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We investigate the momentum-resolved spin and charge susceptibilities, as well as the chemical potential and
double occupancy in the two-dimensional Hubbard model as functions of doping, temperature, and interaction
strength. Through these quantities, we identify a weak-coupling regime, a strong-coupling regime with short-
range correlations and an intermediate-coupling regime with long magnetic correlation lengths. In the spin
channel, we observe an additional crossover from commensurate to incommensurate correlations. In contrast,
we find charge correlations to be only short ranged for all studied temperatures, which suggests that the spin
and charge responses are decoupled. These findings were obtained by a connected determinant diagrammatic
Monte Carlo algorithm for the computation of double expansions, which we introduce in this paper. This permits
us to obtain numerically exact results at temperatures as low as T = 0.067 and interactions up to U = 7, while
working on arbitrarily large lattices. Our method also allows us to gain physical insights from investigating the
analytic structure of perturbative series. We connect to previous work by studying smaller lattice geometries and
report substantial finite-size effects.
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I. INTRODUCTION

The two-dimensional Fermi-Hubbard model [1–5] plays
the role of the fruit fly within strongly-correlated electron
models. On the one hand, the model is a rich platform
to investigate fundamental questions about the properties
of interacting quantum systems. On the other hand, it is
also believed to be directly relevant to the study of corre-
lated electronic materials. It is for example conjectured to
capture essential physical properties of high-temperature su-
perconductors such as cuprates [6,7] even though the exact
connection is subject to ongoing debate [8–10]. Many rel-
evant experiments find intricately convoluted orders of spin
and charge stripes, charge and pair density waves, and un-
conventional superconductivity, which undeniably adds to the
difficulty of disentangling the roles of individual phenomena
[11–15].

While the Hubbard model has mainly been the subject
of theoretical studies, it can now also be directly simulated
at moderately-high temperatures by means of cold atoms
trapped in optical lattices [16–22]. More recently, efforts in
quantum computing technology have been aimed at the Hub-
bard model with the hope of finding effective algorithms for
noisy near-term quantum hardware [23–28]. Large collabo-
rative projects have been formed with the aim of comparing

*fsimkovic@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the results of numerous state-of-the-art algorithms in order
to better understand the model as well as provide unbiased
consensus benchmarks for future experimental and theoretical
studies [29–32]. Despite the unquestionable and persistent
interest of multiple scientific communities, a consensus phase
diagram for the Hubbard model in the most intriguing param-
eter regimes is still missing [4,5].

Without doubt, a number of additional important unsolved
questions remain to be answered before victory over the Hub-
bard model can be declared. To name but a few: Does the
model host high-temperature superconductivity? If yes, how
is it affected by competing magnetic instabilities? What is the
relation between the onsets of strong spin and charge cor-
relations? How does entering the strongly correlated regime
manifest itself? Is a long correlation length a necessary ingre-
dient? What is the relationship between the pseudogap and the
coupling strength or magnetic correlation length?

Many previous papers have addressed some of these ques-
tions. One of the best understood regimes of the model is
half-filling (one electron per lattice site on average), where
the ground state is an antiferromagnetic insulator and the
Mermin-Wagner theorem prohibits long-range order at any
finite temperature. As a result, a series of crossovers form
from a metallic regime to a quasi-antiferromagnetic insulator
with exponentially large correlation lengths [32–35], which
becomes maximal at a particular finite interaction for any
nonzero temperature. The nature of the insulating gap also
changes as function of interaction, from Slater-like [36] to
Mott-like [37], and reaches the Heisenberg regime in the
infinite-interaction limit [38].

Away from half-filling, the picture becomes a lot more
blurry due to a much larger number of competing phases
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and the relative lack of controlled results from numerical
algorithms. There are numerous methods used for extracting
ground-state properties, such as Hartree-Fock theory (HF)
[39–41], the density-matrix renormalization group (DMRG)
[42–44], variational Monte Carlo (VMC) [45], auxiliary field
quantum Monte Carlo (AFQMC) [30,46], density matrix
embedding theory (DMET) [30,47,48], as well as inhomo-
geneous dynamical mean field theory (iDMFT) [49] and
diagrammatic Monte Carlo (DiagMC) [50]. The consen-
sus picture is that spin and charge stripe-ordered phases
[31,45,46,49], superconducting phases [46,50,51], as well
as spatially phase separated states [12,45,46,52–55] can
be found. It has been documented that superconducting
phases seem predominant at weak and moderate coupling
[50,51] while stripe-ordered phases win out at strong cou-
pling [31,46]. Beyond those observations, a complete phase
diagram is still lacking, mainly due to minuscule energy dif-
ferences between competing states.

At finite temperature, one finds magnetic correlations in
the spin and charge channels instead (together with super-
conducting ones). These have been documented by means of
low-order diagrammatic Monte Carlo [56], determinant Quan-
tum Monte Carlo (DQMC) [43], dynamical mean field theory
(DMFT) and its cluster extensions [57–61], and by mini-
mally entangled typical thermal states (METTS) [62]. These
methods have also been able to capture the commensurate to
incommensurate crossover, particularly in the spin channel,
and as a function of temperature, doping and next-nearest-
neighbor hopping. Despite these advancements, the relation
between the appearance of strong correlations in the spin and
charge channels is not yet fully understood. Another open
question is the connection between the onset of the strongly
correlated regime and the occurrence of long magnetic cor-
relation lengths, which is particularly difficult to answer by
simulating small finite-size clusters.

The biggest challenge in this regime of the Hubbard model
is the conciliation of the finite-temperature results with the
ground-state calculations [4]. For many finite-temperature
algorithms it is notoriously difficult to reach low enough tem-
peratures to capture the relevant physics in order to make the
connection, mainly due to the appearance of the fermionic
sign problem. Almost all algorithms, whether ground state
or finite-temperature, have to resolve to some sort of ap-
proximation. Notably, most of these cannot be formulated in
the thermodynamic limit and thus suffer from finite-size ef-
fects [31,43,46,62], finite-momentum resolution [61], and/or
effects coming from the choice of boundary conditions. In
particular, there is a number of methods restricted to the anal-
ysis of the Hubbard model on width-four cylinder geometries
[31,43,62], whose correspondence to the model in the ther-
modynamic limit has not yet been thoroughly studied, mainly
due to the lack of benchmarks from the latter.

In this paper, we study the doped Hubbard model at fi-
nite temperature on large systems that do not suffer from
finite-size effects This allows us to compute the spin and
charge susceptibilities with a high momentum resolution, as
functions of density, temperature and interaction strength. We
observe three distinct regimes as we move in parameter space,
as sketched in Fig. 1. We denote the first regime weak cou-
pling (blue). It is found predominantly at small interactions

FIG. 1. Sketch of the finite-temperature crossovers between dif-
ferent regimes of correlations for the doped Hubbard model as a
function of (nonzero) temperature T , doping 1 − n, and interaction
strength U .

and has short correlation lengths. Secondly, we observe a
regime of what we call long correlations (red) centered around
half-filling and at finite interactions. The system is almost
long-range ordered with its magnetic correlation length grow-
ing rapidly with decreasing temperature. Notably, we find
the correlations to be most pronounced at significantly lower
interaction strengths than the values usually cited by literature
[20,21]. Finally, the strong coupling (purple) regime is found
predominantly at higher values of interactions and in a broader
range of dopings. The system is more localized, marked by
low values of the double-occupancy and short-range correla-
tions, with the correlation length being only mildly affected
by decreasing temperature. We also report the appearance of
a Mott gap at half-filling in this regime.

By evaluating the momentum-resolved spin susceptibil-
ity, we also investigate the nature of the magnetic ordering
tendencies when the correlation length is sufficiently large,
uncovering a commensurate to incommensurate crossover as
a function of temperature, doping, and interactions. Addition-
ally, we find that spin correlations have much higher onset
temperatures as compared to charge correlations that never
become long-ranged in the range of temperatures we studied.
This suggests that the spin and charge responses are decoupled
over an extended region of parameter space.

The findings presented in this manuscript were made pos-
sible by a novel connected determinant diagrammatic Monte
Carlo algorithm (CDet) for the computation of perturbative
double expansions, which, in particular, allows us to construct
series at fixed density away from half-filling. This permits
us to compute numerically-exact results for large lattice
sizes and at unprecedentedly low finite temperatures down to
T � 0.067 for interaction strengths U � 8. As our algorithm
allows us to study arbitrary lattice sizes and geometries we
are able to quantify the finite-size effects, which are present
in various other methods. Additionally, we show that much
of the physics we have observed has a direct correspondence
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with the analytic properties of spin and charge susceptibilities
as functions of complex interaction strength.

