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Power-law fluctuations near critical point in semiconductor lasers with delayed feedback
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Since the analogy between laser oscillation and second-order phase transition was indicated in the 1970s,
dynamical fluctuations on lasing threshold inherent in critical phenomena have gained significant interest. Here,
we numerically and experimentally demonstrate that a semiconductor laser subject to delayed optical feedback
can exhibit unusual large intensity fluctuations characterized by power-law distributions. Such an intensity
fluctuation consists of distinct intermittent bursts of light intensity, whose peak values attain tens of times
the intensity of the maximum gain mode. This burst behavior emerges when a laser with a long time delay
(over 100 ns) and an optimal feedback strength operates around the lasing threshold. The intensity and waiting
time statistics follow power-law-like distributions. We also report on the experimental results that suggested
power-law intensity dynamics in a semiconductor laser with delayed feedback. The reason for the emergence of
power-law behavior in the laser system is discussed from the perspective of nonequilibrium-critical behavior in
a slowly driven-dissipative system known as self-organized criticality.
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I. INTRODUCTION

Laser oscillation has gained interest in the areas of theo-
retical physics as well as engineering application since the
analogy between laser oscillation and second-order phase
transition was indicated by DeGiorgio and Scully [1] and
Graham and Haken [2]. The analogy to the second-order
phase transition has inspired significant interest not just in the
transition of a macroscopic quantity, i.e., the onset of laser
oscillation, but also its fluctuation around the lasing thresh-
old, which is regarded as a critical point [3–7]. However,
despite many studies on this fluctuation of light intensity,
scale-invariant fluctuations expected from the context of equi-
librium critical phenomena have not been reported.

The scale-invariant feature mentioned here implies that
variable s such as magnitude, duration, or waiting time of an
energy-releasing event follows a power-law distribution,

P(s) ∝ s−β, (1)

where β denotes the characteristic exponent. Power-law distri-
butions, which are generalized as Lévy’s stable distributions,
have a scale-invariant feature because their mean, variance,
and higher order of moments cannot be determined mathe-
matically under a certain condition of the exponent and the
upper bound of s [8]. Thus, dissipation phenomena character-
ized by the statistical distribution provide substantially large
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fluctuation and intermittency in their energy dissipation. Such
a statistical feature can be found in various natural phenom-
ena and physical systems, e.g., solar flares [9], earthquakes
[10,11], plasticity [12,13], sandpiles [14,15], magnetization
[16], and superconductors [17,18].

This scale-invariant feature can be observed in
equilibrium-critical phenomena: for instance, the area of
the magnetized domain in the Ising model. Laser systems
differ from those that exhibit equilibrium-critical phenomena
in many aspects such that laser is a kind of nonequilibrium
systems. One of the most significant differences is the degrees
of freedom of the system. Laser dynamics consists of only a
few dynamical variables, such as the electric field and carrier
density [19], whereas equilibrium-critical systems have many
degrees of freedom. However, it is well known that delayed
feedbacks provide high dimensionality to the laser dynamics
[19–23]. Generally, delay systems can be represented as
spatially expanded systems, where numerous independent
elements, the so-called virtual nodes that correspond to
many degrees of freedom, interact with themselves in a time
domain. Hence, delayed feedback can provide multiplicity
of the processes and their interactions to the system through
high dimensionality.

In addition to the high dimensionality, the delayed feed-
back also provides a wide variety of dynamical behaviors with
laser systems [19,23,24]. For instance, external light injection
with a time delay can cause regular sequential pulsation in
a short timescale, the so-called rapid pulse packages (RPPs)
[25], and irregular behaviors, known as optical turbulence,
under a strong optical feedback condition [26]. Low pump-
current conditions near the lasing threshold yield a complex
fluctuation, called low-frequency fluctuations (LFF), consist-
ing of subnanosecond intensity pulses and regular intensity
drops with a longer timescale [24,27,28]. Temporal fluctua-
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tions of intermittent pulsation in similar low pumping-power
conditions have been investigated and analyzed in terms of in-
termittent dynamics and extreme events [29–33]. In addition,
the existence of virtual nodes and their interplay have been
used for delay-based computing [34,35].

This high dimensionality and complexity originating from
delayed feedback may provide a laser system scale-invariant
fluctuations near the lasing threshold. In this paper, we show
the statistical distributions and their features in the inten-
sity dynamics of semiconductor lasers with delayed feedback
by conducting numerical simulations and supplementary ex-
periments. In Sec. II, we demonstrate through numerical
simulations of the Lang–Kobayashi model that a semicon-
ductor laser with long and strong delayed feedback exhibits
intermittent intensity bursts characterized by power-law distri-
butions. Then, the condition to obtain a remarkable power-law
feature is elucidated based on the simulation results. In
Sec. III, we report the experimental results, which partly
support the numerical results. Finally, in Sec. IV, we discuss
the emergence of the power-law behavior for the proposed
laser system from the viewpoint of the conditions to achieve
criticality in slowly driven-dissipative systems.

