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Level statistics of real eigenvalues in non-Hermitian systems

Zhenyu Xiao,1 Kohei Kawabata,2 Xunlong Luo ,3 Tomi Ohtsuki ,4 and Ryuichi Shindou 1,*

1International Center for Quantum Materials, Peking University, Beijing 100871, China
2Department of Physics, Princeton University, Princeton, New Jersey 08540, USA

3Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
4Physics Division, Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan

(Received 5 July 2022; revised 9 November 2022; accepted 28 November 2022; published 19 December 2022)

Symmetries associated with complex conjugation and Hermitian conjugation, such as time-reversal symmetry
and pseudo-Hermiticity, have a great impact on the eigenvalue spectra of non-Hermitian random matrices. Here,
we show that time-reversal symmetry and pseudo-Hermiticity lead to universal level statistics of non-Hermitian
random matrices on and around the real axis. From the extensive numerical calculations of large random
matrices, we obtain the five universal level-spacing and level-spacing-ratio distributions of real eigenvalues,
each of which is unique to the symmetry class. Furthermore, we analyze spacings of real eigenvalues in physical
models, such as bosonic many-body systems and free fermionic systems with disorder and dissipation. We clarify
that the level spacings in ergodic (metallic) phases are described by the universal distributions of non-Hermitian
random matrices in the same symmetry classes, while the level spacings in many-body localized and Anderson
localized phases show the Poisson statistics. We also find that the number of real eigenvalues shows distinct
scalings in the ergodic and localized phases in these symmetry classes. These results serve as effective tools for
detecting quantum chaos, many-body localization, and real-complex transitions in non-Hermitian systems with
symmetries.
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I. INTRODUCTION

An understanding of spectral correlations under symme-
tries is useful in classifying phases of matter [1]. In closed
quantum systems, the spectral statistics of nonintegrable sys-
tems typically coincide with those of Hermitian random
matrices with symmetries, which serves as an effective tool
for detecting quantum chaos [2–5]. The spectral statistics
also provide a measure of the Anderson transitions [6–9] and
many-body-localization (MBL) transitions [10–13]. When a
disordered many-body Hermitian system is in the ergodic
phase, the statistics of spacing between its eigenenergy levels
are described by the Wigner-Dyson distribution of Hermitian
random matrices. The Wigner-Dyson distribution is univer-
sally classified by time-reversal symmetry (TRS). Hermitian
random matrices without and with TRS, whose sign is +1 and
−1, respectively, belong to the Gaussian unitary, orthogonal,
and symplectic ensembles, each of which exhibits distinct
spectral statistics.

While state-of-the-art quantum experiments facilitate prob-
ing quantum many-body physics including MBL [13,14],
energy gain and loss naturally exist in these optical systems,
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removing the Hermiticity condition from their many-body
Hamiltonians. Consequently, open quantum systems de-
scribed by non-Hermitian operators have attracted growing
interest. Researchers have studied the non-Hermitian physics
of optical phenomena [15–24], topological phases [25–35],
and Anderson and many-body localization [36–49]. These
works have led to a remarkable advance in spectral properties
of non-Hermitian operators [50–65]. Still, it remains to be
fully explored how symmetries influence the universal spec-
tral properties of non-Hermitian operators.

The level statistics analyses of Hermitian systems can-
not be directly applied to non-Hermitian systems. Due to
the absence of Hermiticity, the 10-fold Hermitian symme-
try classification [66] is enriched into a 38-fold symmetry
classification [32,67,68]. The eigenvalues of non-Hermitian
systems are distributed in the two-dimensional (2D) com-
plex plane. The statistics of complex level spacings sα ,
defined as the distance between the closest eigenvalues in
the complex plane (i.e., sα ≡ minβ |Eα − Eβ | for all complex
eigenvalues Eα, Eβ with α �= β), were previously studied to
capture the spectral correlations of non-Hermitian systems
[50,59,60,62,63]. Non-Hermitian random matrices without
any symmetry show a universal distribution of the spacing of
complex eigenvalues, known as the Ginibre distribution [50].
An introduction of the transposition version of TRS, H =
U†

