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Parametric t-stochastic neighbor embedding with quantum neural network
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t-stochastic neighbor embedding (t-SNE) is a nonparametric data visualization method in classical machine
learning. It maps the data from the high-dimensional space into a low-dimensional space, especially a two-
dimensional plane, while maintaining the relationship or similarities between the surrounding points. In t-SNE,
the initial position of the low-dimensional data is randomly determined, and the visualization is achieved by
moving the low-dimensional data to minimize a cost function. Its variant called parametric t-SNE uses neural
networks for this mapping. In this paper, we propose to use quantum neural networks for parametric t-SNE
to reflect the characteristics of high-dimensional quantum data on low-dimensional data. We use fidelity-based
metrics instead of Euclidean distance in calculating high-dimensional data similarity. To verify our proposed
method, we visualize both classical (Iris dataset) and quantum (time-depending Hamiltonian dynamics) data for
classification tasks. Since this method allows us to represent a quantum dataset in a higher dimensional Hilbert
space by a quantum dataset in a lower dimension while keeping their similarity, the proposed method can also
be used to compress quantum data for further quantum machine learning.
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I. INTRODUCTION

Visualization of high-dimensional data is an important
subfield of machine learning. It allows us to intuitively in-
terpret the data and understand possible patterns in them. As
visualization often involves mapping of the original data to
a low, typically two- or three-dimensional space, the tech-
niques for visualizations are also useful for compression of
data or preprocessing before applying other machine learning
techniques. Prototypical examples of visualization techniques
include t-stochastic neighbor embedding (t-SNE) [1].

Such techniques have been proven to also be useful for
machine learning of quantum states. The authors of Ref. [2]
applied various visualization methods to detect quantum
phase transitions in the Hubbard model, where they generated
states by quantum Monte Carlo simulations. They found that
t-SNE is the most promising technique in this type of the
application. The authors of Ref. [3] applied t-SNE to visualize
quantum states represented as matrix product states. They suc-
cessfully visualized quantum phase transitions in spin models
such as the transverse field Ising model.
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However, the application of machine learning techniques
running on classical computers for this purpose is intrinsically
limited to the case where the target quantum states have effi-
cient classical representations. The use of quantum computers
can provide an advantage in widening the range of quantum
states that can be used as inputs. In fact, in Ref. [4], identi-
fication of the topological quantum phase has been proposed
by using a clustering algorithm using a quantum computer.
This approach is motivated by the fact that there is a family
of quantum states that are useful for machine learning of
classical data but cannot be efficiently represented by classical
computers [5].

Here, we propose to use quantum neural networks (QNNs),
which use a parametric quantum circuit to construct a ma-
chine learning model, for visualization of quantum states.
Our proposal is based on parametric t-SNE [6], which is a
visualization technique where we employ neural networks to
map high-dimensional data into low-dimensional space. The
mapping is optimized to keep the similarity of the data points,
which is defined from the distance in the respective spaces,
unchanged. Our idea is to use QNNs instead of the classical
neural network. This allows us to directly use quantum states
as inputs, which may be useful for studying complex quan-
tum systems and certain machine learning problems that are
hard classically. The similarity of the quantum states can be
defined from fidelity(like) measures. Our method optimizes
the parameters in a QNN so that the respective quantum states
are mapped to low-dimensional points, which are defined as
expectation values of certain observables at the output of the
QNN, while maintaining the similarity among the points.
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We also conduct numerical verification of our proposed
method. First, we use the Iris flower dataset [7] to test if it can
be successfully applied to classical data. Second, we visualize
the quantum states time-evolved under the transverse-field
Ising Hamiltonian. In the visualization of quantum data, we
could not effectively generate a visualization with distinct
clusters when using the default cost function usually utilized
for parametric t-SNE. To deal with this problem, we introduce
a hyperparameter into the cost function to adapt the scaling of
the low-dimensional data.