The paper is structured as follows: In Sec. II we introduce
the Hubbard model and outline the main ingredients of our
theoretical formalism. In Sec. III we present our key findings,
focusing on mapping out the three distinct correlation regimes
in Sec. III A, the commensurate to incommensurate crossover
in Sec. III B, the decoupling of responses found in the spin
and charge susceptibilities in Sec. III C, we discuss finite size
lattice effects in Sec. III D, and we elaborate physical insights
from the analytic structure of perturbative series in Sec. III E.
We provide further details of our diagrammatic Monte Carlo
algorithm in Sec. IV and finish with a cumulative discussion
of our results together with an outlook for future studies in
Sec. V.

II. MODEL AND FORMALISM

A. Hubbard model on the square lattice

The grand-canonical Hamiltonian for the Fermi-Hubbard
model [1–5] reads

Ĥ =
∑
k,σ

εk ĉ†
kσ

ĉkσ
+ U

∑
r

n̂r↑ n̂r↓ − μ
∑
r,σ

n̂rσ , (1)

where ĉ† and ĉ denote the fermionic creation and annihila-
tion operators, k = (kx, ky) the reciprocal lattice momentum,
σ ∈ {↑,↓} the fermionic spin, r = (x, y) labels lattice sites,
U denotes the on-site repulsion strength, μ the chemical po-
tential, and the square lattice dispersion relation is given by
εk = −2 t (cos kx + cos ky), where t is the nearest-neighbor
hopping amplitude (we set t = 1 in our units), and n̂rσ counts
the number of particles with spin σ at site r.

In the majority of this paper (with the exception of
Sec. III D) we will present results for the model on a pe-
riodic square lattice of fixed linear system size L = 64 as
this is found to be sufficient to eliminate finite-size effects
for the range of temperatures we consider. This allows to
easily gather statistics for all the L2 values needed to construct
the momentum-resolved susceptibilities, but there exists no
technical limitation for our algorithm in considering larger
systems or even directly the thermodynamic limit. We study
thermal equilibrium properties at nonzero temperature T .
In the following, the thermal average of an operator Ô is
denoted by 〈Ô〉 = 1

Z Tr e−Ĥ/T Ô where the grand-canonical

partition function is defined as Z = Tr e−Ĥ/T , and we also use
the imaginary-time Heisenberg picture for operators, Ô(τ ) =
eτ Ĥ Ô e−τ Ĥ .

B. Probes of spin and charge correlations

The main probes of spin and charge correlations we use
in this paper are the momentum-resolved spin susceptibility
(in real and reciprocal space), which provides a quanti-
tative measure of magnetic ordering tendencies, and the
momentum-resolved charge susceptibility, which character-
izes the response of the system to an inhomogeneous density
perturbation. The spin susceptibility in real space is

χsp(r) =
∫ 1/T

0
dτ 〈Ŝz(r, τ ) Ŝz(0, 0)〉, (2)

where Ŝz(r) = 1
2 (n̂r↑ − n̂r↓) is the z component of the spin

operator. The Fourier transform of χsp(r), χsp(q), diverges at
the onset of long-range magnetic order of wave vector q. As
antiferromagnetic correlations are relevant near half-filling,
we also consider the staggered spin susceptibility, defined in
real space for r = (x, y) as

χ st
sp(r) = (−1)x+y χsp(r). (3)

The charge susceptibility is defined by

χch(r) =
∫ 1/T

0
dτ 〈δn̂(r, τ ) δn̂(0, 0)〉, (4)

where δn̂(r) = ∑
σ n̂rσ − n, and n is the average number of

particles per site n = ∑
σ 〈n̂rσ 〉. The doping is defined as

1 − n, the deviation from half-filling. The Fourier transform
of χch(r), χch(q), diverges at the onset of long-range charge
order of wave vector q.

To probe local correlations in our model we use the double
occupancy,

D = 〈n̂r↑ n̂r↓〉, (5)

which quantifies the formation of local moments. The en-
trance into the Mott-insulating regime can be characterized
by a plateau in the density n as a function of the chemical
potential μ.

Alternative quantities to probe spin and charge correlations
are the equal-time structure factors

Ssp(r) = 〈Ŝz(r) Ŝz(0)〉,
Sch(r) = 〈δn̂(r) δn̂(0)〉, (6)

as well as their reciprocal space counterparts Ssp(q) and
Sch(q). These have been used for this goal in previous stud-
ies [30,43,61,62], along with the dynamic structure factor.
However, the structure factors, while being experimentally
relevant, have the disadvantage of not being directly related to
ordering tendencies at finite temperature, where many phases
are competing. Consequently, in this paper we limit ourselves
to the study of susceptibilities.

The correlation length is extracted by means of fitting
momentum-space cuts of the susceptibilities using double
Lorentzians with constant offsets. This procedure was also
used in Ref. [43,61] for the structure factors. We use a simple
linear scale with cutoffs for our colormaps in both real and re-
ciprocal space in order to give a fair account of the magnitude
of correlations.

C. Theoretical formalism

Traditional finite temperature perturbation theory is de-
fined in the grand-canonical ensemble. More specifically, one
can write a so-called bare expansion for any quantity O in the
form of a power series of the interaction strength U at fixed
chemical potential μ as

O(μ,U ) =
∞∑

k=0

U k Obare
k (μ). (7)

To achieve better series convergence properties, it is advan-
tageous to take into account the change in density at the
mean-field level by introducing a Hartree shift to the chemical
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FIG. 2. Left: Momentum-space spin susceptibility χsp(q) for
U = 5, T = 0.1, and n = 0.8 over a quarter of the Brillouin zone.
Right: Double-Lorentzian fit along the q = (Q, Q) (top) and q =
(Q, π ) (bottom) directions, where Q ∈ [0, π ]. The solid-blue line is
the sum of the two dashed lines, which are Lorentzians.

potential [63,64], which is diagrammatically equivalent to
eliminating diagrams with tadpole insertions,

O
(

μ0 + n0(μ0)

2
U,U

)
=

∞∑
k=0

U k OHartree
k (μ0), (8)

where n0(μ0) is the average number of particles per site at
chemical potential μ0 and zero interaction strength.

When studying spin and charge correlations as functions of
an increasing on-site repulsion U , it is particularly important
to disentangle variations due to rather trivial changes in parti-
cle density from proper correlation effects. For this reason,
we introduce in this paper the fixed-density expansion: the
chemical potential μ = μ(n,U ) is renormalized as a function
of U in such a way that the average number of particles per
site n does not change with U ,

O(μ(n,U ),U ) =
∞∑

k=0

U k Ofixed-n
k (n). (9)

We refer to this expansion as the “fixed-density” scheme,
and it is the method of choice in this paper, while we still
sparingly use the Hartree-shifted scheme in the vicinity of
half-filling and at large values of U , as well as for cross
checking our results. The perturbative series are numerically
computed to 8 − 10 expansion orders using a Monte Carlo
procedure. We give more details about the formalism and the
numerical methods in Sec. IV.

III. RESULTS

A. The three intermediate-temperature regimes of the Hubbard
model

We commence by inspecting the spin susceptibility χsp(q)
for all q wave vectors in the first quadrant of the Brillouin zone
of a 64 × 64 square lattice with periodic boundary conditions.
A typical result for χsp(q) is shown in Fig. 2 for U = 5,
T = 0.1 and density n = 0.8. We would like to note that no
momentum interpolation procedure has been used and each
point corresponds to a uniquely calculated momentum value.
For the parameters that we have investigated, the spin sus-
ceptibility displays one or several peaks close to q = (π, π ).

FIG. 3. Maximum value of the spin susceptibility across the Bril-
louin zone χsp(qmax) [(a),(b)] and spin correlation length ξ [(c),(d)],
as a function of density n [(a),(c)], interaction U [(a),(b),(c)], and
temperature T (D). In (a) and (c) the temperature is set to T = 0.2.
In (b) and (d) the density is set to n = 0.875.