T HTUT , U∗
TUT = ±1, which is called TRS† [32], changes

the distribution into two distinct distributions, depending on
the sign of U∗

TUT = ±1 [59]. This is similar to the threefold
Wigner-Dyson distribution for Hermitian random matrices.
Meanwhile, an introduction of TRS, H = U†

T H∗UT , U∗
TUT =
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TABLE I. Tenfold symmetry classification based on time-reversal symmetry (TRS), time-reversal symmetry† (TRS†), and pseudo-
Hermiticity (pH). TRS and pH are equivalent to particle-hole symmetry† (PHS†) and chiral symmetry (CS), respectively. For the columns
of given symmetry, the blank entries mean the absence of symmetry. For TRS and TRS†, ±1 stands for the sign of the symmetry. If H belongs
to the symmetry class in the first column, iH belongs to the equivalent symmetry class in the second column. The column “soft gap” gives
the small y = Im(E ) behavior of the density ρc(x, y) of complex eigenvalues if there is a soft gap around the real axis y = 0. The column
“δ(y)” indicates whether there is a δ-function peak on the real axis y = 0. In the presence of the δ-function peak, the columns “〈r〉” and “χ ,”
respectively, show the mean spacing ratio and spectral compressibility of real eigenvalues [see Eqs. (11) and (23) for their definitions] obtained
from 4000 × 4000 random matrices in the generalized Gaussian ensemble. The standard deviation of 〈r〉 is estimated by the bootstrap method
[69] and labeled in parentheses; for example, the standard deviation is 0.0004 for “0.4194(4).”

Symmetry class Symmetry class (equiv) TRS (PHS†) TRS† pH (CS) Soft gap δ(y) 〈r〉 χ

A A
A + η AIII

√ |y| √
0.4194(4) 0.83

AI D† +1 |y| √
0.4858(3) 0.59

AII C† −1 |y|2
AI† AI† +1
AII† AII† −1
AI + η+ BDI† +1 +1

√ −|y|ln(|y|) √
0.4451(4) 0.73

AI + η− DIII† +1 −1
√ |y| √

0.4943(4) 0.58
AII + η+ CII† −1 −1

√ |y| √
0.3708(7) 1.11

AII + η− CI† −1 +1
√ |y|

±1, does not alter the spacing distribution away from the real
axis [50]. In fact, unlike TRS†, TRS only relates an eigen-
value with its complex conjugate, so that it has no impact
on the correlation between two neighboring eigenvalues away
from the real axis. This fact makes the role of symmetries
in the universality classes of non-Hermitian random matrices
elusive.

In this paper, we show that TRS leads to universal level
statistics on and around the real axis. In addition to TRS,
we also identify the relevant symmetries that give rise to
universal level statistics of real eigenvalues in non-Hermitian
random matrices. The universal level statistics provide an
effective tool for detecting quantum chaos in open quantum
systems with the symmetries. In the 38-fold symmetry clas-
sification of non-Hermitian random matrices, we show that
there exist seven symmetry classes in which eigenstates with
real eigenvalues preserve all the symmetries of the symmetry
class, whereas eigenstates away from the real axis break some
symmetries. They are a class only with pseudo-Hermiticity
(class A + η; class AIII), classes with TRS whose sign is
either ±1 (classes AI and AII), and classes with both TRS
and pseudo-Hermiticity (classes AI + η± and AII + η±); see
Table I. In the last classes, TRS commutes or anticommutes
with pseudo-Hermiticity. The subscript of η± denotes the
commutation (+) or anticommutation (−) relation between
TRS and pseudo-Hermiticity. Note that random matrices with
particle-hole symmetry (H = −U†

PHTUP) and/or sublattice
symmetry (H = −U†

S HUS) do not give rise to the universal
level statistics of real eigenvalues because only states with
zero eigenvalue respect the symmetries.