II. NUMERICAL SIMULATION

A. Numerical simulation setup

In the present paper, we employ the Lang–Kobayashi
model represented by the complex electric field Ê (t ) and
carrier density N (t ) at time t for the simulation of a semi-
conductor laser with a single delayed feedback [19,36],

dÊ

dt
= 1 + iα

2

[
GN {N (t ) − N0} − 1

τp

]

× Ê (t ) + κÊ (t − τ )e−iω0τ , (2)

dN

dt
= J − N (t )

τs
− G0{N (t ) − N0}|Ê (t )|2, (3)

GN = G0

1 + ε|Ê (t )|2 , (4)

where α, G0, N0, τp, τs, ω0, and ε are the linewidth enhance-
ment factor, gain coefficient, carrier density at transparency,
photon lifetime, carrier lifetime, optical angular frequency,
and gain saturation parameter, respectively. Here, J , κ , and
τ represent the pump current, feedback strength, and external
round-trip time corresponding to the delay time, respectively.
We used the following set of parameters for the simula-
tions: α = 5, tp = 1.927 × 10−12 s, ts = 2.04 × 10−09 s, N0 =
1.4 × 10+24 1/m3, ω0 = 1.226 × 10+15 s−1, and G0 = 1 ×
10−12 m3/s. The gain saturation parameter is set as zero ex-
cept for the simulations in Appendix B. The fourth-order
Runge–Kutta method was used to numerically integrate the
Lang–Kobayashi model. The timestep for the integration was
set to 1 femtosecond.

A normalized pump current defined as j = J/Jth is used in
the simulations, where Jth is the threshold value of the solitary
oscillation mode, Jth = Nth/τs, and Nth = N0 + 1/(τpG0).
Notably, the laser can oscillate below the threshold current
j = 1 because some external cavity modes that originate from
the delayed feedback have lower thresholds than the threshold

FIG. 1. Time series of normalized laser intensity obtained from
the numerical simulations under the condition of τ = 1 μs and κ =
60 ns−1, where the horizontal axis represents the elapsed time from
1999.5 µs. The normalized pump currents are (a) j = 0.9579, (b) j =
1, and (c) j = 3.5589. Irregular and intermittent pulsation (intensity
bursts) with high intensity is observed at the threshold pump current,
j = 1.

of the solitary mode. We also normalize the laser intensity,
I = |Ê |2, by that of the maximum gain mode,

Iex = 1

GN

τp

τs

( j − 1)NthGN + 2κ

1 − 2τpκ
, (5)

where the maximum gain mode is the most efficient oscil-
lation mode, with the lowest lasing threshold, among the
external-cavity modes [19]. The derivation of the equation is
described in Appendix A.

As initial conditions of the electric field and carrier density,
those of the maximum gain mode were applied, Re[Ê (0)] =
Im[Ê (0)] = √

Iex, N (0) = Nex, where Nex = Nth − (2κ/GN ).
For the initial condition of the delayed electric field [Ê (t ) for
−τ � t < 0], a random electric field, Ê (0) with 1% random
noise generated by uniform random numbers, was used. We
confirmed that the initial condition does not affect the dynam-
ical behaviors as long as a sufficiently long simulation time is
taken.

B. Temporal behavior

Figure 1 shows the time series of normalized intensity
I (t )/Iex obtained from the simulation with a long delay time
τ = 1 µs, strong optical feedback κ = 60 ns−1, and different
pump currents ( j = 0.9579, 1, and 3.5589). The time series is
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shown as a function of the elapsed time from t = 1999.5 µs.
As shown in Fig. 1(b), a distinct behavior appears on the
condition that the pump current is just the threshold current,
i.e., j = 1; irregular sharp pulses (intensity bursts) originate
abruptly from a state of almost zero intensity. On the con-
trary, as shown in Figs. 1(a) and 1(c), only chaotic fluctuation
around a mean intensity, I/Iex � 1, is observed when the
currents that deviate from the threshold value are applied
( j = 0.9579 and 3.5589). It should be noted that the intensity
rarely takes on a value near zero when j = 0.9579 and 3.5589.
This is in contrast to the case of j = 1. Here, we note that a
sufficiently long simulation time is required to observe such
intensity bursts shown in Fig. 1(b) because of the presence
of a long transient regime in the early stage with quiescent
intervals and quasiperiodic pulses.

Another significant feature is its scale-free burst-like pul-
sation behavior. The peak heights of certain bursts attain
several tens of times the steady intensity of the maximum
gain mode Iex. Recalling that Iex means the highest possible
intensity produced by steady-state oscillation, we can consider
that the threshold condition provides a highly efficient laser
oscillation. On the other hand, significantly small bursts occur
as observed in the insert in Fig. 1(b). Although not apparent
in the figure, there are many tiny pulses that are significantly
smaller than Iex. As an example, one can find out a tiny pulse
at 40.9 ns in the inset figure.

C. Statistical distribution

To demonstrate the existence of scale-invariant fluctuations
characterized by power-law distributions in the laser oscil-
lations, we here present statistical distributions of the laser
intensity and intervals of the bursts calculated from the time
series of the numerical simulations.