In Sec. III B we discuss how the location of the maxima and
the associated commensurate to incommensurate crossover
depend on the coupling U , the temperature T , and the density
n. However, let us first focus our attention on the intensity of
these peaks and the associated correlation length ξ , extracted
by fitting the peaks with a double Lorentzian (plus constant
offset) Ornstein-Zernike form (see right panels of Fig. 2) [65].
In practice we found the correlation length extracted from
(Q, π ) cuts to always be slightly larger than the correlation
length extracted from (Q, Q) cuts for the parameters we have
investigated. The correlation length and the maximum value
of the spin susceptibility across the Brillouin zone are shown
in Fig. 3 and are complemented with double occupancy and
chemical potential data in Fig. 4. Together we use these

FIG. 4. Left: Double occupancy D for T = 0.2 as a function of
U and different densities n. Inset: Double occupancy for density n =
0.875 as a function of interaction strength U . Right: Density n as a
function of the chemical potential μ shifted by U/2 for several values
of the interaction U .
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quantities to identify three distinct intermediate-temperature
regimes of the Hubbard model: a weak-coupling regime with
short magnetic correlation length at small values of U , a
regime with long magnetic correlation length at intermediate
values of U and close to half-filling, and a strong-coupling
regime at large U with strong short-range spin correlations
(see a sketch in Fig. 1). We discuss these three regimes in
detail below.

1. The weak-coupling regime

For U � 3 and T � 0.1, the system is in a weakly corre-
lated regime. The double occupancy gradually decreases with
increasing U and slowly decreases with decreasing density,
see Fig. 4 for T = 0.2. At the same time, the maximal value
of the spin susceptibility as a function of q and the associ-
ated correlation length slowly increase with U as shown in
Fig. 3. In this regime, the double occupancy decreases with
increasing temperature (see inset in Fig. 4) because of the
Pomeranchuk effect: an increase of the interaction strength
U leads to a higher degree of localization and a favorable
gain in entropy [33,66–69]. This behavior can be understood
from the Maxwell relation ∂S/∂U |T = −∂D/∂T |U . We ob-
serve this Pomeranchuk effect for all densities at least down
to n = 0.775. Close to half-filling, we can observe a small
change of slope in the density versus chemical potential curve,
indicating that the compressibility at half-filling is smaller
than in the doped system, see right panel of Fig. 4.

2. The long correlation length regime

As the coupling U is further increased, the maximal value
of the spin susceptibility as a function of q increases rapidly,
even more so as one approaches half-filling, see Fig. 3. The
position of the maximum for T = 0.2 is around U � 4 − 5
and is only weakly dependent on the density. This maxi-
mum is in good agreement with the prediction of Ref. [56],
which found the onset of magnetic spin correlations to occur
at highest temperatures for U ∼ 4. Note that this maximum
is significantly lower than the single-particle bandwidth 8t
[20,21] and seemingly slowly decreases with decreasing tem-
perature.

In this intermediate coupling regime, the correlation length
becomes large (see Fig. 3), especially close to half-filling and
as the temperature is lowered. It then decreases rapidly when
the density is reduced and for T � 0.1 it is only a couple
of lattice sites long beyond 10% doping. As a result of this
more pronounced difference in correlation length between
different density levels, the double occupancy decreases more
rapidly for occupancies closer to half-filling (see Fig. 4). This
is natural as longer correlation lengths tend to favour more
localized spins.

The curves of the density versus chemical potential seem
to indicate that there is a wider region close to half-filling with
a plateau where the compressibility would be small (Fig. 4).
It is however difficult to obtain results in this regime, mainly
due to the very long correlation lengths.

3. The strong local correlations regime

Finally, for U � 6 we enter a regime of strong correlations
(at temperatures T ∼ 0.2). The double occupancy that has

FIG. 5. Spin correlation length ξ computed from cuts of the sus-
ceptibility along q = (Q, Q) (left) and q = (Q, π ) (right) directions,
as a function of U and doping 1 − n at fixed temperature T = 0.2.

decreased to a fraction (about 25%) of its noninteracting value
and has become less dependent on the density.

At the same time, these (quasi)antiferromagnetic correla-
tions are very local and the spin susceptibility and magnetic
correlation length now decrease with increasing U , see Fig. 3,
and display a slower increase as temperature is decreased
as compared to the previous regime. Also, the temperature
dependence of the maximum of the spin susceptibility as a
function of q becomes weaker.

Another clear indication that this regime has strong correla-
tions comes from the behavior of the density versus chemical
potential. In this regime there is a clear plateau at half-filling
showing a charge gap of the order 
 ∼ U/2. This is compati-
ble with a Mott insulating state at half-filling [70–74].

4. Crossover phase diagram

Our results for the magnetic correlation length are summa-
rized in Fig. 5 with the help of an intensity map in the plane of
doping and interaction strength as obtained from fitting (Q, π )
as well as (Q, Q) momentum cuts. Both plots clearly display
a dome centered around half-filling and U � 5 where the cor-
relation length is largest. The dome separates a regime of long
correlation length for U � 4 − 5 where spin-correlation the-
ory may provide a reasonable description of the physics with a
regime at larger U � 6 where the physics is qualitatively dif-
ferent and dominated by short-range (quasi)antiferromagnetic
correlations. It is interesting to note that in a recent CDet study
[75] performed in the same range of parameters (T = 0.2
and U � 4) a maximum in the entropy, which develops away
from half-filling was observed in exactly this regime of long
correlations giving evidence for a crossover from metallic to
non-Fermi-liquid behavior.

From the right panel of Fig 4 we observe no evidence
of phase separation occurring at temperature T = 0.2 (or at
T = 0.1, which we have also investigated). The only region
where we cannot make any conclusive statements is in the
immediate vicinity of half-filling and at interaction strengths
U ∼ 4 − 6 (see also Fig. 19), which has also been conjectured
to be the most likely place for the occurrence of spatial phase
separation by previous studies [12,45,46,52–55,75].
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FIG. 6. The real-space spin susceptibility χsp(r) (left) and the
staggered spin susceptibility χ st

sp(r) = (−1)x+y χsp(r) (right) for
U = 4, T = 0.1, n = 0.925.

B. Commensurate to incommensurate spin correlation
crossover

In this section, we discuss the precise nature of the spin cor-
relations in regimes where the correlation length is sizable. We
systematically investigate the structure of the spin susceptibil-
ity in momentum space and the staggered spin susceptibility
in real space (see Fig. 6 for a graphical comparison to the
nonstaggered spin susceptibility) on large 64 × 64 lattices
to study the commensurate-incommensurate crossover as a
function of temperature, density, and interaction strength.

Let us commence by showing the density dependence of
the spin susceptibility χsp at temperature T = 0.2. We set
the interaction to U = 5 [76], where we have shown that the
magnetic correlations extend furthest in real space (see Fig. 3).
The results are shown in Fig. 7. Close to half-filling, the
spin susceptibility in momentum space is strongly peaked at
(π, π ). Correspondingly, in real space, the staggered suscepti-
bility shows extended uniform antiferromagnetic correlations.
As the density is reduced, the peak first remains at (π, π )
and below a critical density n � 0.95 gradually splits into
four separate peaks at (π ± δs, π ) and (π, π ± δs), compat-
ible with the square lattice symmetry. The peaks become
weaker and wider as the density is further reduced. The
resulting real-space staggered spin susceptibility displays in-

commensurate spin correlations for densities below n � 0.9
with domain walls separating π -shifted regions with antiferro-
magnetically correlated spins. The correlation length quickly
becomes shorter as the density is reduced. Let us readily men-
tion here that the onset of incommensurate spin correlations
is never accompanied by a significant redistribution of the
charge in the range of parameters that we have studied, see
Sec. III C. In Fig. 8 we additionally study the dependence
of the crossover on interaction strength 3 � U � 7 for T =
0.1 and n = 0.875. We find that the four peaks present at
weak-coupling gradually split further away from (π, π ) as
the interaction is increased. This corresponds to a gradually
shrinking length of domain walls in real space. The increased
splitting with increased interaction suggests that the leading
wave vector in the infinite interaction limit is likely differ-
ent from (π, π ) for densities away from half-filling, as was
also found in Ref. [77]. We also observe four subleading
momentum-space peaks forming at vectors (Q, Q) and hint-
ing at possible diagonally-striped phases in the ground state,
which are commonly found in mean-field based approaches
[77]. We have equally found a commensurate to incommen-
surate crossover as a function of temperature T , which is
described in more detail in Appendix A (in particular see
Fig. 20).