The density of states (DOS) of non-Hermitian random
matrices and physical Hamiltonians is generally defined in
the complex plane, ρ(E ≡ x + iy). Based on analytical and
numerical analyses, we find that in five out of the seven sym-
metry classes, the DOS in the complex plane has a δ-function
peak on the real axis. They are class A + η, class AI (equiv-
alent to the real Ginibre ensemble [37,53,54,57,58]), class AI

+ η+, class AI + η−, and class AII + η−. In these symmetry
classes, the DOS ρ(E = x + iy) is decomposed into two parts,

ρ(E = x + iy) = ρc(x, y) + ρr (x)δ(y), (1)

where ρc(x, y) is the density of complex eigenvalues away
from the real axis, and ρr (x) is the density of real eigen-
values. Since only the states with real eigenvalues respect
the full symmetries in these symmetry classes, ρr (x) plays
a role similar to the DOS in Hermitian systems. We show
that the level statistics of real eigenvalues obtained from
non-Hermitian random matrices, such as the level-spacing
and level-spacing-ratio distributions, are different from those
obtained from Hermitian random matrices and belong to the
five distinctive universality classes according to the symme-
tries. It is also notable that TRS or pseudo-Hermiticity does
not necessarily lead to ρr (x) �= 0 in the DOS. We find that
no real eigenvalues appear generally in class AII, which is
consistent with the absence of real eigenvalues in the Ginibre
symplectic ensemble [50]. We further generalize the absence
of real eigenvalues to class AII + η−.

We use random matrix analysis and exact diagonalization
to identify universal level statistics of real eigenvalues for
the five non-Hermitian symmetry classes. To demonstrate the
universality of the level statistics, we apply the analysis to
many-body and noninteracting physical Hamiltonians with
disorder and non-Hermiticity. In physical systems that belong
to the five symmetry classes, a finite density ρr (x) of real
eigenvalues enables comparison with those of non-Hermitian
random matrices. We introduce non-Hermitian terms into
interacting spin and hard-core boson models, such that many-
body Hamiltonians belong to classes A + η, AI, and AI + η±.
By the exact diagonalization, we calculate their many-body
eigenenergies and their spacing distributions on the real axis.
In these four symmetry classes, the level statistics in the er-
godic phases follow those of non-Hermitian random matrices
in the corresponding symmetry classes. On the other hand,
in class AII + η+, the level statistics of a dissipative free
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fermionic system deviate from those of non-Hermitian ran-
dom matrices in class AII + η+. We attribute this discrepancy
to the unconventional level interaction between real eigenval-
ues, which is unique to non-Hermitian random matrices in
class AII + η+.

The reality of the spectrum in non-Hermitian Hamiltonians
was studied extensively [15]. References [54,56] showed that
the number of real eigenvalues is proportional to the square
root of the matrix size for non-Hermitian random matrices
in class AI, and several previous works [33,36,37,49,55,59]
found that a nonzero proportion of real eigenvalues can appear
in non-Hermitian physical systems with TRS. However, how
the number of real eigenvalues scales with the system size
in physical systems, and its relationship with random matrix
theory, are still unknown. We find that the average number
N̄real of real eigenvalues show distinctive scalings with respect
to the dimensions N of Hilbert space in the five symmetry
classes. We clarify N̄real ∝ √

N in the ergodic (metallic) phase
and N̄real ∝ N in the localized phases. Our results show that
the level statistics analyses are powerful tools for detecting
quantum chaos and MBL in non-Hermitian systems.