With these successful demonstrations, we believe that the
proposed method would be a powerful tool to visualize and
analyze both classical and quantum datasets.

This paper is organized as follows. In Sec. II, we briefly re-
view the t-SNE. In Sec. III, we describe our proposed method.
In Sec. IV, we perform numerical experiments to verify our
proposed method. In Sec. V, we describe the conclusions and
future work.

II. BACKGROUND

A. t-SNE

The t-SNE [1], also called nonparametric t-SNE, is a classi-
cal machine learning method for visualizing high-dimensional
data. The idea of t-SNE is to map data points in the original
high-dimensional space to points in a low-dimensional space
while keeping the similarity among the points. The map is
determined by minimizing the Kullback-Leibler (KL) diver-
gence between the similarity of data distributions in the high-
and low-dimensional space.

In detail, the t-SNE defines the similarity between a high-
dimensional data point xi and another data point x j by the
following joint probability [1]:

pi j = pi| j + p j|i
2N

, (1)

where

p j|i =
exp

(−‖xi−x j‖2

2σ 2
i

)
∑

k �=i exp
(−‖xi−xk‖2

2σ 2
i

) , (2)

pii = 0,

and σi are parameters determined from the following quantity
called perplexity of data xi:

Perpi = 2− ∑
j p j|i log2 p j|i .

The value of σi is set to make Perpi a user-specified value
(typically between 5 and 50). The similarity between the low-
dimensional data points yi and y j is defined by the following
equation using Student t distribution with one degree of free-
dom [1]:

qi j = (1 + ‖yi − y j‖2)−1

∑
k

∑
l �=k (1 + ‖yk − yl‖2)−1 ,

qii = 0. (3)

The t-SNE determines a low-dimensional point yi correspond-
ing to a data point xi by iteratively minimizing the cost
function C({yi}) defined as the KL divergence between a joint

probability distribution in the high- and low-dimensional data:

C({yi}) =
∑

i

∑
j

pi j log
pi j

qi j
. (4)

The gradient of the cost function for yi is described as

∂C

∂yi
= 4

∑
j

(pi j − qi j )(yi − y j )(1 + ‖yi − y j‖2)−1. (5)

In optimizing the cost function, each yi is initially placed in a
random position and moved to minimize the cost function.

B. Parametric t-SNE

Parametric t-SNE [6] is a variant of t-SNE which discards
the direct optimization of the low-dimensional points {yi} but
uses a neural network to map xi to yi. In this method, each
low-dimensional point yi is generated by yi = f (xi|θ ), where
f (xi|θ ) is an output of the neural network with an input xi

and network weight θ . We optimize θ to minimize the cost
function in Eq. (4). An important distinction between the
t-SNE and the parametric t-SNE is that the latter can easily
generate a low-dimensional point for a new input as we ex-
plicitly construct the mapping from xi to yi.

C. Application of t-SNE for quantum systems

Recently, t-SNE has also been applied to the field of
quantum physics by Yang et al. [3]. They considered the
visualization of quantum phase transitions by applying t-SNE
to (approximate) ground states |ψi〉 of certain Hamiltonians
Hi. Their approach is to use

p j|i =
exp

[− d (ψi,ψ j )2

2σ 2
i

]
∑

k �=i exp
[− d (ψi,ψk )2

2σ 2
i

] , (6)

instead of Eq. (2), where the distance d (ψi, ψ j ) is defined by
the negative logarithmic fidelity:

d (ψi, ψ j ) = − log (|〈ψi|ψ j〉|). (7)

It has been shown that this approach can successfully visualize
and identify quantum phase transitions of one-dimensional
spin chains. In Ref. [3], the authors also considered the vi-
sualization of classical data by using the so-called quantum
feature map via t-SNE. We share their idea in the sense of
visualization of quantum states via t-SNE. However, our ap-
proach differs essentially from Ref. [3] in that a parameterized
quantum model is employed to yield low-dimensional data of
parametric t-SNE.