The commensurate to incommensurate crossover has pre-
viously been addressed by other numerical methods: DQMC
has been used at finite temperature and predominantly on the
16 × 4 cylinder geometry, first for the three-orbital Hubbard
model [78] and then for the single-band Hubbard model (that
we focus on in this paper) in Ref. [43]. The authors studied
temperatures T � 0.22 for interactions in the range of 5 �
U � 7. They found commensurate spin correlations in the
vicinity of half-filling (n = 1) and in the incommensurate cor-
relations in the doped regime without next-nearest-neighbor
hopping t ′ = 0 [79]. These findings have been confirmed by
a recent DCA study on 8 × 8-sized embedded clusters in
Ref. [61], which was performed for U = 6 and down to T =
0.167. Both of these studies have only found weak hints of
correlations in the charge susceptibility. Another recent study

FIG. 7. Momentum-space spin susceptibility χsp(q) (top) and staggered real-space spin susceptibility χ st
sp(r) (bottom) evaluated at T = 0.2

for U = 4 at half-filling (leftmost) and for U = 5 at densities n = 0.9, 0.85, 0.8, 0.75 (from left to right). We use the same colorbar scale for
all real-space plots.
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FIG. 8. Momentum-space spin susceptibility χsp(q) (top) and staggered real-space spin susceptibility χ st
sp(r) (bottom) evaluated at T = 0.1

and n = 0.875 for U = {3, 4, 5, 6, 7} [(a)–(e)].

using METTS on 16 × 4 cylinders did also find incommen-
surate correlations at U = 10 and 1/16th doping (n = 0.938),
but at much lower temperatures T < 0.05. The authors also
reported sizable corresponding charge correlations picking up
below these temperatures. It is also worth mentioning that
these magnetic crossovers become a actual phase transition in
the three-dimensional Hubbard model, where they have been
studied by means of DMFT and its diagrammatic extensions
[80].

Our results are summarized in Fig. 9, which shows the
dominant wave vector for different densities and values of
U at temperature T = 0.2 and along the q = (Q, π ) and
q = (Q, Q) cuts. We find that the leading wave vector is
commensurate, q = (π, π ), close to half-filling and becomes
incommensurate either when the doping level is increased or
when the interaction strength U is larger. We also observe that
the incommensurability appears earlier along the (Q, π ) than
along the (Q, Q) cut. In real space, we generally find that,
while the leading vector is always of (Q, π ) nature, domain
walls tend to form diagonally. This observation has also been
made in previous studies Ref. [43,56,61] and was explained

FIG. 9. Wave-vector component Q at the maximum of the
spin susceptibility along two cuts of the Brillouin zone:
Q = argmaxQ′ χsp(q = (Q′, Q′)) (left) and Q = argmaxQ′ χsp(q =
(Q′, π )) (right) as a function of doping 1 − n and interaction strength
U for temperature T = 0.2.

as the result of a superposition of a horizontal and a vertical
stripe pattern.

C. Incommensurate spin correlations with no charge
redistribution

In this section, we want to clarify whether there is a particu-
lar charge response connected to the onset of incommensurate
spin correlations discussed above.

Previous papers [43,61,62] suggest that the formation of
incommensurate spin correlations with a wave vector (π ±
δs, π ) is accompanied by incommensurate charge correlations
with wave vector (±δc, 0) where δc � 2δs. In Ref. [43] no
conclusive evidence of charge correlations was found at finite
temperature beyond what the authors identified as boundary
effects. In [62] such a (±δc, 0) peak became apparent below
T = 0.05 for n = 15/16 and U = 10 and for a cylindrical
width-four geometry. In Ref. [61] the authors found a broad-
ened maximum around the (0,0) wave vector, which they fitted
with a double-Lorentzian that revealed two distinct maxima at
(±δc, 0). It is apparent that more conclusive evidence for such
incommensurate peaks in the charge response is needed.

FIG. 10. Charge susceptibility χch(q) in reciprocal space.
Double-Lorentzian fits along the (Q, Q) (top) and (0, Q) (bottom)
directions. Left: n = 0.8, U = 5, T = 0.1. Right: n = 0.892(6), U =
5, T = 0.067.
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FIG. 11. Charge susceptibility in reciprocal space χch(q) (top) and in real space χch(r) (bottom) as computed from a Hartree-shifted
(nonfixed density) expansion with n0 = 0.8 at temperature T = 0.067 for interaction strengths U = (0, 4, 5, 6, 7) and densities n =
(0.8, 0.860(2), 0.892(6), 0.932(11), 0.978(20)) [(a)–(e)].

In Fig. 10, we fit the zero-frequency charge suscepti-
bility χch(q) around (0,0) along the cuts (Q, Q) (top) and
(0, Q) (bottom) using double-Lorentzians with constant off-
sets, much like we have done for the spin counterpart in the
previous sections. In the left panel, we use the same den-
sity n = 0.8 as Ref. [61] but at lower temperature T = 0.1
and slightly lower U = 5 (chosen to be close to the max-
imum of the spin correlations). Similarly to Ref. [61], we
find a very flat peak around (0,0) which, when fitted with
our procedure, reveals weak maxima at incommensurate wave
vectors (±δc, 0). In the right panel, we regard a higher density
n = 0.892(6) at the same U = 5 and even lower temperature
T = 0.067, where we can more clearly identify a broad peak
at (±δc, 0). The overall shape of the curve is reminiscent of
what was observed in Ref. [62]. We proceed to investigate
how the charge response depends on the parameters of our
model.

Figure 11 shows the charge susceptibility χch in
real and reciprocal space obtained from a Hartree-
shifted (nonfixed density) series expanded around the
noninteracting density n0 = 0.8 and at temperature
T = 0.067. The series is evaluated at interactions
U = {0, 4, 5, 6, 7}, which corresponds to actual densities
n = {0.8, 0.860(2), 0.892(6), 0.932(11), 0.978(20)}. We
can identify four maxima at incommensurate wave vectors
(π ± δ, π ) along with curved broad ridge features connecting
them to wave vectors (±δc, 0). In real space we observe the
formation of diagonal features, which exhibit grouping of
positive and negative values. It is, however, impossible to
identify particular domain walls within these results.

Let us emphasize that these ridges in χch are characteristic
of the Lindhard function and are already present in the nonin-
teracting system [81]. They become less prominent at larger
values of U and wash out as the temperature in increased. For
temperatures down to T � 0.067 and interactions U � 5 at
densities 0.8 � n � 0.875 we found a 20 − 25% increase in
the maximum of the charge susceptibility in reciprocal space
from our calculations as compared to low-order RPA. At the
level of RPA these ridges are determined by nesting lines

in the Brillouin zone, which connect Fermi momenta with
collinear Fermi velocities [58,81].

This absence of a significant charge response is further
confirmed by studying the maximum value of the charge
susceptibility χch(qmax) as a function of U and T as present
for density n = 0.875 in the left panel Fig. 12. The behavior
of χch(qmax) is in striking contrast to that of χsp(qmax) (see
Fig. 3). It does not display any maximum as a function of U
and in general has a very weak temperature dependence.

We complete this analysis by studying the position of the
leading wave vectors given by δs and δc, along the (Q, π )
and (Q, 0) directions, respectively, as well as their ratio RQ =
δs/δc at n = 0.8 and T = 0.1 (see right panel of Fig. 12).
Again, the quantities related to the spin and charge response
behave qualitatively differently. Indeed, we find that δc grad-
ually increases with U while δs stays roughly constant up
until U ∼ 4 − 5, which is where the strong correlation regime
starts, and then swiftly shifts further away from the (π, π )
wave vector. As a result, the ratio RQ starts decreasing and
then increases beyond U = 4 − 5 until it reaches a value

FIG. 12. Left: Maximum of the charge susceptibility χch(qmax)
for n = 0.875 as a function of the interaction strength U and tem-
perature T . Right: Leading wave vector computed from fitting with
a double-Lorentzian (with constant offset) from the spin (δs) and
charge (δc) susceptibility as well as the ratio between the two (RQ =
δs/δc). Data is shown as a function of U for n = 0.8 and T = 0.1.
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FIG. 13. Spin susceptibility in momentum space χsp(q) (top) and staggered spin susceptibility in real space χ st
sp(r) (bottom) evaluated at

T = 0.1 for U = 4 and n = 0.875 for different lattice geometries (with periodic boundary conditions) of sizes: 16 × 4 (a), 32 × 4 (b), 32 × 8
(c), 32 × 16 (d) and 64 × 64 (e).

close to 0.5 at U = 7. While this is the value expected for
a stripe-ordered phase, we see no evidence for significant
charge correlations. An interesting question is whether the
ratio remains fixed at 0.5 at larger values of U and whether
stronger charge correlations eventually appear.

To summarize, our results support that, for the range of
parameters that we have studied, the charge correlations re-
main uniform over the lattice even when longer-range spin
correlations develop. From our observations we conclude that
this absence of charge stripe correlations persists in the phase
diagram at least down to T ∼ 0.10 and for values of U < 7.