The probability density functions (PDFs) of the normalized
intensity I/Iex are shown in Fig. 2, where the probability distri-
butions are depicted in a double logarithmic display. Under the
threshold condition ( j = 1), the distribution evidently forms a
straight shape (open-black circles), i.e., the distribution con-
tains a power-law decay described by Eq. (1), over at least
three orders of magnitude, where the characteristic exponent
is almost unity (β � 1). The exponent is close to that ob-
served in seismic statistics known as Gutenberg–Richter’s law
[37]. When j > 1, the power-law decay (scale-invariant fea-
ture) disappears rapidly and transforms to an exponential one,
which has a characteristic scale. When j < 1, the power-law
feature also disappears, as can be seen from the distribution
represented by blue diamonds in Fig. 2. It should be noted
that the cutoff intensity of the distributions, i.e., the upper
bound of the event size, takes on a maximum value under the
threshold condition j = 1. We will investigate this trend in
detail in Sec. II E.

It is known that critical behavior in nonequilibrium sys-
tems yields power-law statistics in terms of size and the time
of energy-release events [9,14,18]. Here, the distributions of
waiting time, i.e., the time interval between two sequential
peaks of intensity bursts, are shown in Fig. 3, where we
consider each burst of intensity as an energy-release event.
The waiting time distribution obtained for a large pump cur-
rent ( j = 3.5589) forms a convex shape around tw = 0.04 ns.

FIG. 2. Probability density function (PDF) of the normalized
intensity I/Iex obtained from the numerical simulations, where the
PDFs are shifted arbitrarily in the vertical direction for visibility.
The distribution of the probability density of j = 1 (black circles)
clearly exhibits an algebraic decay with exponent β � 1, where the
solid straight line represents (I/Iex )−1. The cutoff of the distributions
is maximized at j = 1.

This means the existence of a characteristic timescale of
the burst events. With decreasing the pump current from the
large value, a straight “shoulder,” which is an indication of a
power-law character, develops in the distributions. Under the
threshold condition ( j = 1), a power-law decay with β � 3/2
clearly appears over approximately two orders of magnitude

FIG. 3. PDF of waiting time, the interval between successive
peaks of intensity bursts, obtained with an injection current j. The
power-law regime appears when j = 1 (black circles), where the
solid line represents a power-law curve with β = 1.5.
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as depicted by open black circles in Fig. 3. This power-law
feature in the waiting time is compatible with the aftershock
statistics of earthquakes known as Utsu–Omori’s law, while
the exponent of 3/2 is slightly higher than that of the law
[10,11]. Similar to the case with the intensity statistics shown
in Fig. 2, the power-law behavior disappears again for lower
pump currents ( j < 1), which are depicted by blue diamonds
in Fig. 3.

The above simulation results show that the statistical dis-
tributions of size and interval of energy-release events form
power-law decays just on the threshold condition j = 1. This
indicates that semiconductor lasers with optical feedback ex-
hibit power-law statistics in the threshold condition of the
solitary mode.

D. Trajectory

In this subsection, we observe the intensity dynamics ex-
hibiting power-law fluctuations as a trajectory in the phase
space of time-delayed dynamical systems. In the Lang-
Kobayashi model, a space consisting of the phase difference
�(t ) = φ(t − τ ) − φ(t ) and carrier density N (t ) is called the
“phase space” of the system. This space is only a projection
of the rigorous phase-space. However, it is commonly used
to observe complex delay dynamics such as LFFs and RPPs
[19,25,27], because this phase space allows us to visually un-
derstand the relationship between a trajectory and stationary
points. We here observe the phase space consisting of the laser
intensity I (t )/Iex rather than N (t ) since we have focused on
the large intensity fluctuation in this paper.

A part of a trajectory calculated from the numerical result
accompanying the power-law behavior is shown in Fig. 4.
Here, the simulation condition is identical to that used in
Figs. 1(b) and 2, τ = 1 μs, κ = 60 ns−1, and j = 1. The curve
in the figure represents the trajectory following 1999.5 µs.
The blue solid circles are the stationary points of external
cavity modes. The figure shows certain unusual motions of
the trajectory: the trajectory moves largely omitting many
stationary points when �(t ) decreases and increases abruptly
in the direction of increasing �(t ) (occasionally with a jerking
motion).

The remarkably sticky motion of the trajectory is notewor-
thy: The trajectory sometimes orbits several narrow regions
although there are no stationary points in the regions. Some
typical regions are indicated by white arrows in Fig. 4(b).
The narrow areas where the trajectory winds and/or slows
down can be regarded as points; hence, we refer to these
points as “pseudo-” stationary points. The dynamics is more
significantly affected by the pseudo-stationary points than
the “ordinary-” stationary points depicted by the blue cir-
cles in the figure. In LFFs and RPPs, trajectories follow
a sequence from one ordinary-stationary point to the next,
heading toward the maximum gain mode and returning to
the minimum gain state after reaching the mode [19,25,27].
In contrast, the trajectory of the present power-law dynamics
is trapped by various pseudo-stationary points as well as the
ordinary-stationary points and irregular jumps along the phase
difference (in the horizontal direction). This is an obvious dif-
ference between the present dynamics and traditional complex
dynamics, such as LFFs or RPPs.