III. PARAMETRIC t-SNE WITH QUANTUM CIRCUITS

In this paper, we propose using quantum circuits to
construct the parametric model f (x|θ ) to generate low-
dimensional data. The procedure of our proposed method
is shown in Fig. 1. More concretely, using a parame-
terized unitary circuit U (x, θ ) that depends on both a
d-dimensional input x and trainable parameters θ , we gen-
erate a d ′-dimensional data point y by expectation values of
d ′ observables {Oμ}d ′

i=1. Then we minimize the cost function
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FIG. 1. Procedure of visualizing classical or quantum data.
Specifically, we visualize classical and quantum data by mapping
the high-dimensional data to the low-dimensional one. We prepare a
quantum state by a parametrized quantum circuit for classical data
or by time-evolution under a Hamiltonian for quantum data. The
mapping is performed by a parametrized quantum circuit trained by
minimizing a cost function to maintain the similarity of surrounding
points. The similarity of high-dimensional data is defined by either
expectation values, fidelities, or classical data. The similarity of low-
dimensional data is determined by expectation values, and we plot
them in a two-dimensional plane.

defined in Eq. (4) by optimizing the parameters θ . The con-
crete algorithm for classical inputs is as follows:

(1) Compute pi j for all pairs from {xi}N
i=1.

(2) For all {xi}N
i=1 and {Oμ}d ′

μ=1, evaluate yμ(xi, θ ) =
〈0|U †(xi, θ )OμU (xi, θ ) |0〉 using a quantum computer.

(3) Compute qi j for all pairs from yμ(xi, θ ) on a classical
computer.

(4) Compute C[{yμ(xi, θ )}N
i=1] on a classical computer.

(5) Update θ so that C is minimized.
After the convergence, we expect the above protocol to

find a quantum circuit U (x, θ ) which can map xi to a low-
dimensional space while preserving the similarity based on
distances among the data.

Note that the choice of U (x, θ ) and Oμ affects the outputs
yi. First, we explain how to choose observables. We choose
local observables to alleviate a vanishing gradient problem,
which makes optimization hard. This is because the gradi-
ent is less likely to disappear using local observables than
global observables [8]. Moreover, if we suppose U (x, θ ) =
U (θ )Uin(x) as in Fig. 1, our quantum model means that
quantum states representing data are measured on bases opti-
mized by a parameterized quantum circuit U (θ ). Let us define
|ψin,i〉 = Uin(xi )|0〉, the output values yμ(xi, θ ) are described
by 〈ψin,i|U (θ )†OμU (θ )|ψin,i〉. This means that the encoded
data |ψin,i〉 is measured by the observables U (θ )†OμU (θ ). If
the parameterized quantum circuit is deep enough to trans-
form the observables appropriately, the choice of observables
Oμ is not likely to have much effect on results. In our nu-
merical experiments, we choose local observables acting on a
single qubit. Next, we comment on the design of a quantum
circuit. In our numerical experiments, we use hardware effi-
cient ansatz, which is widely used in the study of quantum
machine learning. However, this choice is only for proof-of-
concept numerical demonstration, and important future work

should explore what types of quantum circuits are suited for
our proposed algorithm. The desirable design of the quan-
tum circuit for quantum machine learning is actively studied
[9,10]. At least, we can say that linear data encoding and
transformation are preferred if the data are linearly separable.
Otherwise, we have to encode data with nonlinearity, e.g.,
using data re-uploading [10].

An interesting extension of the above protocol is to take a
quantum dataset consisting of quantum states {|ψi〉}N

i=1 as the
input data.