D. System size dependence

In this section, we discuss the dependence of spin and
charge correlations on the lattice size and shape. Such an
analysis is important because multiple ground-state as well
as finite-temperature methods can only study relatively small
lattices thus making controlled extrapolations to the thermo-
dynamic limit difficult. In particular, ground-state DMRG
calculations are predominantly carried out on elongated ge-
ometries, mostly on width-four cylinders [31,42–44], even
though slightly larger width-five and width-six cylinders have
also been recently investigated [31].

In contrast, a recent VAFQMC study of the ground state
[46] has analyzed system sizes of up to 16 × 16 as well as
performed an extrapolation with system size. The authors
found that stripe ordered phases compete closely with super-
conducting ones whilst spatial phase separation also occurs
for a large range of parameter space.

At finite temperatures, DQMC calculations have also been
mainly performed on the 16 × 4 lattice and benchmarked
against an 8 × 8 lattice geometry [43]. The vertical stripy
patterns found for 16 × 4 has not been reproduced by the
8 × 8 lattice, which lead the authors to conclude that a square
lattice should be treated as a superposition of two stripes, one
horizontal and one vertical, as the rotational symmetry is not
broken. Another finite-temperature method METTS [62] has
studied 32 × 4 sized cylindrical geometries with open bound-
ary conditions in the long direction and periodic boundary

conditions in the short one. While the method is very effective
in tackling any given temperature, it is extremely hard to
treat cylinders with width larger than four. It is therefore of
great interest to quantify the systematics with respect to an
infinite lattice. Finally, a study using DCA [61] has been able
to inspect up to 8 × 8 clusters embedded in a bath, which
the authors suggest effectively reached the thermodynamic
limit for the temperatures they computed. It should be stated
that despite this major technological success the momentum
resolution of such results is still limited by the size of the
cluster.

In Fig. 13, we study elongated geometries, including 16 ×
4 and 32 × 4, but also study 32 × 8 and 32 × 16. We use the
64 × 64 lattice as a benchmark. At density n = 0.875 and for
temperature T = 0.1 we chose U = 4, which is around the
maximum of correlation length. We find that both 16 × 4 and
32 × 4 qualitatively reproduce the right picture in the sense
that they reveal incommensurate correlations. However, we
find that the maximum in reciprocal space is underestimated
by roughly 40% and the length of the horizontal domain
is roughly 9 sites as opposed to 13 for the thermodynamic
limit result. We further see that the relative strength of highly
nonlocal correlations gets enhanced on these cylindrical ge-
ometries. From the 32 × 8 and 32 × 16 geometries we see that
even for sufficiently large geometries with broken rotational
symmetry the horizontal striped patterns yield to a more com-
plex two-dimensional pattern, which can be best described by
the broadened reciprocal space peaks at (Q, π ) vectors. The
fact that the real-space pattern for 32 × 16 shows the circular
character found in the 64 × 64 lattice rather than well defined
vertical domain walls is indicating that the system does not
have a strong nematic response.

In Fig. 14, we additionally study square geometries of
8 × 8 and 16 × 16 for the same parameters. We observe that
for too small lattices, such as 8 × 8 the incommensurability
is effectively hidden as can be easily understood by regarding
the finite momentum resolution in reciprocal space. Already
for a 16 × 16 lattice the incommensurability is more appar-
ent in real-space, while the reciprocal space plot is more
inconclusive and only shows a broadened peak around the
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FIG. 14. Spin susceptibility in momentum space χsp(q) (top) and
staggered spin susceptibility in real space χ st

sp(r) (bottom) evaluated
at T = 0.1 for U = 4 and n = 0.875 for two lattice geometries (with
periodic boundary conditions) of sizes: 8 × 8 (a) and 16 × 16 (b).

antiferromagnetic (π, π ) vector. All computations in this
paper have been done on lattices with periodic boundary con-
ditions. We do not attempt to study the effects of the choice
of different boundary conditions in this paper, however such
a study has been recently performed in [61] and considerable
effects due to the choice of these have been reported.

We have also investigated the system size effects in the
spin channel at higher temperatures (see Figs. 22 and 23 in
Appendix B) and system size effect in the charge channel (see
Figs. 24 and 25 in Appendix B) and found them to be a lot
less severe in both cases. We conclude that finite size effects
clearly worsen as magnetic correlations increase, which is the
case when approaching half-filling and lowering the tempera-
ture.

E. Physical insights from complex plane structure

In this section, we will show that the magnetic and charge
properties of the Hubbard model can to a large extent be
inferred from the analytic structure of χsp and χch, seen as
a function of the complex interaction strength U , which one
can attempt to reconstruct from the knowledge of perturbative
series obtained with diagrammatic Monte Carlo (see Sec. II C,
Sec. IV, and Appendix C for more details on the method and
formalism).

Using Padé approximants on the series coefficients, we
have found the positions of the closest poles of χsp in the
complex U plane as obtained from fixed-density series within
CDet. This is shown in the top plots of Fig. 15 at T = 0.2
for χsp(qmax). For a given density n, the complex plane has a
pole on the negative real U axis, most likely connected to a
finite-temperature Kosterlitz-Thouless phase transition to the
superconducting state of the negative-U (attractive) Hubbard
model [82]. The remaining two poles are on the positive U
side and symmetrically placed about the real axis. Quite inde-
pendently from the doping the real part of the poles is always
close to U � 5. As a result, one expects that the spin sus-

FIG. 15. Predicted positions of the closest-to-origin complex-U
plane poles for the spin susceptibility χsp(q) (left) and the charge
susceptibility χch(q) (right) evaluated at the momentum q of the
maximum, q = argmaxqχsp(q) (left) and q = argmaxqχch(q) (right),
by means of [4,5] Padé approximants at temperature T = 0.2 and as
a function of the noninteracting density n0 = n(U = 0). Results are
obtained from fixed-density series (top) and Hartree-shifted series
(bottom).

ceptibility will have a maximum around this value, which is
indeed what we observe, see Fig. 3. The poles get closer to the
real axis as the density approaches half-filling, thus yielding
a larger spin susceptibility. Despite our ability to identify up
to five poles in the complex plane (due to our choice of Padé
approximants) the two additional poles appear significantly
further away from the origin and are seemingly unstable with
respect to slight changes in the series coefficients coming from
a stochastic sampling of their error bars.

The right panel of Fig. 15 shows the same poles for the
charge susceptibility. There, the positive U poles remain fur-
ther from the real axis and are much less sensitive to the choice
of density n, a different behavior leading to a smaller charge
response of the system. The negative pole, on the other hand
is found at roughly the same values of U as compared to its
spin counterpart, which further corroborates the suggestion
that this pole corresponds to an actual phase transition.

If we instead investigate the complex U plane of the
Hartree-shifted series (bottom plots of Fig. 15) we find the
positive poles for the spin susceptibility to be a lot closer to
the real axis as compared to the fixed-density series poles.
This is logical as the density changes with U and the series
are thus sensible to regimes with very high values of the spin
susceptibility in the vicinity of half-filling.

The same analysis can be performed to investigate the
the momentum dependence of the dominant peak in the spin
susceptibility. Figure 16 shows the closest poles of χsp(q =
(Q, π )) and χsp(q = (Q, Q)) for two densities, n = 0.975
(top) and n = 0.725 (bottom). For densities in the vicinity
of half-filling the closest poles are those that have a wave
vector q = (π, π ) in accordance with the system developing
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FIG. 16. Predicted positions of the closest-to-origin complex-U
plane poles for the spin susceptibility χsp(q) obtained from [4,5]
Padé approximants at densities n = 0.975 (top) and n = 0.725 (bot-
tom) for the momentum cuts q = (Q, π ) (left) and q = (Q, Q) (right)
as a function of Q, obtained from fixed-density series.

commensurate spin correlations. As the density is reduced, the
poles move further away from the real axis but also reorganize
in a way that the closest poles to the origin are associated with
an incommensurate wave vector (Q, π ). This makes sense
since at low densities we find incommensurate correlations
for practically all attainable values of U .

IV. METHODS

A. Diagrammatic Monte Carlo

In this paper, we introduce and use a version of the
diagrammatic Monte Carlo (DiagMC) method [83–91].
DiagMC has been used for lattice and continuum models with
short and long-range interactions [92–95], for interacting
topological models [96], for real-time propagation [97–104],
and in combination with extensions of DMFT [105–107]. The
main idea of DiagMC is to write a diagrammatic expansion
for intensive physical quantities and to sample the diagrams
of this expansion with a Monte Carlo procedure. As the
expansion of any physical quantity can be written down
directly for the thermodynamic limit, there is no overhead
in considering arbitrary system sizes, thus circumventing the
associated fermionic sign problem [108]. The “connected
determinant diagrammatic Monte Carlo” (CDet) algorithm
[64] goes one step further in this direction by allowing to
efficiently sum all Feynman diagrams topologies at given
space-time positions of the interaction vertices, therefore
reducing the computational effort.