FIG. 4. A trajectory in the phase space constructed by phase
difference � and normalized intensity I/Iex in the condition that
τ = 1 µs, κ = 60 ns−1, and j = 1, where the solid blue circles are
stationary solutions of the Lang–Kobayashi equation. (a) The tra-
jectory is depicted by color according to the elapsed time, te, from
t = 1999.5 µs. (b) Enlarged figure from � = −10.500 to −10.490.
The white arrows indicate typical pseudostationary points (see text).

Further, the pseudo-stationary points seem to be (logarith-
mically) homogeneously distributed in a region that extends
from extremely small to large intensities in the phase space.
Thus, the power-law fluctuation is expected to extend to a
significantly smaller region of intensity than that depicted in
Fig. 2. The appearance of such multiscale pseudo stationary
points may be related to the power-law behavior in the inten-
sity dynamics. A more detailed analysis of the phase space
dynamics would be reported elsewhere.

E. Condition for power-law behavior

In this subsection, evaluating the extent of the power-law
behaviors systematically in various conditions of delay time τ

and feedback strength κ , we reveal the condition of the emer-
gence of the power-law behaviors illustrated in the previous
subsection. To achieve this, we calculate the mean value of
the exceedance of intensity, 〈I〉|>a, i.e., the size of the events
beyond a reference value a [8], from the simulation results. As
shown in Fig. 2, the distribution exhibits an evident power-
law decay as the cutoff of the distribution increases toward
the rightmost part of the figure. Thus, the mean exceedance
normalized by the maximum gain mode intensity 〈I〉|>Iex /Iex

can be a good indicator of the manifestation of power-law
behaviors [8], where we use Iex as the reference value for the
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exceedance calculation. To represent the dependence of the
pump current, we employ another normalized pump current
defined by

je ≡ J − Jex

Jth − Jex
= ( j − 1)

NthGN

2κ
+ 1, (6)

where Jex is the threshold pump current of the maximum
gain mode defined by Jex = Jth[1 − 2κ/(NthGN )] (see Ap-
pendix A). Thus, je = 0 and je = 1 correspond to the
threshold currents of the maximum gain mode and solitary
mode, respectively.

The dependence of the normalized mean exceedance
〈I〉|>Iex /Iex on the delay time τ is shown as a function of
the pump current in Fig. 5(a). Here, we employed the time
series after t = 1900 µs to calculate the mean exceedance.
The figure shows a remarkable feature that 〈I〉|>Iex /Iex forms
a sharp peak around the threshold current of the solitary
mode je = 1, when the delay time is sufficiently long (τ >

1 ns). This peak clearly represents the manifestation of the
power-law behavior at the threshold of the solitary mode.
The exceedance 〈I〉|>Iex /Iex approaches unity as je increases
from the threshold current. This indicates that the excess
pump current changes the power-law behavior accompanying
extreme intensity bursts to steady oscillation with relatively
small fluctuations. On the other hand, 〈I〉|>Iex /Iex monotoni-
cally decreases as je → 0 despite the divergence of 1/Iex at
je = 0. This intensity disappearance implies that the maxi-
mum gain mode no longer works at the threshold condition
of the mode.

As shown in Fig. 5(b), similar peaks indicating the emer-
gence of the power-law behavior and the decay trend can be
observed around je = 1, but it is noteworthy that the peak
disappears under an excessively large (or small) feedback
strength condition. This result implies the presence of a suit-
able feedback strength for the power-law behavior. To identify
the suitable condition, we depict the relationship between
〈I〉|>Iex /Iex with je = 1 and the normalized feedback strength
κ/κmax in Fig. 5(c), where κmax = 1/(2τp) � 260 ns−1 which
is the maximum value of the feedback strength as long as Iex

is finite [see Eqs. (5) and (A5)]. In the figure, the standard de-
viation depicted by open black triangles as well as 〈I〉|>Iex /Iex

has a maximum value at κ/κmax � 0.6.
The results presented in this subsection reveal an emer-

gence condition of the power-law feature: The laser oscillation
with the power-law statistics emerges under the condition that
the pump current is just on the threshold value of the solitary
mode and the delay time is sufficiently long (τ > 1 ns). In
addition, the power-law behavior is most remarkable when the
feedback strength is approximately 60% of the upper limit.

III. EXPERIMENTAL OBSERVATION

In the previous section, we have demonstrated the power-
law behavior of laser intensity in the vicinity of the solitary
mode with long time delay and strong feedback by performing
numerical simulations. Here, we report the experimental re-
sults that support the power-law behavior of the burst intensity
dynamics presented in the previous section.

FIG. 5. Mean exceedance of the intensity 〈I〉|>Iex as a function of
the normalized pump current je or feedback strength κ/κmax , where
〈I〉|>Iex is normalized by Iex . The mean values are obtained under
the condition of (a) various delay times τ and a common feedback
strength κ = 60 ns−1, (b) different κ and a common delay time τ =
1 µs, or (c) τ = 1 µs and je = 1, where the black triangles represent
the standard deviation of 〈I〉|>Iex /Iex .