This paper is organized as follows. In Sec. II, we begin by
reviewing the symmetry classification of non-Hermitian ma-
trices, and we introduce level-spacing and level-spacing-ratio
distributions of real eigenvalues for non-Hermitian random
matrices. We numerically obtain the real-eigenvalue spacing
and spacing-ratio distributions from large non-Hermitian ran-
dom matrices. Analyzing small random matrices, we clarify
the nature of effective interactions between two neighboring
eigenvalues on the real axis, and we use them to explain
the behavior of large random matrices. We also show the
scaling of the number of real eigenvalues with respect to the
dimensions of random matrices. In Sec. III, we use a hard-core
boson model and interacting spin models to demonstrate the
universality of the real-eigenvalue spacing and spacing-ratio
distribution functions. We argue that the level statistics of
real eigenvalues are useful for detecting different many-body
phases in interacting disordered systems. We uncover that
in the MBL phase, the number of real eigenvalues shows a
nonuniversal scaling with respect to the dimensions of Hilbert
space. We provide an explanation for the nonuniversal scaling.
In Sec. IV, we apply the analysis to non-Hermitian noninter-
acting fermionic models in two and three dimensions. We find
that the number of real eigenvalues shows distinctive universal
scaling properties with respect to the matrix dimensions in
the metal and localized phases. Section V is devoted to the
conclusion and discussion.

II. RANDOM MATRICES

A. Non-Hermitian symmetry classes

The 38-fold symmetry class of non-Hermitian Hamiltoni-
ans is given by the following antiunitary symmetries [32]:

time-reversal symmetry (TRS) :

UT+H∗U†
T+ = H, UT+U∗

T+ = ±1,

particle-hole symmetry (PHS) :

UP−HTU†
P− = −H, UP−U∗

P− = ±1,

time-reversal symmetry† (TRS†) :

UP+HTU†
P+ = H, UP+U∗

P+ = ±1,

particle-hole symmetry† (PHS†) :

UT−H∗U†
T− = −H, UT−U∗

T− = ±1, (2)

and unitary symmetries:

pseudo-Hermiticity (pH) :

UηH†U†
η = H, U2

η = 1,

chiral symmetry (CS) :

UCH†U†
C = −H, UC

2 = 1,

sublattice symmetry (SLS) :

USHU†
S = −H, US

2 = 1,

(3)

where UT± , UP± , Uη, UC , and US are unitary matrices. When
H respects TRS (pH), iH respects PHS† (CS), and vice versa.
In this sense, TRS and PHS† are unified, so are pH and CS
[31]. TRS relates an eigenvalue z with its complex conjugate
z∗. If v is a right eigenvector of a Hamiltonian H with TRS for
an eigenvalue z (Hv = zv), UT

T v∗ is another right eigenvector
of H with the eigenvalue z∗ (H UT

T v∗ = z∗ UT
T v∗). Likewise,

pseudo-Hermiticity (pH) relates an eigenvalue z with its com-
plex conjugate z∗, PHS† and CS relate an eigenvalue z with
−z∗, and PHS and SLS relate an eigenvalue z with −z. On the
other hand, TRS† imposes a constraint on each eigenvector.

When a symmetry relates an eigenvalue z with z′ �= z,
and |z − z′| is much larger than the mean level-spacing, such
symmetry is expected to have no influence on the local eigen-
value correlation around z. For example, neither TRS nor PHS
changes the nearest-spacing distribution of non-Hermitian
random matrices for general complex eigenvalues [59]. This
is similar to Hermitian random matrices with PHS or CS; for
example, the eigenvalue spacing distribution away from zero
energy in class D is the same as that in class A [66].

The spectral correlation on or around the real axis depends
on TRS, pH, and their combination (TRS†). From TRS, pH,
and TRS†, a tenfold symmetry classification is derived, as
shown in Table I. This tenfold class includes seven symme-
try classes that have at least one symmetry associated with
complex conjugation (TRS) or Hermitian conjugation (pH):
a class with pH (class A + η), classes with TRS whose sign
can be ±1 (classes AI and AII), and classes with both pH and
TRS, where the sign of TRS is ±1 and TRS commutes with
pH (classes AI + η+ and AII + η+) or TRS anticommutes
with pH (classes AI + η− and AII + η−). According to
the 38-fold symmetry classification of non-Hermitian systems
[32], these symmetry classes are equivalent to classes AIII,
D†, C†, BDI†, DIII†, CII†, and CI† (see Table I). The tenfold
symmetry class in Table I is also equivalent to the Hermitian
conjugate of the non-Hermitian Altland-Zirnbauer class (i.e.,
AZ† class) in Ref. [32].

