i 
=T

Pk
(
s1

i

)]2

+ 1√
2

[
I −

(
AT − BT√

2

) ∏
i 
=T

Pk
(
s2

i

)]2〉
� 0.

(A1)

The quantum bound is reached by choosing AT = X+Z√
2

, BT =
X−Z√

2
and Ai = X, Bi = Z for i 
= T with the underlying state

as the graph state ψG .

2. Proof for Lemma 2

We choose one pair of pairable stabilizers S1 and S2,
and choose one anticommutative position, denoted as T . We
divide all the stabilizers belonging to ST into three subsets
according to the measurement setting on the T th position:

P+ = {S|sT = 1, S ∈ ST },
P− = {S|sT = −1, S ∈ ST },
P0 = {S|sT = 0, S ∈ ST }. (A2)

Any stabilizers Sl ∈ P+ and Sk ∈ P− are pairable. If |P+| 
=
|P−|, we can reuse the stabilizers. In this way all the stabiliz-
ers in P+ ∪ P− can be assigned into paring set P and also let
P0 = R and AC = T . Then the above construction satisfies
two listed requirements.

3. Proof for Theorem 1

First the classical bound can be obtained by multiple uses
of the result in Lemma 1, that is,

∑
(l,k)∈P (Bl + Bk ) � 2|P|,

and the fact
∑

r∈R Br � |R|. Then we prove the quantum
bound by showing that

2
√

2|P| + |R| −
∑

(l,k)∈P
(Bl + Bk ) −

∑
r∈R

Br � 0. (A3)

Note that here in each Bl , Bk , and Br all the observables A and
B are not fixed measurement settings but arbitrary dichotomic
observables. Similar to the proof of Lemma 1, this inequality

can be transformed into a sum of the following squares:

2
√

2 − Bl − Bk

=
〈

1√
2

[
I −

∏
i∈AC

(
Ai + sl

i Bi
) ∏

i/∈AC
Pi

(
sl

i

)]2

+ 1√
2

[
I −

∏
i∈AC

(
Ai + sk

i Bi
) ∏

i/∈AC
Pi

(
sk

i

)]2〉
� 0, (A4)

1 − Br =
〈

1

2

[
I −

∏
i/∈AC

Pk
(
s j

i

)]2〉
� 0. (A5)

The quantum bound is reached by choosing Ai = X+Z√
2

, Bi =
X−Z√

2
when i ∈ AC; Ai = X, Ai = Z when i /∈ AC where the

underlying state is the graph state ψG .

APPENDIX B: PROOF FOR SELF-TESTING
OF THEOREM 2

First we prove the “if ” part. The proof of this part is
similar to Refs. [18,25]. We assume the underlying state is
ψ and observables are Oi for the ith party and prove that
for all correlations in Bell inequality there exists an isometry
� = ⊗N

i=1 �i with local isometries �i,

�

[∏
i

Oi
(
s j

i

)|ψ〉
]

=
∏

i

Pi
(
s j

i

)
(|ψG〉 ⊗ |extra〉), (B1)

where for i ∈ AC, Pi(0) = I, Pi(1) = X+Z√
2

; Pi(−1) = X−Z√
2

, for
i /∈ AC, Pi(0) = I, Pi(1) = X , Pi(−1) = Z .

Without loss of generality, in the following we assume
AC = {1} and the case where AC contains more than one
position can be proved similarly. Denote

X̃1 = 1

c
√

2
[O1(1) + O1(−1)],

Z̃1 = 1

c′√2
[O1(1) − O1(−1)]. (B2)

Here we also change zero eigenvalues of O1(1) ± O1(−1) to
1, and c, c′ are normalized parameters such that |X̃1| = |Z̃1| =
1. Please refer to Refs. [25,68] for more details of this con-
struction. For i 
= 1, we denote X̃i = Oi(1) and Z̃i = Oi(−1),
which are the actual implemented observables.