A. Experimental setup

Figure 6 shows the experimental setup to measure the
intensity time series of a semiconductor laser with delayed
feedback. We used a distributed feedback (DFB) laser (oper-
ating at 1550 nm) with a fiber feedback loop. The laser light is
split into two portions by a 50/50 fiber coupler. One is sent to
the photodetector (Bandwidth 12 GHz) via an optical isolator,
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FIG. 6. Experimental setup for a semiconductor laser with de-
layed feedback. LD, distributed feedback (DFB) laser diode; FC,
50/50 fiber coupler; ISO, optical isolator; PD, photodetector; OSC,
oscilloscope; OFA, optical fiber amplifier. The fiber loop is com-
posed of polarization-maintaining fibers.

and the intensity signal is measured with a digital oscilloscope
(Bandwidth 16 GHz, 100 GSamples/s). The other is sent to
an optical fiber amplifier and fed back to the DFB laser again.
In this experiment, the laser current was fixed at 12.04 mA
(∼1.2 times of the threshold current) to measure the laser in-
tensity signal clearly. The delay time was set as approximately
116 ns, which is sufficiently long to induce the power-law
like behavior. We used the optical fiber amplifier to achieve
a strong optical feedback, and controlled the feedback ratio
(represented by R) between the feedback power and output
power from the laser to be within the range from 0 % to 22 %.

It should be noted that the power-law behavior is difficult
to measure in the present experiment because of the limitation
of the dynamic range of the measurement, i.e., the limitation
of the measurement range of the 8 bit analog-digital converter
in the oscilloscope. Thus, the present experiment focus on the
appearance of the intermittent burst of the intensity pulses,
which is a signature of the power-law behavior reported in the
previous section.

B. Temporal behavior

Figure 7 shows typical examples of intensity time series
of laser oscillation obtained from our experiments at J =
12.04 mA. The time series at a low feedback-power ratio of
R = 6.6 % does not indicate a significant burst [Fig. 7(a)].
On the other hand, irregular intensity bursts emerge when R
increases [Fig. 7(b)] and become inactive for a large feedback
ratio of R = 22.5 %, where the intensity fluctuates around a
mean value. This dependence on feedback strength is consis-
tent with our simulation results depicted in Figs. 5(b) and 5(c).

C. Statistical distribution

Probability density functions of the intensity obtained from
the experimental time series at certain typical conditions are
shown in Fig. 8(a), where the time series until 40 µs is used
for the calculation. In the figure, the distributions are shifted
arbitrarily in the vertical direction for visibility.

A sufficient pump current for laser oscillation without
delayed feedback (J = 12.04 mA, R = 0 %) yields only a
Gaussian-like distribution, which is depicted as green circles
in the figure. This reflects the fluctuation behavior near the
mean intensity. When the optical feedback is applied, the
fluctuation is increased dramatically, and the regime of power-
law-like decay appears in the statistical distribution. As shown
by the black triangles in Fig. 8(a), the power-law regime is

FIG. 7. Time series of light intensity at (a) R = 6.6%, (b) 13%,
and (c) 22.5%. Enlarged time series are presented in each figure.

indicated by the dashed line in the figure, and the characteris-
tic exponent is approximately two (β � 2). This experimental
condition (J = 12.04 mA, R = 13 %) is identical to that of
Fig. 7(b).

As our numerical simulations predict that this power-law
behavior disappears when the feedback strength is signif-
icantly larger, the same tendency can be observed in the
present experiments. Figure 8(b) shows statistical distribu-
tions of relative intensity under the fixed pump current (J =
12.04 mA) and different feedback strengths (R = 6.6, 9.7, 13,
and 22.5 %), where the intensity is normalized by the mean
intensity Iave. The figure reveals that the power-law regime
becomes prominent in the distribution when the feedback
strength increases, but becomes less prominent when the
strength exceeds 13 %. The cutoff of the distributions, i.e., the
maximum relative intensity, also has a character similar to that
of the numerical results as shown in Fig. 2: the cutoff becomes
maximum at R = 13 % even the difference among the cutoffs
is also not clear.

IV. DISCUSSION

This paper shows that intermittent intensity bursts char-
acterized by power-law statistics emerge and are prominent
when the delayed feedback is sufficiently long and strong
and the pump current is just on the lasing threshold. In or-
der to explain the power-law behavior, as a starting point
for the discussion, it would be natural to focus on the
nonequilibrium-critical phenomena in slow driven-dissipative
systems known as self-organized criticality (SOC), a

043205-6



POWER-LAW FLUCTUATIONS NEAR CRITICAL POINT IN … PHYSICAL REVIEW RESEARCH 4, 043205 (2022)

FIG. 8. Experimentally obtained PDF of intensity. Here, all the
plots are shifted arbitrarily in the vertical direction for visibility.
(a) Intensity distributions obtained under the condition. The distribu-
tion of J = 10.82 mA and R = 0 % is shown by orange diamonds,
where the laser oscillates did not occur. The others are the dis-
tributions with J = 12.04 mA and different feedback strengths R.
(b) Intensity distribution normalized by the mean intensity Iave. All
the pump currents are set as J = 12.04 mA. The dashed lines repre-
sent the power-law curve with the exponent β = 2.

mechanism that produces similar power-law distributions
[14,15]. SOC is a phenomenon that a dissipative system
spontaneously organizes itself to a critical state that is
characterized by scale-invariant statistics, i.e., power-law dis-
tribution. It is considered that the emergence of the criticality
requires several conditions for a system that stores the energy
injected by external driving [18]: (i) the system dissipates the
stored energy through multiple energy-release processes. (ii)
the processes interact with each other, and (iii) the processes
have threshold values for activation, and (iv) the rate of energy
injection into the system is sufficiently slower than that of the
energy-release processes.