B. Efficient evaluation of chemical-potential diagrammatic
insertions

The technique we introduce in this paper allows us to ef-
ficiently sum all Feynman diagrams for fixed vertex positions

FIG. 17. Feynman diagrams with chemical potential insertions
of the correlation functions for the spin-up and spin-down number
operators, shown up to second order. Blue (red) lines represent the
noninteracting G(0) propagators of spin up (down). The charge and
spin susceptibilities are obtained from linear combinations of the
integrals over imaginary-time τ of these quantities.

and arbitrary chemical-potential diagrammatic insertions, al-
lowing in particular to fix the density perturbatively. More
specifically, using the notation of Sec. II C, it is possible to
write a double series in the interaction strength U and the
chemical-potential shift α U

O(μ0 + α U,U ) =
∞∑

k=0

U k
k∑

j=0

α j Ok j . (10)

We are able to efficiently compute the coefficients of this
expansion, Ok j , numerically, to high order. Diagrammatically,
the double α-U expansion is given by bare Feynman diagrams
with chemical-potential insertions, as shown in Fig. 17 for two
building blocks of the perturbative expansions for the spin and
charge susceptibilities (see Appendix C). The algorithm we
introduce to efficiently compute these expansions is a gener-
alization of CDet, similar in spirit to the method of Ref. [89].
It has recently been used, without derivation, to fix the density
to half-filling in the nonbipartite triangular-lattice Hubbard
model study of Ref. [109]. We provide more details of our
algorithm in Appendix C.

We can use the chemical-potential insertions to work at
fixed particle number in the grand-canonical ensemble by
writing the expansion for the density

n(μ0 + α U,U ) =
∞∑

k=0

U k
k∑

j=0

α j nk j, (11)

and by solving, order by order in U , the following equation for
α(U ):

n(μ0 + α(U )U,U ) = n(μ0, 0), (12)

where n(μ0, 0) ≡ n is a constant value and α(U ) =∑∞
k=0 U k αk . The first term of the expansion for α(U ) is

given by the mean-field value α0 = n/2, but in general there
is no analytical solution for higher-order corrections, apart
from half-filling where αk �=0 = 0. The computed α(U ) is then
substituted into Eq. (10) to obtain a perturbative series in only
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FIG. 18. Partial sums (
∑kmax

k=0 U k Ok) for the spin susceptibility
(left) χsp(q) and charge susceptibility χch(q) (right) at q = (π, π ) for
n = 0.875, U = 4.3, T = 0.2 obtained from the fixed-density expan-
sion (green) and the Hartree-shifted expansion (blue). Extrapolated
results using [4,5] Padé approximants are shown as horizontal bands.

one variable, U , for an arbitrary quantity O,

O
(

μ0 +
∞∑

k=0

U k+1 αk,U

)
=

∞∑
k=0

U k Ok . (13)

The freedom in choosing the chemical-potential insertions
α(U ) is used in this paper to cross check the results obtained
by the fixed-density expansion.

C. High-order expansions and resummation

The series of Eq. (13) has a nonzero radius of convergence,
therefore it provides an explicit definition of O(U ) for com-
plex values of U . The radius of convergence is determined
by the position of the closest singularity in the complex U
plane: Figure 16 and the discussion of Sec. III E provide a
physical interpretation of this otherwise purely-mathematical
fact [110]. For U larger than the convergence radius, we can
apply analytic continuation as the singularities of the suscep-
tibilities are not on the positive U axis. If that would not be
the case, we would have a finite-temperature phase transition
instead of a crossover, and the latter scenario is supported
by the numerical data of Fig. 16 and physical expectations.
In this paper, analytic continuation is performed with the
Padé approximants method [111], which constitutes the only
potential source of systematic errors.

The convergence and the uncertainty of our results is
checked by comparing different Padé schemes [112] to high
orders (typically 8 − 10), taking into account the statistical
noise on our numerical estimation of Ok , and comparing the
results of the Hartree-shifted and the fixed-density expansions
for the same chemical potentials. See Fig. 18 for representa-
tive examples of partial sums for perturbative series that were
obtained in our calculations.

We expect, on physical grounds, the region of extremely-
long correlation lengths to pose a currently insurmountable
obstacle to our resummation schemes, and the numerical data
of Fig. 19 confirms this picture. This issue is common to all
numerical techniques, as shown by the multi-method half-
filling benchmark study [32]. On the other hand, Fig. 19 also
explains why previous CDet studies [64,112] were able to
resum Hartree-shifted expansions far into the strong-coupling
regime (up to U = 7 for n = 0.95 at T = 0.2 in Ref. [112])

FIG. 19. Density n as a function of U computed from the
Hartree-shifted series, for temperatures T = 0.2 (left) and T = 0.1
(right). The colorbar indicates the value of the chemical potential
μ. The red area shows the regime where the magnetic correlation
length is large. It coincides with the parameter region where it was
not possible to perform a reliable resummation of the perturbative
series for the density.

by avoiding long correlations at intermediate values of inter-
action strength U .

D. Monte Carlo evaluation of the integrals

The coefficients of Eq. (10) are computed from the integral
of the sum of all Feynman diagrams at fixed space-time vertex
positions,

Ok j = 1

k!

∫
τ1,...,τk

∑
r1,...,rk

O j ({(r1, τ1), . . . , (rk, τk )}), (14)

where rl is a lattice site and τl ∈ [0, 1
T ] is the imaginary

time. The integrals of Eq. (14) are evaluated with the many-
configuration Markov-chain Monte Carlo method introduced
in Ref. [113] and determinants are evaluated using a fast prin-
cipal minor algorithm [114,115]. As briefly mentioned before,
if the quantity O is well defined in the thermodynamic limit,
its series coefficients Ok j are also well defined, and there is no
problem to extend the integration range of Eq. (14) to larger
system sizes, or even directly to the thermodynamic limit.

V. CONCLUSIONS

In this paper, we have established numerically-exact results
for the momentum-resolved charge and spin susceptibilities
of the two-dimensional Fermi-Hubbard model. We have sys-
tematically studied a range of couplings 0 � U � 8, densities
0.7 � n � 1.0, and temperatures down to T = 0.067. We
have shown that there are three distinct regimes separated
by rather sharp crossovers: A weak-coupling regime with
short magnetic correlation length, an intermediate coupling
regime where the correlation length rapidly increases when
the temperature is lowered or when the density approaches
half-filling, and a strong coupling regime with short-range
magnetic correlations. These regimes are also characterized
by different behaviors of the double occupancy. In the weak
coupling regime, the double occupancy decreases with in-
creasing temperature, displaying a Pomeranchuk effect. At
strong coupling instead, the electrons are more localized and
a Mott gap appears at half-filling.
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In the regime with long magnetic correlation length, we
established the existence of a crossover from q = (π, π ) an-
tiferromagnetic correlations to incommensurate correlations.
This crossover is mainly seen as a function of increasing
doping, but also as temperature is lowered or as the interaction
is increased. The most common incommensurate vectors are
(π, π ± δq), (π ± δq, π ) but we found hints of the existence
of peaks at (π ± δq, π ± δq), which we expect to become
stronger in parts of the phase diagram at lower temperatures.
We have shown that the different phenomena we observed
can, to a large extent, be read from the analytic structure of
χsp and χch as function of a complex interaction strength.

In the parameter range that we investigated, we found that
the charge susceptibility behaves very differently from the
spin susceptibility and saw no evidence of a reinforcement of
the charge response in regimes where the (incommensurate)
magnetic correlation length increases rapidly. We attribute
the existence of weak peaks at (±δqc, 0) to the presence
of similar peaks at the noninteracting level in the Lindhard
function. This absence of charge stripe correlations above T �
0.067 raises interesting questions about the conciliation of the
finite temperature properties of the system and its ground-
state properties [30,31]. A natural scenario would be that,
as temperature is lowered further, charge-stripe correlations
eventually appear, as this is what happens in the width-four
cylinder geometry [62], but further work is needed to confirm
this picture. An additional question is whether such an ordered
stripe phase would appear at finite temperature or only exists
in the ground state.