A key step of the proof is to show that for each position i,
when acting on the underlying state ψ , X̃i and Z̃i are anticom-
mutative, i.e.,

(X̃iZ̃i + Z̃iX̃i )|ψ〉 = 0, i = 1, 2 . . . , N. (B3)

When the Bell inequality reaches the maximal value, the
inequalities in Eqs. (A4) and (A5) in the proof of Theorem 1
should be saturated when acting on the state ψ . As a result,
according to each square in the equations, we have

X̃1|ψ〉 =
∏
i 
=1

Oi
(
sl

i

)|ψ〉,

Z̃1|ψ〉 =
∏
i 
=1

Oi
(
sk

i

)|ψ〉, (B4)

|ψ〉 =
∏
i 
=1

Oi
(
sr

i

)|ψ〉,
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where (l, k) ∈ P and r ∈ R. For the position i = 1, the
anticommutative relationship can be obtained directly from
Eq. (B2):

(X̃1Z̃1 + Z̃1X̃1)|ψ〉 = 0. (B5)

Since the stabilizers in ST = P ∪ R can determine the graph
state ψG , ST at least contains N independent stabilizers. For
all generators in Eq. (2), there always exist a series of stabiliz-
ers Si1 , . . . , Sim from ST satisfying

Gi =
m∏

j=1

Si j , (B6)

with m � N . By multiple uses of Eq. (B4) and plugging into
Eq. (B6), we have

X̃i|ψ〉 =
∏
j∈ni

Z̃ j |ψ〉 (B7)

for all 1 � i � N . Thus for j ∈ n1, by utilizing the relations
of vertex 1 and j in Eq. (B7), we have

(Z̃ j X̃ j + X̃ j Z̃ j )|ψ〉 = (Z̃1X̃1 + X̃1Z̃1)
∏

i∈C(1, j)

Zi|ψ〉, (B8)

where C(1, j) = [n1 ∪ n j] \ [{1, j} ∪ (n1 ∩ n j )] denotes the
set of all the vertices which are neighbors of either 1 or j
but are not 1 or j themselves. Starting from position 1, we
can obtain the anticommutative relationship for the positions
j ∈ n1:

(X̃ j Z̃ j + Z̃ j X̃ j )|ψ〉 = 0, j ∈ n1. (B9)

Then in the same way we can obtain the anticommutative
relationship for the operators whose corresponding vertex is
the neighbor of the vertices in n(1). Because the graph is
connected, we can iterate the above procedure and get the
anticommutative relationship for all parties. The construction
of the isometry � is exactly the same with that in [25], and we
do not repeat it here.

Secondly, we prove the “only if” part. Here we tackle the
situation that one constructs the Bell inequality via Theorem
1, i.e., using some stabilizers with the CHSH trick, but the
stabilizer set involved there is not complete, i.e., the elements
in the set cannot generate all the stabilizers. Then we prove
that one cannot self-test the underlying state, by constructing
a mixed state to make a contradiction.

Suppose the stabilizer set ST involved in Theorem 1 can-
not determine the graph state. That is, it can at most contain
N − 1 independent stabilizers denoted by S1, S2, . . . , SN−1,
and we can always find one generator denoted by SN = GN

that cannot be expressed by the product of stabilizers in ST .
Consequently, we construct a state

ρ = 1

2

N−1∏
i=1

Si + I

2
, (B10)

which is the maximally mixed state in the two-dimensional
subspace, determined by S1, S2, . . . , SN−1 all taking the
eigenvalue 1. As a result, ρ has exactly the same value with
ψG = ∏N

i=1
Si+I

2 for Bell inequalities constructed from ST .

Note that ρ is actually the mixture of ψG and another state:

ρ = (I + GN )/2 + (I − GN )/2

2

N−1∏
i=1

Si + I

2
= 1

2
(ψG + ψ ′

G ).

(B11)
Here the state ψ ′

G is determined by S1, S2, . . . , SN−1, all taking
the eigenvalue 1 and GN taking −1:

ψ ′
G = (I − GN )

2

N−1∏
i=1

Si + I

2
. (B12)

Since {Si}N
1 is complete, one can uniquely determine whether

Gi|ψ ′
G〉 = |ψ ′

G〉 or −|ψ ′
G〉 by multiplying the results of them,

and we denote the vertex subset D = {i : Gi|ψ ′
G〉 = −|ψ ′

G〉}.
As a result, ψ ′

G can also be transformed from ψG by local
unitary:

|ψ ′
G〉 =

∏
i∈D

Zi|ψG〉. (B13)

In the following we show that ρ cannot be transformed
to ψG by local isometries, which contradicts the self-testing
claim. Let us focus on any single qubit, say the first qubit, and
take it as the subsystem B and the remaining qubits as A. The
quantum conditional entropy on A of the state ψG is

S(A|B)ψG = S(AB)ψG − S(B)ψG = −1, (B14)

where we use the fact that ψG is pure and the entanglement
entropy of the first qubit is 1 [55]. On the other hand, the
quantum conditional entropy of the state ρ shows

S(A|B)ρ = S(AB)ρ − S(B)ρ = 1 − S(B)ρ � 0, (B15)

where we apply the fact that ρ is a maximally mixed state in
the subspace, and the entropy of B is upper bounded by the
qubit number 1.