The external energy injection of the laser system consid-
ered in this paper is the pump current j. In laser systems
without feedback, the slowest driving rate corresponds to

the threshold current ( j = 1) rather than zero pump current
( j = 0). This is because the carrier density of the laser decays
with lifetime τs even in the absence of energy release by laser
oscillation [see Eq. (3)]. Thus, the threshold current can be re-
garded as the ideal situation that satisfies the fourth condition.
The number of virtual nodes of a time-delay dynamical system
is proportional to the delay time τ [19]. Furthermore, the
strength of the interaction between the feedback and laser in-
tensity is determined by the coupling strength of the feedback,
κ . Hence, a sufficiently long τ is required for the multiplicity
(high dimensionality) of the energy release process, and a
strong κ firmly establishes their interactions. Therefore, it
is reasonable that the power-law fluctuation is prominent in
the situation. However, certain results cannot be explained
directly by the occurrence conditions of SOC. As shown in
Figs. 5(a) and 5(b), the power-law behavior is prominent when
je = 1 rather than when je = 0. It is a wonder that the onset
of the power-law behavior is determined by the threshold of
the solitary mode je = 1 rather than that of the external cav-
ity modes je = 0, although the power-law behaviors depend
strongly on the external feedback light. In future works, more
efforts should be undertaken to explain the optimum value
of the feedback strength, κ/κmax � 0.6, to obtain remarkable
power-law fluctuations as shown in Fig. 5(c).

At a glance, the aforementioned conditions, particularly
the requirement of the injection current tuning, appear to
deviate from the concept of “self-organized” criticality. This
is because parameters governing the conditions exist clearly
in laser systems, whereas they are presumed implicitly in
conventional SOC systems. For instance, forest fires or earth-
quakes, known as typical examples of SOC systems, seem
to spontaneously organize a critical state without any fine
tuning of parameters. The models of those phenomena have
no explicit parameters for controlling energy injection rates
as they introduce an infinite timescale separation a priori. This
separation is attributed to the fact that the injection rates, such
as tree growth and stress loading on a fault by the motion of
the tectonic plates, are extremely slow compared to the energy
release by fire spread in a forest and fault slip, respectively.
The influence of the timescale separation on the criticality
was discussed by Vespignani and coworkers, introducing a
nonvanishing driving rate into the sandpile system, which
is a traditional toy model of SOC [38]. By contrast, laser
systems innately contain a parameter for naturally controlling
the driving rate as the injection current. Hence, the laser with
delayed feedback is an extraordinary example of SOC and
can be a useful instance of embodying the effect of timescale
separation on criticality.

Resonance often plays a key role in irregular laser oscil-
lations, but the resonance is not expected to contribute to the
power-law behavior in the present condition. The resonance
considered here results from the interaction between the soli-
tary mode, which is the intrinsic oscillation mode of the semi-
conductor lasers, and the optical feedback with the time delay
τ . It is well known that the frequency of this solitary mode
is described by fr = 1/(2π )

√
( j − 1)/(τsτp)(1 + GN N0τp)

[19], but the frequency is zero under the threshold condition
( j = 1). Thus, the resonance with the solitary mode cannot
occur for the threshold condition considered in the present pa-
per [39]. The absence of the frequency is also consistent with
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the power-law decay of the waiting time distribution at the
threshold current depicted in Fig. 3, where the decay indicates
that the characteristic timescale of the bursts is absent.

Next, we mention the discordance between the experimen-
tal and numerical results. The width of the power-law regime
and the characteristic exponent obtained in our experiments
vary slightly from the simulation results. The power-law
regime obtained in the experiments is limited to one order
of magnitude [from I = 0.01 to 0.1 in Fig. 8(a)] unlike the
numerical results (Fig. 2). The lower bound would result from
the noise of the measurement, whose size can be measured
as the distribution in the nonoscillatory condition depicted by
orange diamonds in Fig. 8(a). This noise region is almost
consistent with the lower bound of the power-law regime
of the experiments. The dynamic range of the measurement
equipment used in the experiments is also a reason for the
lower bound. The large characteristic exponent β � 2 in the
experiment compared with that in the simulations may have
originated from the gain saturation of the laser and incomplete
tuning of the pump current to the threshold value. The satura-
tion effect reduces the cutoff of the intensity distributions (see
Appendix B). The combination of the saturation effect and
the excess pump current due to the incomplete tuning causes
a partial increase in the gradient of the intensity distribution
to 1.8 (Fig. 11).

Here, we indicate that the burst behavior is different from
previously reported dynamical behaviors such as chaotic os-
cillations, RPPs, and LFFs. The pulses that construct the
bursts may appear to be similar to RPPs, but, unlike RPPs,
periodicity of the pulses is absent [19,25]. Even though the
regular dropouts peculiar to LFFs are not observed in the
burst behavior [19,24,27,28], LFFs may be associated with
the power-law behaviors. This is because the condition for the
emergence of the power-law bursts is close to that for LFFs
except for the delay time. According to our investigation,
depending on the feedback strength, regular drops can be ob-
served when τD � 0.05 ns, and a longer delay time causes the
time series to be irregular. Future studies would elucidate the
connection between the present power-law bursts and LFFs.