Here, we can think of several ways to define the similarity
of quantum data in a high-dimensional space. One possible
way is to generate high-dimensional classical data by mea-
suring a set of observables {Pν}d

ν=1. Then their expectation
values:

{〈Pν〉}d
ν=1, (8)

are used as the high-dimensional data. Another possibility is
to use a distance function of two quantum states defined via
fidelity:

d (|ψi〉, |ψk〉) =
√

1 − |〈ψi|ψk〉|2. (9)

Then the similarity of two quantum states is defined as fol-
lows:

p j|i =
exp

[− d (|ψi〉,|ψ j〉)2

2σ 2
i

]
∑

k �=i exp
[− d (|ψi〉,|ψk〉)2

2σ 2
i

] . (10)

This choice enables us to readily calculate d (ψi, ψk ) on a
quantum computer using standard techniques for overlap mea-
surement such as swap test [11].

On the other hand, for the low-dimensional space, we can
use U (θ ), which only depends on the trainable parameters θ

at step (2) in the classical input case since we do not have
classical input x. For the cost function C, we can use the
same formulation as above, that is, we measure yμ(ψi, θ ) =
〈ψi|U †(θ )OμU (θ ) |ψi〉 for a certain set of observables {Oμ}
and compute C({yμ(ψi, θ )}N

i=1).
Note that, if we employ a quantum feature map:

|ψi〉 = Uin(xi )|0〉, (11)

the similarity of classical input data {xi} in high-dimensional
space can also be calculated via the fidelities of the quantum
states.

The possible advantage of the proposed method solely
depends on the fact that there are quantum circuits that are
hard to simulate classically [12–14]. This means that we may
be able to construct the map f (x|θ ) which cannot be expressed
by neural networks. In fact, it is proven that, when using a
very specific dataset, there is a machine learning task with
rigorous quantum advantage [5]. However, the usefulness of
quantum circuits for modeling practical classical data is, in
general, still in question. Since one of our approaches assumes
that the high-dimensional data are quantum data, we expect
that the quantum model has an advantage in reproducing its
similarity in low dimensions. We leave this research direction
as an important future topic to explore.
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FIG. 2. Quantum circuit to visualize data: We input data by Uin and alternately act U1 and U2 on the quantum state. The quantum circuit
(a) U1 and (b) U2.

IV. NUMERICAL EXPERIMENTS

Here, we perform the numerical simulations of the pro-
posed method. First, let us describe the tools used in the
experiments. We use QULACS [15] to simulate a quantum
circuit. We make a python wrapper to work with PYTORCH

[16] to use the loss function and optimizer. Our optimization is
performed by Sharpness-Aware Minimization (SAM) [17,18]
with ADAM [19] as the base optimizer. The overview of SAM

is to consider the cost to which the l2-regularization term is
added, find the gradient at the point where that cost is the
highest in the neighborhood, and descend from the current
point according to that gradient.

Note that, in this section, we denote Xi as the Pauli X acting
on ith qubit, and also Zi as the Pauli Z acting on ith qubit.

A. Visualizing classical data

1. Application of parametric t-SNE with quantum circuits

We visualize the Iris flower dataset [7] with our proposed
method. The dataset contains three classes and consists of
four features. We normalize each feature between −1 and +1.
The construction of our ansatz U (x, θ ) and observables {Oμ}
for the low-dimensional space are as follows. Let us define
Ry(θ ) = exp(iθŶ /2) and

Uin(xi ) = Ry(xi,1) ⊗ Ry(xi,2) ⊗ · · · ⊗ Ry(xi,d ),

where xi, j denotes the jth element of ith data xi. Also, let
us define U1 and U2 as shown in Fig. 2. Here, U1 and U2

are commonly used in hardware efficient ansatz. We use the
combination of them as U (x, θ ), defined by

U (x, θ ) =
L−1∏
k=0

[U2(θ9+16k:16+16k )U1(θ1+16k:8+16k )]Uin(x),

(12)
where θi: j denotes the ( j − i + 1)-dimensional vector contain-
ing ith to jth elements of θ . Specifically, we set the circuit
depth L = 4. As for the output, we set d ′ = 2 and {Oμ} =
{X2, X3} to visualize the Iris dataset on a two-dimensional
plane. As we explained in Sec. III, we choose local observ-
ables to alleviate the vanishing gradient problem.