It is known that S(A|B) quantifies how many qubits need
to be sent from A (Alice) to B (Bob) to reconstruct ρAB at
Bob’s side in the quantum state merging task [69]. A negative
value indicates that one does not need to send qubits but can
also gain −S(A|B) maximally entangled pairs. Considering
the two states given before, suppose one can transform ρ to
ψG with local isometries, and we show this contradicts the
quantum state merging efficiency. First, transform ρ to ψG
with local isometries, and then one can finish the quantum
state merging of ψG without any qubit sending but get one
entangled pair. Finally, one can transform ψG back to ρ using
local operations according to Eq. (B13) with 1/2 probability,
which contradicts S(A|B)ρ � 0.

APPENDIX C: PROOF FOR APPLICATIONS

1. Proof for Corollary 1

We divide the N vertices of the graph with chromatic
number K into K disjointed subset Ck . According to Lemma 3
below, one can always find a vertex, without loss of generality,
denoted as the vertex 1 belonging to the first color subset,
1 ∈ C1 satisfying that from every other color subset Ck (k 
= 1)
there always exists at least one vertex vk ∈ Ck such that vertex
1 and vk are neighbors, i.e., vk ∈ n1. We construct K disjoint

043215-8
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stabilizer sets as follows:

P1 = {G1, G1Gj | j ∈ C1 \ {1}},
Pk = {Gi, GiGj |i ∈ Ck ∩ n1, j ∈ Ck \ n1}, (C1)

k = 2, 3 . . . , K,

where Gi denotes the generator of the ith vertex. Here P1

contains G1 and the multiplications of G1 with the other
generators from the first color set C1. For 2 � k � K , Pk

contains the generators of the neighbors of vertex 1, and the
multiplications of these generators with the other generators
from the same color set Ck . For simplicity of construction,
we only consider the multiplication of Gj with one of the
generators from n1, say Gk .

It is not hard to check that any pair of Si ∈ P1, S j ∈ Pk is
pairable. In particular, they are anticommutative at the first
position i = 1. We denote the stabilizers in P1 as S1, . . . S|C1|
and other stabilizers in P2, . . . ,PK as S|C1|+1, . . . SN . We
choose AC = {1}, and when 2|C1| � N we construct the cor-
responding Bell inequality by reusing stabilizer S1 as follows:

(N − 2|C1| + 1)B1 +
N∑

j=2

B j � βC = 2(N − |C1|), (C2)

where B j = 〈(A1 + s j
1B1)

∏
i 
=1 Pi(s

j
i )〉. When 2|C1| > N , we

reuse the stabilizer SN and construct the Bell inequality:

(2|C1| − N + 1)BN +
N−1∑
j=1

B j � βC = 2|C1|. (C3)

These two Bell inequalities both have 2N correlations, and
the maximal quantum values are βQ = 2

√
2(N − |C1|), βQ =

2
√

2|C1|, respectively. As a result, the ratio βQ/βC = √
2 for

both cases.
The stabilizers we used are ST = ⋃

k=1,2...,K Pk contain-
ing N independent stabilizers. Via Theorem 2, we prove that
the above inequality can self-test the graph state ψG .

Lemma 3. For any graph G = (V, E ) whose chromatic
number is K with disjoint color sets C1, . . . ,CK , V =⋃K

k=1 Ck , there always exists a vertex, for example, 1 ∈ C1

satisfying that from every other color subset, we could find
at least one vertex vk ∈ Ck k = 2, . . . , K such that vertex 1
and vk are neighbors, vk ∈ n1.

Proof. We prove this Lemma by contradiction. Assuming
that we could not find the vertex satisfying the requirement,
we denote the vertex with the maximal different color neigh-
bors as vertex 1. Thus there exists a color set, for example,
CK , with no vertex from it is neighbor to vertex 1. Then we
pick one vertex from CK , denoted as vertex vK , where we
can always find a color set Cq (q 
= K ) such that every vertex
in Cq is not neighbor to vK ; otherwise it is contradictive to
the assumption that vertex 1 has the maximal different color
neighbors. Then we can color this vertex vK with color q.
Repeat this procedure for the vertices in color set CK , and we
find that this graph can be colored with K − 1 color, which
causes a contradiction. �

TABLE V. Numerical fidelity bound for the 3-qubit GHZ
(cluster) state.