Finally, we discuss another factor that enhances the power-
law behavior and its relationship with SOC. Even under the
threshold condition with a sufficiently strong and long feed-
back, the intensity distribution still exhibits a sharp cutoff that
restricts larger events, as shown in Fig. 2. According to the
mean-field theory of SOC, dissipation in bulk and boundary
regions of a system is essential for the criticality of SOC
[38,40]. As semiconductor laser systems have no boundaries,
here, we focus on the bulk dissipation, i.e., intrinsic dissipa-
tion. The intrinsic dissipation of semiconductor laser system
is the spontaneous annihilation of carriers, whose timescale
is determined by the carrier lifetime τs. Although the lifetime
is a specific constant of the laser, it enables a change in the
value in the numerical simulations. Figure 9 illustrates the
intensity distribution obtained through simulations with dif-
ferent carrier lifetimes τ̃s = τs/64, τs/8, τs, 8τs, and 64τs. As
shown in the figure, a long carrier lifetime (i.e., small intrinsic
dissipation) makes the cutoff of the distributions large and
the distributions approach a pure power-law distribution. This
is consistent with the conclusion of the mean-field theory of
SOC [38,40].

FIG. 9. The intensity distribution with the different carrier life-
time τ̃s. The distributions become to loose their cutoff and exhibit a
simple power-law decay as τ̃s is longer.

When carrier lifetime is too long, however, the criticality
characterized using the cutoff of the power-law distribution
breaks. We show the maximum intensity values as a function
of τ̃s normalized by the delay time τ in Fig. 10. The maximum
intensity increases almost linearly. However, this trend breaks
down in a regime where τ̃ is close to τ . The delay time must
be sufficiently longer than the carrier lifetime to achieve the
power-law behavior. Therefore, the criticality of this delay
system is expected to be attained at the limits where τ̃s → ∞,
τ → ∞, where τ̃s < τ .

Nonequilibrium critical phenomena, namely SOC men-
tioned here, are closely related to nonequilibrium phase

FIG. 10. Relative maximum intensity as a function of carrier
lifetime τ̃s, where the lifetime is normalized by delay time τ . The
maximum intensity increases with increasing τ̃s, but the trend dis-
appears as τ̃s exceeds τ , where the dashed line represents the linear
relation, Imax/Iex ∼ τ̃s/τ .
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transitions, particularly the absorbing-state phase transition
[41–43]. In fact, absorbing-state phase transition has been ob-
served in a semiconductor laser with delayed feedback similar
to that in the present study [44]. It is also noteworthy that the
dynamical systems with time delays can produce SOC-like
behaviors, in contrast to the fact that the conventional models
that reproduce SOC and absorbing-state phase transitions gen-
erally consist of cellular automata [9,14,15,18]. The manner
in which the delay system produces the power-law behaviors
can be observed as a trajectory in the phase space as depicted
in Fig. 4. Since most of the discussion on the relationship
between the present results and SOC is conjectural, the de-
tailed mechanism that produces the SOC features in delay
systems should be elucidated in future studies. It might enable
the understanding of nonequilibrium critical phenomena and
phase transitions from the aspect of dynamical systems in the
presence of delayed feedback.

V. CONCLUSIONS

In the present simulations and experiments, we demon-
strated that the semiconductor lasers with a sufficiently
strong and long delayed feedback at the critical point (las-
ing threshold) can cause the intermittent intensity fluctuation
characterized by power-law distributions typical in nonequi-
librium critical phenomena. The results of the numerical
simulations of the Lang-Kobayashi model show that the laser
intensity exhibits irregular bursts consisting of spike-like pul-
sation. As a result, certain peak values of the bursts attain
several tens of times the intensity of the maximum gain mode.
This is quantitatively different from other currently reported
behaviors such as low-frequency fluctuations, regular pulse
packages, or chaotic oscillations. Similar behaviors were ex-
perimentally measured in a semiconductor laser with delayed
feedback. The intensity bursts are most remarkable when the
coupling of the feedback is moderately strong (60% of the
maximum feedback strength), the delay time is sufficiently
long (τ > 1 ns), and the pump current is just on the threshold
value of the solitary mode. The noteworthy feature is that
the intensity and waiting time of the bursts follow power-law
distributions with exponents of approximately 1 and 2/3, re-
spectively. Additional simulations indicate another non-trivial
condition for the power-law behavior; The behavior is more
remarkable when the carrier lifetime of the laser increases
and the lifetime is shorter than the delay time. The statistical
feature and the condition of the intermittent laser oscillation
are analogous to self-organized criticality.
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APPENDIX A: CHARACTERISTIC VALUES
OF EXTERNAL CAVITY MODES

To investigate the intensity dynamics of the lasers, in this
paper, we employed certain quantities that represent external

cavity modes of semiconductor lasers described by the Lang-
Kobayashi equations; the oscillation intensity of maximum
gain mode Iex, threshold current of the external cavity modes
Jex, and maximum strength of the delayed feedback κmax. Al-
though these are described in commonly available textbooks
[19], we introduce these quantities in this Appendix for the
reader’s convenience.