B. Level statistics of real eigenvalues for
non-Hermitian random matrices

We consider non-Hermitian random matrices H in sym-
metry classes A + η, AI, AII, AI + η±, and AII + η± in the
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FIG. 1. Density ρc(x, y) of complex eigenvalues of non-Hermitian random matrices in the Gaussian ensemble for classes (a) AI, (b) AII,
(c) AI + η+, (d) A + η, (e) AI + η−, (f) AII + η+, and (g) AII + η−. Here, ρc(x, y) is shown as a function of y = Im(E ) for fixed x = Re(E )
near the real axis of complex energy E (i.e., y 
 0). For classes AI, AI + η±, A+ η, and AII + η+, the density of states ρ(E = x + iy) ≡
ρc(x, y) + δ(y)ρr (x) is separated into the density ρc(x, y) of complex eigenvalues and the density ρr (x) of real eigenvalues. For classes AII
and AII +η−, no real eigenvalues appear, and we have ρ(x + iy) ≡ ρc(x, y). The data of ρ(x + iy) are obtained from diagonalizations of 5000
samples of 4000 × 4000 random matrices in each symmetry class. Note that ρc(x, y) is almost independent of x = Re(E ) when E is away
from the boundary of a circle inside which the complex eigenvalues E distribute. All the ‘log’ in the figures are the natural log (ln).

Gaussian ensemble with the following probability distribution
function p(H):

p(H) = C−1
N e−βTr(H†H), (4)

where β is a positive constant and CN is a normalization
constant. Without loss of generality, we choose β = 1/2 for
the rest of this paper. Non-Hermitian matrices H are required
to belong to symmetry classes in Table I (see Appendix B for
details). Diagonalizations of large random matrices show that
eigenvalues are distributed almost uniformly in a circle except
around the real axis and its circumference (not shown here).
This distribution is consistent with the circular law of the
Ginibre ensemble [50]. For non-Hermitian random matrices
in classes A + η, AI, AI + η±, and AII + η+, a subextensive
number of eigenvalues are real, and the DOS ρ(x, y) has a
δ-function peak on the real axis:

ρ(E = x + iy) = ρc(x, y) + ρr (x)δ(y).

In numerical diagonalizations, real eigenvalues and complex
eigenvalues are clearly distinguished, although real eigenval-
ues can artificially have tiny imaginary parts due to machine
inaccuracy of a numerical subroutine program. In fact, with
proper normalization, the apparent imaginary parts of real
eigenvalues of Hermitian matrices are less than a certain error
bound [70]. Meanwhile, to avoid regarding real eigenvalues

as complex due to the machine inaccuracy, we choose a cutoff
C larger than the error bound. The probability that complex
eigenvalues are mistaken as real depends on the dimensions N
of the matrix. With our choice of the cutoff C, this probability
is estimated to be negligible for N < 104, where N in this
paper is typically less than 104 [70].

The density ρc(x, y) of complex eigenvalues in all seven
symmetry classes vanishes toward the real axis and hence has
a soft gap around the real axis (see Fig. 1). The size of the gap
is of the same order as a mean level-spacing of eigenvalues in
the complex plane. When |y| is much smaller than the mean
eigenvalue spacing, we have ρc(x, y) ∼ |y| in classes AI, A +
η, AI + η−, AII + η+, and AII + η−, while ρc(x, y) ∼ |y|2 in
class AII and ρc(x, y) ∼ −|y|ln|y| in class AI + η+ (Fig. 1).
These small y behaviors are consistent with the small matrix
analysis discussed in Sec. II C. The logarithmic correction in
class AI + η+ seems to be due to TRS† with the sign +1
[52,59].