3-qubit GHZ (cluster) s μ

1 & 2 0.906 –2.4686
3 & 4 0.6036 –2.4145
Mermin [28,52] 2+√

2
8 − 1√

2

2. Robust self-testing of graph states

In this section we give a detailed explanation about nu-
merical robustness results of self-testing shown in Fig. 2. One
could also refer to Refs. [25,28] for the details of the proof. We
would like to lower bound the fidelity between the measured
state ρ and the target graph state ψG (under local isometry),
with the knowledge of the Bell inequality value. To this end,
mathematically equivalently, one can adopt a local extraction
channel and the maximal fidelity shows

F = max
�=�1⊗�2···�N

〈ψG|�(ρ)|ψG〉, (C4)

where �i is the local channel on the ith party. Alternatively,
the fidelity can be written as follows:

Tr[ρ�
†
1 ⊗ �

†
2 · · · �†

N (|ψG〉〈ψG|)], (C5)

where �
†
i is the dual channel of �i. Note that here the

dual of the extraction map acts on the graph state, and
we denote the state after this dual channel as K = �

†
1 ⊗

�
†
2 · · · �†

N (|ψG〉〈ψG|).
To find a reliable lower bound of the fidelity from the

Bell inequality value, one can choose appropriate parameters
s and μ such that the following inequality on operators always
holds:

K � sB + μI, (C6)

where B is the Bell inequality to self-test the state. In this way
the fidelity is bounded as F � sβ + μ, with β = Tr(ρB) the
Bell inequality value.

Since the measurement of B is restricted to the dichotomic
scenario, on account of the Jordan Lemma, one can reduce the
state to the N-qubit space, and the possible measurements can
be parameterized by the angles θi ∈ [0, π/2] as

Ai = cos θiXi + sin θiZi,
(C7)

Bi = cos θiXi − sin θiZi,

for i ∈ T , the rotated set, and for other qubits

Ai = cos θiHi + sin θiVi,
(C8)

Bi = cos θiHi − sin θiVi,

TABLE VI. Numerical fidelity bound for the 4-qubit GHZ state.

4-qubit GHZ s μ

1 & 2 1 −1 − 2
√

2
3 0.69 –3.5931
4 0.49 –3.1578
Mermin 0.219 –0.752
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TABLE VII. Numerical fidelity bound for the 4-qubit cluster state.

4-qubit cluster s μ

1 1 −1 − 2
√

2
2 0.7400 –3.9262
3 & 4 0.6200 –2.5071

where Hi(Vi ) = (Xi ± Zi )/
√

2. Consider a specific extraction
channel in Ref. [28],

�i(ρ) = 1 + g(θi )

2
ρ + 1 − g(θi )

2
	i(θi )(ρ)	i(θi ), (C9)

where g(θi ) = (1 + √
2)(sin θi + cos θi + 1), and 	i(θi ) is the

operator on the ith qubit: for i ∈ T , 	i(θi) = Xi(Zi ) as θi <

(�)π/4; for i /∈ T , 	i(θi ) = Hi(Vi ) as θi < (�)π/4. Now the
Bell inequality B and the operator K are both parameterized
with θi, and the inequality in Eq. (C6) shows

K (θ1, θ2, . . . , θN ) � sB(θ1, θ2, . . . , θN ) + μI, (C10)

where we should find an optimal s and μ for all possible
θ1, θ2, . . . , θN . However, in practice we cannot go through all
�θ . Thus, in our numerics we only consider a finite set of �θ =
with θi = 2π

j
h ( j = 0, . . . , h) and give an approximate lower

bound.

TABLE VIII. Numerical fidelity bound for the 5- and 6-qubit
graph states.

5-qubit cluster s μ

1 1.16 –5.7610
2 0.93 –6.1209

5-qubit GHZ s μ

1 1.04 –5.0616
2 0.46 –4.2043

5-qubit G5 s μ

1 1.07 –5.2364
2 0.74 –6.0191

6-qubit G6 s μ

1 1.3 –7.877
2 0.74 –6.7591

In Figs. 2 and 4, all the robustness results are obtained
from the above inequality numerically. To be specific, given
a fixed s, we find the minima of the minimal eigenvalue of
K (�θ ) − sB(�θ ) for all �θ . A slower slope indicates a better
bound. Thus, to find the optimal linear bound, we let the
relation sβQ + μ = 1 hold, that is, the fidelity approaches 1
for the maximal quantum value, and find the minimum s. We
list all the numerically obtained s and μ in Tables V, VI, VII
and VIII.
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