We perform the simulation under the above settings and
plot the results in Fig. 3. This figure shows that the data
are clustered for each type of Iris flower. Figure 3(a) on the
left shows the visualization by the classical machine learning

method of t-SNE and Fig. 3(b) in the middle by the proposed
method with similarity based on Euclidean distance. In both
two cases, the data are clustered by Iris flower varieties.

2. Visualization with infidelity distance measure

Next, we show that the proposed method can be correctly
visualized by calculating the similarity of quantum states. To
this end, we will use, as a test case, a set of quantum states
generated by a quantum feature map from the Iris dataset
before running the method on a truly physically meaningful
quantum state. We perform the parametric t-SNE using quan-
tum features |ψi〉 defined as

|ψi〉 = Uin(xi ) |0〉 , (13)

and the cost function associated with the distance measure
defined in Eq. (9). We show the result in Fig. 3(c), which
implies that this protocol also works.

B. Visualization of quantum data

1. Visualization based on observables

In this section, we perform the visualization of quantum
states. As an example, let us consider the time-dependent
two-body transverse field Ising model, which is employed
in quantum annealing [20]. We prepare quantum states time-
evolved under the following Hamiltonian:

H =
(

1 − t

τ

) ∑
i

hiXi +
( t

τ

) ∑
i< j

Ji jZiZ j, (14)

where τ denotes the total simulation time of the Hamiltonian.
We perform the simulation under the Trotter decomposition
[21,22], defined by

exp[−i(H1 + H2)t]

= lim
m→∞

[
exp

(
− iH1t

m

)
exp

(
− iH2t

m

)]m



[
exp

(
− iH1t

m

)
exp

(
− iH2t

m

)]m

.

We set the number of qubits as four,
τ = 40, time step �t := τ/m = 0.01, hi = −1, and Ji j as

a uniform random number between −1 and 0 or 0 and +1.
We prepare 200 random Hamiltonians. Half of them have

all positive Ji j , corresponding to being antiferromagnetic
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FIG. 3. Visualization of the Iris flower dataset (a) by the classical machine learning method of t-stochastic neighbor embedding (t-SNE),
(b) by the proposed method with the similarity based on Euclidean distance between high-dimensional data, and (c) by the proposed method
with the similarity based on the fidelity-based metric between high-dimensional data.

(AFM), and the rest have all negative Ji j , corresponding to
being ferromagnetic (FM).

The dynamics is performed as follows. Since we prepare
the ground state of

∑
i hiXi as the initial state, the adiabatic

evolution results in a ground state (|0〉⊗n + |1〉⊗n)/
√

2 of∑
i< j Ji jZiZ j , which does not depend on the specific values

of Ji j . On the other hand, AFM Hamiltonians have different
ground states depending on the values of Ji j , and therefore,
the visualization results in a scattered pattern.

Here, we visualize the quantum state at every 1000 Trotter
steps (t = 10, 20, 30, and 40) by making the models for each
step. As explained before, we consider the two methods to
compute similarity of the quantum states in high-dimensional
space. The first method is to consider the expectation values
of input quantum states as high-dimensional data:

xi = (〈ψi,in|X1|ψi,in〉, 〈ψi,in|X2|ψi,in〉, . . . ,
〈ψi,in|Xn|ψi,in〉),

where n denotes the number of qubits. Then we calculate
the similarity between the high-dimensional data points as

FIG. 4. Process of a time-dependent transverse-field two-body
Ising model when the calculation of the similarity in high-
dimensional data is based on the observables. Visualization of
the quantum states of the (a) 1000th (t = 10), (b) 2000th (t = 20),
(c) 3000th (t = 30), and (d) 4000th (t = 40) Trotter steps by making
models at each step, respectively. The orange or blue points cor-
respond to the cases where all Ji j in the Hamiltonian are positive
[antiferromagnetic (AFM)] or negative [ferromagnetic (FM)].