The number of real eigenvalues of non-Hermitian real ran-
dom matrices (symmetry class AI) was previously studied
[37,53,54,57,58]. However, a systematic study on the other
symmetry classes is still lacking. In this paper, we find that
the averaged number N̄real of real eigenvalues of N × N non-
Hermitian random matrices is proportional to the square-root
of the dimensions of the matrices in all five symmetry classes
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FIG. 2. Average number N̄real of real eigenvalues of non-
Hermitian random matrices in the Gaussian ensemble as a function
of

√
N for the five symmetry classes. Here, N is the dimensions

of random matrices. The error bars in the plot stand for twice the
standard deviation of N̄real. The standard deviation σNreal is estimated

by Nsampleσ
2
Nreal

≡∑Nsample
i=1 (N (i)

real − N̄real )2/(Nsample − 1), where N (i)
real is

the number of real eigenvalues in the ith random matrix, and Nsample

is the number of random matrices in the ensemble. Nsample is at
least 5000 for each matrix size. The plot clearly demonstrates the
square-root scaling N̄real ∼ √

N in all five symmetry classes.

(see Fig. 2),

N̄real ∝
√

N . (6)

This subextensive number of real eigenvalues enables level
statistics analyses on the real axis, where the symmetries asso-
ciated with complex conjugation must have important effects
as in the Hermitian case [9].

Furthermore, we obtain the universal distribution functions
of spacings of real eigenvalues. Let λ1, λ2, . . . , λNreal be all the
real eigenvalues of given H in descending order. We define a
normalized spacing of the real eigenvalues as

si ≡ λi+1 − λi

〈λi+1 − λi〉 . (7)

Here, 〈· · · 〉 stands for the average over the ensemble, and
〈λi+1 − λi〉 is evaluated by the average density of real eigen-
values at x = (λi + λi+1)/2,

〈λi+1 − λi〉 = 1

ρr

(
1
2 (λi+1 + λi )

) , (8)

where ρr (x) is the averaged density of real eigenvalues,

ρr (x) ≡
∑
λi∈R

〈δ(x − λi )〉, (9)

with the set R of real eigenvalues. Here, ρr (x) is estimated by
the average over the Gaussian ensemble. To exclude a fluctu-
ation due to finite sampling numbers, we follow Refs. [4,71]
and replace the δ function in Eq. (9) with the Gaussian distri-
bution, exp[−(x − λi )2/(2σ 2)]/(

√
2πσ ) with σ = ns̄. Here,

s̄ is the mean level-spacing on the real axis, and n is an O(1)
constant. We verify the validity of this numerical approach by
using different n in the range from 2 to 5 and also replacing

the δ function with the uniform distribution

1

4σ
× 1[λi−2σ,λi+2σ ](x) =

{
1

4σ
(x ∈ [λi − 2σ, λi + 2σ ]),

0 (x /∈ [λi − 2σ, λi + 2σ ]).
(10)

We confirm that ρr (x) is barely influenced by the approxima-
tion scheme, where the maximal difference of ρr (x) between
the different approximation methods is around or smaller than
1%. Note also that we exclude the real eigenvalues around
the edges of the spectrum when studying the distribution of
the spacings of real eigenvalues, because ρr (x) near the edges
changes sharply and the estimated ρr (x) might have larger
error bars.

The spacing ratio of real eigenvalues [10,11,72] is also a
useful quantity to characterize the level statistics on the real
axis. It is defined by

ri ≡ min

(
λi+1 − λi

λi − λi−1
,
λi − λi−1

λi+1 − λi

)
, (11)

satisfying 0 � ri � 1. Since ri is a dimensionless quantity and
free from the normalization, it is easier to numerically obtain
the distribution of ri than of si.