Our findings from benchmarking different lattice geome-
tries show that, especially as temperature is lowered and
correlations increase, finite-size effects do lead to sizeable
quantitative, and in the case of very small lattice sizes even
quantitative, differences in results. It would be interesting to
understand how these effects compare to the small energy
differences that are observed between different competing
ordered ground-state phases that have been studied on width-
four cylinders and the 16 × 16 lattice [42,43,43,44,46].

In this paper, we have limited ourselves to the discussion
of the Hubbard model without next-nearest-neighbor hop-
ping t ′, which is however believed to play a crucial role in
being able to connect the model to experimental findings
on cuprate superconductors with effective t ′ in the range of
−0.4 � t ′ � −0.1 [116]. Indeed, there has been an exten-
sive amount of neutron scattering experiments performed on
cuprates studying commensurate and incommensurate mag-
netic correlations [117–125]. In particular, it was found that
electron doped cuprates show commensurate peaks [118,119],
while experiments on hole-doped cuprates found the peaks to
be incommensurate [122–124]. Another interesting difference
was found between La-based cuprates and LBCO, where for
the former both charge and spin ordering vectors increase with
doping, while for the latter the charge vector decreases and
the spin one increases. For the t ′ = 0 case studied here we
find behaviours consistent with La-based cuprates, similarly
to Ref. [43]. It is, of course, impossible to talk about cuprates
without mentioning superconductivity and its interplay with
magnetic order. In that respect it would be of great interest to
study superconducting d-wave correlations on equal footing
with spin and charge ones, much like what has been recently

carried out in Ref. [61]. It would be equally important to relate
our findings with single-particle properties and to explore a
possible connection to pseudogap physics. We, however, leave
these investigations for future work.

The results obtained in this paper were, to a great degree,
enabled by algorithmic progress, in particular the develop-
ment of a connected determinant diagrammatic Monte Carlo
algorithm for double expansions, in U and an arbitrary chem-
ical potential shift α(U ). Importantly, this allowed us to make
the choice of the function α(U ) a posteriori and without
any additional computational effort. Here, we have limited
ourselves to only two such choices, the Hartree series and the
fixed-density series. However, one can generate an arbitrary
number of alternative expansions from different choices of
α(U ). This, on one hand, provides an additional degree of
cross-control over the systematics coming from the resumma-
tions of perturbative series. On the other hand, this freedom
of choice can potentially be exploited through optimisation
schemes such as machine learning based algorithms.
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APPENDIX A: SPIN AND CHARGE SUSCEPTIBILITIES
AS A FUNCTION OF TEMPERATURE

Here, we have conducted the commensurate to incom-
mensurate crossover analysis at a fixed density n = 0.8,
interaction strength U = 5 and for different temperatures T ,
see Figs. 20 and 21.

The spin susceptibility (see Fig. 20) in reciprocal space
χsp(q) has a broad peak is centered around wave vector
(π, π ) at temperatures above T � 0.3. At lower tempera-
tures, the broad peak splits into four sharper peaks at (π, π ±
δs), (π ± δs, π ). The staggered real space spin susceptibility
χsp(r) meanwhile builds up corresponding diagonal domain
walls across the crossover. The length of the domain around
the center stays relatively unaffected by temperature at five
lattice sites. We also study the charge susceptibility in real
and reciprocal space for the same set of parameters, where
the spin correlations clearly undergo a commensurate to in-
commensurate crossover (see Fig. 21). The reciprocal space
charge susceptibility χch(q) shows little structure except for a
clear peak around (π, π ). At the lowest available temperature
T = 0.067 we observe the start of the formation of ridges as
discussed in relation with Fig. 11, as well as the correspond-
ing weak maxima at wave vectors (δc, 0) and (0, δc). The
real-space charge susceptibility χch(r) always takes positive
value at r = (0, 0), which is expected because because the
system is hole doped n < 1 and the double-occupancy must be
positive D > 0. There is no indication of domain walls form-
ing, where the correlator would change sign as seen for the
spin susceptibility for these parameters. We observe a similar
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FIG. 20. Momentum-space spin susceptibility χsp(q) (top) and real-space staggered spin susceptibility χ st
sp(r) (bottom) evaluated at U = 5

and n = 0.8 for temperatures T = {0.33, 0.25, 0.20, 0.167, 0.10} [(a)–(e)].

behavior for all the temperatures that we have investigated
here T ∈ {0.20, 0.167, 0.125, 0.10, 0.067}. It does therefore
seem that the charge response is only very weakly affected
by the formation of incommensurate spin correlations in this
regime.

APPENDIX B: SYSTEM SIZE DEPENDENCE OF THE SPIN
SUSCEPTIBILITY AT HIGHER TEMPERATURES

In Figs. 22 and 23 we perform an additional study of the
dependence of the spin susceptibility χsp in real and recip-
rocal space on variations in system size and lattice geometry
(rectangular vs square). We have picked the same density n =
0.875 as in Figs. 13 and 14 of Sec. III D, however, we have
chosen to investigate here the higher temperature T = 0.22 (in
accordance with Ref. [43]) and a somewhat higher interaction
U = 5 as it is closer to the maximum in correlation length as
a function of interaction strength. We observe that all geome-
tries manage to reproduce the correct value and position of
the maximum in reciprocal space, which is centered around

(π, π ), corresponding to commensurate correlations. This is
consistent with the fact that lattice-size and boundary effect
play an increasing role as correlations increase, which in what
we universally observe when lowering the temperature.

In Figs. 24 and 25 we equally analyze the system size
effects of the charge susceptibility χch, at density n = 0.875,
temperature T = 0.1 and interaction strength U = 4. We ob-
serve that the overall real-space picture is qualitatively similar
for most lattices, even though the small geometries 16 × 4
and 8 × 8 show stronger nonlocal correlations as well as an
enhanced peak around wave vector (0,0) as compared to the
result on the large 64 × 64 lattice.

APPENDIX C: CHEMICAL-POTENTIAL INSERTIONS
AS DOUBLE EXPANSIONS

1. Connected Determinant Diagrammatic Monte Carlo

In this section we briefly reproduce the formalism of
Ref. [64] in a form that is most convenient for its general-
ization. With the notation of Sec. II C, for any quantity O and

FIG. 21. Charge susceptibility in momentum space χch(q) (top) and in real space χch(r) (bottom) evaluated at U = 5 and n = 0.8 for
temperatures T = {0.20, 0.167, 0.125, 0.10, 0.067} [(a)–(e)].
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FIG. 22. Spin susceptibility in momentum space χsp(q) (top) and staggered spin susceptibility in real space χ st
sp(r) (bottom) evaluated at

T = 0.22 for U = 5 and n = 0.875 for different lattice geometries (with periodic boundary conditions) of sizes: 16 × 4 (a), 32 × 4 (b), 32 × 8
(c), 64 × 16 (d), and 64 × 64 (e).

for any real α, we define

O(μ0 + α U,U ) =
∞∑

k=0

U k Oα;k, (C1)

where hereafter a dependence on the chemical potential at
U = 0, by μ0, is implied in all expressions. It is possible
to express Oα;k as the integral of the sum of all connected
Feynman diagrams with {(r1, τ1), . . . , (rk, τk )} as space-time
positions for the vertices

Oα;k = 1

k!

∫
τ1,...,τk

∑
r1,...,rk

Oα (V ), (C2)

FIG. 23. Spin susceptibility in momentum space χsp(q) (top) and
staggered spin susceptibility in real space χ st

sp(r) (bottom) evaluated
at T = 0.22 for U = 5 and n = 0.875 for two lattice geometries
(with periodic boundary conditions) of sizes: 8 × 8 (a) and 16 × 16
(b).

where V = {(r1, τ1), . . . , (rk, τk )}, rl is a lattice site
and τl ∈ [0, 1

T ] the imaginary time. The integrand
Oα ({(r1, τ1), . . . , (rk, τk )}) can be computed numerically
exactly for any quantity with exponentially scaling
computational cost by using the CDet technique. As an
example, we present here the computation of the density,
O = n. The CDet algorithm allows to obtain the sum of
all connected Feynman diagrams, nα (V ), by removing
disconnected diagrams from the sum of all, connected and
disconnected, Feynman diagrams, which we denote here by
aα (V ), and which has the advantage to be easily expressed in
form of determinants thanks to the Wick’s theorem. Indeed,
one has the explicit form

aα (V ) = (−1)|V | detAα (V ) detZα (V ), (C3)

where V ≡ {(r1, τ1), . . . , (rk, τk )}, |V | is the cardinality of the
set V corresponding to the expansion order, Aα (V ) is a (|V | +
1) × (|V | + 1) matrix given by