we explained in Sec. II A. The low-dimensional data {yi} are
defined similarly by the following equation using a certain
constant value a:

yi = a(〈ψi,out|X2|ψi,out〉, 〈ψi,out|X3|ψi,out〉). (15)

The constant value a is a hyperparameter to adjust the scale
of low-dimensional data. We set the hyperparameter a = 1
and circuit depth L = 8. In this numerical experiment, we
visualize the quantum states for every 1000 Trotter steps. The
result is shown in Fig. 4. In this figure, we can see that two
clusters corresponding to the sign of the coupling constants
are formed.

2. Visualization with infidelity metric

The second method is to calculate the similarity of the
data in high-dimensional space via infidelity of two different
quantum states. The similarity between low-dimensional data
is calculated in the same way as the previous case, except
for the setting of hyperparameter a = 10. Figure 5 shows the
process of the dynamics for every 1000 Trotter steps. This

FIG. 5. Process of a time-dependent transverse-field two-body
Ising model when the calculation of the similarity in high-
dimensional data is based on the fidelity. Visualization of the
quantum states of the (a) 1000th, (b) 2000th, (c) 3000th, and
(d) 4000th Trotter step, respectively. The orange and blue points
correspond to the cases where Ji j is positive or negative, respectively.
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FIG. 6. Examples of undesirable visualizations. In (a), although the plot is two-dimensional, it is plotted in a one-dimensional manner.
In (b) and (c), the different classes cannot be identified unless they are plotted in different colors. (d)–(f) Loss contours and optimization
trajectories of (a)–(c), respectively. In all three cases, the parameters are optimized.

figure also shows the two clusters corresponding to the sign
of the coupling constants.

3. The effect of multiplying a constant value

When we visualize the quantum data, we sometimes get
undesirable visualization figures, which can be avoided by ap-
propriately tuning the hyperparameter a. For example, we plot
three examples of wrong choices of a in Fig. 6. In Fig. 6(a),
the data are arranged in an almost straight line, despite the
two-dimensional plot. In Figs. 6(b) and 6(c), it is impossible
to determine that these data belong to different classes without
the colors in the plots since each class is colored to make the
figures easier to understand. One possible reason is that the
cost function optimization is not sufficient to converge to a
local minimum.

We examine whether the optimization converges near a
local minimum. To this end, we visualize the loss contours
and optimization trajectories in a two-dimensional plane. In
Ref. [23], the authors developed a method to visualize loss
landscape and optimization trajectories with the loss contours.
They used the visualization method to investigate the relation-
ship between loss landscape and trainability or generalization
for neural networks. Before we describe the detailed method,
let us define θi as a vector of trainable parameters at the ith
epoch. We consider the matrix M consisting of (θi − θn) for
all i, where the n is the last epoch. Specifically, M is written
by

M = [θ0 − θn; θ1 − θn; . . . ; θn−1 − θn]. (16)

The matrix M is transformed by principal component analysis
[24], and the first and second principal component vectors
are used as the axis of the visualization. Along the two prin-
cipal component vectors, the loss contours and optimization
trajectories are plotted on a two-dimensional plane. We use

this visualization method to tune the hyperparameter a and to
confirm our optimization works appropriately.

We show the visualization of the loss landscapes in
Figs. 6(d)–6(f). From these figures, the optimization is suf-
ficiently done to reach the local minima. Despite the cost
function being well optimized, we have not been able to
reflect enough features on the low-dimensional data to dis-
criminate different clusters. This is attributed to the wrong
design of the cost function, where the similarity is not ap-
propriately defined. For example, in Fig. 6(a), the parameter
a for adjusting the scale is multiplied by 1 instead of by 10
in Fig. 5(a). In Figs. 6(b) and 6(c), both high-dimensional
and low-dimensional data are multiplied by 10 in similarity
calculation, instead of by 1 in Figs. 4(c) and 4(d). These
results suggest that, when calculating similarity, it is necessary
to adjust the scale of the high- and low-dimensional data so
that the cost function adequately reflects the characteristics of
the given data.