The intensity generated from the maximum gain mode
can be estimated by considering the stationary state of the
Lang-Kobayashi equation dÊ/dt = dN/dt = 0. The station-
ary carrier density Ns when dÊ/dt = 0 is obtained from
Eq. (2):

Ns = Nth − 2κ

GN
cos ωsτ (A1)

where Nth = N0 + 1/(τpG0), and ωs is a stationary angular
frequency. Substituting the carrier density into Eq. (3), we
can obtain the stationary intensity of external cavity modes
described by the square of Ê ,

Is = τp

GNτs

( j − 1)NthGN + 2κ cos ωsτ

1 − 2τpκ cos ωsτ
, (A2)

where j is the normalized pump current defined by j = J/Jth,
and Jth = Nth/τs. Because Is is determined by the angular
frequency of a mode ωs, it is maximized when cos ωsτ = 1.
Hence, the intensity of the maximum gain mode that we used
to normalize the intensity of oscillation in this study can be
represented by

Iex = 1

GN

τp

τs

( j − 1)NthGN + 2κ

1 − 2τpκ
. (A3)

The condition Iex = 0 means that at least one external
cavity mode begins to oscillate. Thus, the external cavity
mode can activate at the normalized pump current j = 1 −
2κ/(NthGN ). Then the threshold pump current is represented
by

Jex = Jth

(
1 − 2κ

NthGN

)
. (A4)

From the denominator of Eq. (A3), we can recognize that
the stationary intensity is finite unless 2τpκ � 1. Therefore,
the maximum feedback strength that we can set is determined
by

κmax = (2τp)−1. (A5)

These estimations are good approximations as long as the
number of external cavity modes is sufficiently large.

APPENDIX B: SATURATION EFFECT OF GAIN

To extract the essence of power-law behaviors in semicon-
ductor lasers with delayed feedback, we omitted the effect of
gain saturation of the laser in the simulations of this study.
However, the saturation effect is essential for comparing the
present simulations with the experiments. Here, we show the
influence of the gain saturation upon the intensity distributions
by performing simulations of the Lang–Kobayashi model with
the nonvanishing gain saturation parameter ε shown in Eq. (4).
For the simulations, we applied some values of the saturation
parameter in the range from ε = 10−23 m3 to 5.0 × 10−23 m3,

043205-9



TOMOAKI NIIYAMA AND SATOSHI SUNADA PHYSICAL REVIEW RESEARCH 4, 043205 (2022)

FIG. 11. PDF of oscillation intensity for different gain saturation
parameters ε with the threshold injection current j = 1, where the
distribution depicted by green squares is for ε = 2.5 × 10−23 m3 and
j = 1.2652. For visibility, power-law curves with exponents β = 1
and 1.8 are shown by solid and dashed lines, respectively.

where the range includes the value of actual lasers used in
ordinary experiments [45,46].

The intensity distributions with three gain saturation pa-
rameters are shown in Fig. 11, where the gray diamonds,
blue circles, and red triangles correspond to ε = 10−23, 3.0 ×
10−23, and 10−23 m3, respectively, and the pump current of
the three distribution is set as the threshold value of the
solitary mode ( j = 1). As is evident from the figure, the
results of ε = 10−23 and 3.0 × 10−23 m3 exhibit power-law
distributions with β � 1 that are identical to those obtained
by the simulations with ε = 0. The larger saturation parameter
(ε = 5.0 × 10−23 m3) affects its distribution slightly.

A more significant influence of the gain saturation is a
decrease in the cutoff of the distributions with an increase in
ε. This trend can be confirmed more clearly in Fig. 12, where
the mean exceedance above Iex is plotted as a function of ε.
The figure indicates that the maximum intensity caused by

FIG. 12. The mean exceedance of the intensity for different in-
jection currents j as a function of the saturation parameter ε, where
the exceedance is normalized by Iex .

oscillation bursts decreases monotonically with ε regardless
of j. Another notable result can be observed in the distribution
as shown by green squares in Fig. 11. Here, its saturation
parameter, ε = 2.5 × 10−23 m3, is comparable with that used
for the present experiments described in Sec. III, and the pump
current is slightly larger than the solitary mode threshold, j =
1.2652. The distribution indicates that a synergy between the
gain saturation and the excess of the current disrupts a wide
range of power-law regimes, and the gradient of the power-law
regime of the distribution increases more than β = 1.8. This
implies that power-law statistics different from that obtained
in the simulations can be observed in the experimental mea-
surements because it is hard to tune the injection current just
to the threshold value of the solitary mode and the saturation
effect is consistently present in actual lasers.

The decrease in the cutoff of the intensity distribution due
to the gain-saturation effect can be explained in terms of the
SOC framework. Gain saturation is considered to be a type
of dissipation in laser systems. As discussed through mean-
field theory [38,40], intrinsic dissipation and/or the finite-size
effect weaken the criticality (see also the dependence of the
carrier lifetime in Sec. IV). Thus, the shortening the width of
the scaling region by introducing the gain saturation can be
understood as the influence of such effects.
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