(Aα (V ))uv = G(0)((ru, τu), (rv, τv )) − α δu,v δ̄u,|V |+1, (C4)

where δ̄u,v = 1 − δu,v , Zα (V ) is a |V | × |V | matrix given by
(Zα )u,v = (Aα )u,v. We further set r|V |+1 ≡ 0, τ|V |+1 ≡ 0, and
the noninteracting Green’s function is defined by

G(0)((r, τ ), (r′, τ ′)) ≡ −〈T[c↑(r, τ ) c†
↑(r′, τ ′)]〉μ=μ0,U=0,

(C5)
where T is the time ordering operator and the average is com-
puted at μ = μ0 and U = 0. Then, nα (V ) is obtained from the
recursive elimination of disconnected diagrams from the sum
of all diagrams,

nα (V ) = aα (V ) −
∑
S�V

nα (S) zα (V \ S) (C6)

where we have introduced

zα (V ) ≡ (−1)|V | (det Zα (V ))2. (C7)

The determinants of the matrices Aα (S) and Zα (S) for all
subsets S ⊆ V , needed for aα (S) and zα (S), can be computed
in a computational time proportional to O(2k ), where k ≡ |V |,
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FIG. 24. Charge susceptibility in momentum space χch(q) (top) and in real space χch(r) (bottom) evaluated at T = 0.1 for U = 4 and
n = 0.875 for different lattice geometries (with periodic boundary conditions) of sizes: 16 × 4 (a), 32 × 4 (b), 32 × 8 (c), 32 × 16 (d), and
64 × 64 (e).

by using a fast principal minor algorithm [114,115]. This
leaves the recursive step, Eq. (C6), as the main computa-
tional bottleneck with a complexity of O(3k ) {or, alternatively,
O(k2 2k ) using fast subset convolutions [126]}.

For completeness, we give the explicit expressions for the
spin and charge susceptibilities at spin balance in terms of the
F σσ ′

functions,

χch(r) = 2
∫ 1/T

0
dτ (F↑↑(r, τ ) + F↑↓(r, τ )),

χsp(r) = 1

2

∫ 1/T

0
dτ (F↑↑(r, τ ) − F↑↓(r, τ )),

(C8)

where

F σσ ′
(r, τ ) = 〈δn̂σ (r, τ ) δn̂σ ′ (0, 0)〉. (C9)

FIG. 25. Charge susceptibility in momentum space χch(q) (top)
and real space χch(r) (bottom) evaluated at T = 0.1 for U = 4 and
n = 0.875 for two lattice geometries (with periodic boundary condi-
tions) of sizes: 8 × 8 (a) and 16 × 16 (b).

The diagrammatic expansions for F↑↑ and F↑↓ can be found
in Fig. 17. We write the equivalent of Eq. (C2) for F σσ ′

,

F σσ ′
α;k = 1

k!

∫
τ1,...,τk

∑
r1,...,rk

F σσ ′
α (V ). (C10)

In order to obtain F σσ ′
α (V ), analogously to what was done

before, we introduce

A↑↑
α (V ) = (−1)|V | detBα (V ) detZα (V ),

A↑↓
α (V ) = (−1)|V | det Ãα (V ) detAα (V ), (C11)

where Bα is a (|V | + 2) × (|V | + 2) matrix defined by

(Bα (V ))uv = G(0)((ru, τu), (rv, τv ))

− α δu,v δ̄u,|V |+1δ̄u,|V |+2, (C12)

where r|V |+1 = r, τ|V |+1 = τ , r|V |+2 = 0, τ|V |+2 = 0, and Ãα

is a (|V | + 1) × (|V | + 1) matrix such that (Ã)uv = (B)uv . We
also define

ãα (V ) = (−1)|V | det Ãα (V ) detZα (V ). (C13)

We can then obtain Fσσ ′ from the recursive relation

F σσ ′
α (V ) = Aσσ ′

α (V ) −
∑
S⊆V

nα (S) ãα (V\S)

−
∑
S�V

F σσ ′
α (S) zα (V\S), (C14)

which has the diagrammatic interpretation of the elimination
from the sum of all, connected and disconnected, symmetrized
Feynman diagrams for 〈n̂σ (r, τ ) n̂σ ′ (0, 0)〉, Aσσ ′

α (V ), of two
classes of diagrams: the non-necessarily connected diagrams
contributing to 〈n̂σ (r, τ )〉〈n̂σ ′ (0, 0)〉 (second line in the previ-
ous equation), and the remaining disconnected diagrams (third
line in the previous equation). The equivalent CDet recursion
formula for single Hartree-type expansions of the spin and
charge susceptibilities has been first introduced in Ref. [35].
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2. Evaluating arbitrary chemical-potential insertions efficiently
with CDet

Equations (C3), (C4), and (C7) show that aα (V ) and zα (V )
are polynomials of α of degree 2 |V |

aα (V ) =
2|V |∑
j=0

α j a j (V ), zα (V ) =
2|V |∑
j=0

α j z j (V ), (C15)

and Eq. (C6) shows that nα (V ) is a polynomial of α of degree,
at most 2 |V |, and from the Feynman-diagram representation
it is easy to understand that the actual degree is only |V |,

nα (V ) =
|V |∑
j=0

α j n j (V ). (C16)

The same reasoning applies to any quantity O: Oα (V ) =∑|V |
j=0 α j O j (V ), where O j (V ) is the jth chemical potential

insertion in the sum of all connected Feynman diagrams
for fixed space-time vertex positions V , from which we can
determine the contribution to the physical quantity O after
integration over space-time coordinates. In the following, we
limit our discussion to O = n.

Our strategy to compute nj (V ), for j � |V |, is the follow-
ing: we first determine aj (S) and z j (S) for all S ⊆ V and j �
|V |; then, we apply Eq. (C6) seen as a polynomial equation to
recursively obtain nj (V ). We use the following identities:

detAα (S) =
|S|∑
j=0

α j
∑

S′⊆S: |S′|=|S|− j

detA0(S′),

detZα (S) =
|S|∑
j=0

α j
∑

S′⊆S: |S′|=|S|− j

detZ0(S′), (C17)

which can be evaluated for all S ⊆ V in O(3|V |) computa-
tional steps (or in O(|V |2 2|V |) by using ranked zeta transforms
[126]). Using Eq. (C3), (C7), and (C17) we can build the
aα (S), zα (S) polynomials, which can then be used to obtain
the polynomial nα (V ), and therefore n j (V ), from Eq. (C6),
with a computational cost O(|V |2 3|V |). An analogous strategy
applies to the computation of O j (S), and the final contribution
to the O quantity can be evaluated from Eq. (C2),

Oα;k = 1

k!

k∑
j=0

α j
∫

τ1,...,τk

∑
r1,...,rk

O j (V ), (C18)

where V = {(r1, τ1), . . . , (rk, τk )}.

FIG. 26. Spin susceptibility χsp(q) for n = 0.775, T = 0.2, U =
4.35 (bottom row), computed from the fixed-density series (left) as
well as from a Hartree-shifted series (right). The U = 0 starting
points of the perturbation series are shown in the top row and cor-
respond to densities n0 = 0.775 (left) and n0 = 0.7 (right).

As briefly mentioned in the main text, one of the features of
the algorithmic advancement we discuss here is that it allows
to crosscheck the results obtained by different choices of α.
This freedom has been proven to be extremely useful [63,92],
even if in these previous works it was impossible to use the
full functional freedom of α(U ) as a function of U , as there
was no technical means to achieve this goal efficiently. In this
paper, we have limited ourselves to comparing the Hartree-
shift choice, α = n0/2, and the fixed-density choice, i.e., α(U )
such that the density does not change as a function of U . See
Fig. 26 for a representative comparison of the two set of series
for different wave vectors of the upper quarter of the Brillouin
zone. These have two fairly different starting points, yet are
converging to the same results within error bars.

It is also possible to generalize this formalism to arbitrary
symmetry-breaking field insertions. A constant symmetry-
breaking field shift has already been shown to be an efficient
way to build a convergent perturbative series in the superfluid
phase [127]. We further remark that a similar technique to
the one we introduce in this paper can be applied to a more
general shift in the single-particle propagator, which would
allow even more flexibility in the control of the convergence of
the series. For completeness we note that alternative exponen-
tially scaling algorithms, which alter perturbative expansions
whilst still grouping Feynman diagrams into determinants
have been introduced in Refs. [89,90,128].
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