To be more concrete, the need to adjust the scale of
the high- and low-dimensional data similarities may occur
in larger systems since those similarities may not reflect
surrounding points. First, we refer to the high-dimensional
data similarities. Since high-dimensional data similarities are
likely to become smaller in simulating a larger quantum
system, it is more difficult to reflect the features of higher-
dimensional data into low-dimensional data. We can alleviate
this difficulty by taking an n-square root of the fidelities to
include more information about the surrounding points. This
change affects the cost function, and the high-dimensional
data similarities are easily reflected in the low-dimensional
data. Next, we refer to the low-dimensional data similarities.
If the low-dimensional data move a small region, optimizing
the cost function is difficult because similarities between dis-
similar points cannot have small values. We deal with this
difficulty by multiplying observables by a constant value. For
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example, let us consider Student t distribution without the
normalization factor as u = 1/(1 + v2). If v ranges from −1
to 1, the range of u is [0.5, 1]. In this case, optimization
of cost function may be difficult because the lower bound
causes dissimilar points not to have small low-dimensional
data similarities. We deal with this difficulty by multiplying
observables by a constant value. If we multiply v by 10, the
range of u becomes [0.0099, 1]. The lower bound of low-
dimensional data similarities becomes smaller by multiplying
a constant value. As a result, dissimilar points can take lower
values of low-dimensional data similarities. In this way, the
smaller lower bound of low-dimensional data similarities fa-
cilitates distinguishing dissimilar points in optimizing the cost
function.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have visualized classical and quantum
data by a QNN. Specifically, we employed a parameterized
quantum circuit as a quantum model to generate low-
dimensional data, which is trained so that the similarity of
the high-dimensional data is maintained. In the quantum case,
the similarity of the quantum states is calculated in two ways:
measuring multiple observables to obtain high-dimensional
classical data from quantum states and calculating distance of
two quantum states directly from fidelity.

We performed numerical simulations of two-dimensional
visualizations of the Iris dataset as the case of the classical
inputs and quantum states evolved under Hamiltonian dynam-
ics as the case of the quantum inputs. It was found that the
proposed method worked well for both classical and quan-
tum inputs, with appropriate low-dimensional visualization.
Specifically, in the case of quantum data, it is difficult to
visualize the data well unless the constant factor is multiplied
by the similarity of the low-dimensional data. This is probably
because the similarity between the quantum states takes too
small a value. While we treated this constant factor as a

hyperparameter, it can be trainable parameters as ai for each
low-dimensional data yi for further improvement. At least,
by doing so, the performance of nonparametric t-SNE can
be guaranteed in the proposed model with a two-qubit trivial
circuit. This implies that the proposed method is expected to
work on a relatively small quantum device. For more complex
data visualization, we can improve the representation capabil-
ity of quantum circuits.

One of the other possibilities using our proposed method
is to compress quantum data by defining the low-dimensional
data by quantum states and the similarity by a fidelity-based
metric. While real quantum data, such as a set of outputs
from a quantum algorithm, live in a large Hilbert space,
such quantum data can be mapped into a smaller Hilbert
space with a fewer number of qubits, keeping their similarity.
Then quantum machine learning algorithms can be further
applied to such a compressed quantum dataset. Further in-
vestigation in this direction is an intriguing future issue. The
other future task is to construct a model including a decoder,
which decodes data from compressed data, such as Variational
AutoEncoder [25] in classical machine learning. It may be
possible to create a quantum state with certain desired proper-
ties from the classical data in the middle layer.
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