In each of the five symmetry classes (i.e., classes A +
η, AI, AI + η+, AII + η+, and AI + η−), we numerically
calculate the level-spacing distribution p(s) and the level-
spacing-ratio distribution pr (r) of real eigenvalues, both of
which converge to the characteristic functions (Fig. 3). Here,
pr (r) and p(s) in class AII + η+ converge more slowly than
those in the other symmetry classes and do not converge even
at the maximal matrix size [N = 4000; see Figs. 3(d) and
3(i)].

To improve the convergence, we also introduce a gen-
eralized Gaussian ensemble with the following probability
distribution function p′(H):

p′(H) = C−1
N,(β1,β2 )e

−Tr [β1 (H+H† )2−β2 (H−H† )2], (12)

where β1 and β2 control the fluctuations of Hermitian and
anti-Hermitian parts of H, respectively. For β1 = β2, p′(H)
reduces to p(H) in the Gaussian ensemble. For β1 �= β2, the
eigenvalues E = x + iy of H distribute almost uniformly in
the ellipse in the complex plane,

x2

a2
+ y2

b2
= 1, (13)

with a/b = β2/β1 [56]. In each symmetry class, random ma-
trices in the generalized Gaussian ensemble show the same
universal behaviors, such as soft gaps around the real axis
and the square-root scaling of the average number N̄real of real
eigenvalues. We find that in each symmetry class, for a matrix
size N , the average number N̄ ′

real of real eigenvalues in the gen-
eralized Gaussian ensemble with β1 and β2 is approximately
scaled by N̄real in the Gaussian ensemble with the same matrix
size as

N̄ ′
real 


√
β2

β1
N̄real (14)

for N̄real, N̄ ′
real 
 N . We also find that for N̄ ′

real 
 N̄real, p(s)
and pr (r) in the two ensembles are close to each other (see
Appendix C for details). Thus, p(s) and pr (r) converge much

043196-5



ZHENYU XIAO et al. PHYSICAL REVIEW RESEARCH 4, 043196 (2022)

FIG. 3. Level-spacing distributions p(s) of real eigenvalues of N × N non-Hermitian random matrices in the Gaussian ensemble for
(a) class A + η, (b) class AI, (c) class AI + η+, (d) class AII + η+, and (e) class AI + η−. Level-spacing-ratio distributions pr (r) of real
eigenvalues of N × N non-Hermitian random matrices in the Gaussian ensemble for (f) class A + η, (g) class AI, (h) class AI + η+, (i) class
AII + η+, and (j) class AI + η−. For each N and for each symmetry class, p(s) and pr (r) are averaged over at least 5000 random matrices in
the ensemble. The black points for p(s) and pr (r) are obtained from 4000 × 4000 random matrices, where the standard deviation error bars are
evaluated by the bootstrap method [69]. The error bars for the smaller matrices are smaller than the error bars for N = 4000 and not shown.

faster in the generalized Gaussian ensemble with β2 > β1. We
choose β2/β1 = 16 in the following.

In each symmetry class, the error bars of p(s) and pr (r) of
non-Hermitian random matrices in the generalized Gaussian
ensemble with a larger matrix size (N > 1000) overlap with
each other. Both p(s) and pr (r) converge to the characteristic
universal functions in the limit of the large matrix size (Figs. 4
and 5). p(s) for classes A + η, AI + η+, and AII + η+ in
different ensembles was previously calculated in Ref. [73], al-
though the sizes of the matrices are small and p(s) in Ref. [73]
does not seem to reach the universal function forms shown
in Fig. 4. p(s) and pr (r) in the limit of the large matrix size
can distinguish the different symmetry classes among the five
symmetry classes. We confirm the universality of p(s) and
pr (r) in each symmetry class by comparisons with p(s) and
pr (r) in the Bernoulli ensemble (see Appendix B for details).
This comparison illustrates that both of the level-spacing and
level-spacing-ratio distributions of real eigenvalues are uni-
versal and unique in each symmetry class. In Secs. III and
IV, we compare p(s) and pr (r) obtained in the random matrix
theory with those obtained from physical models.

Note that the level-spacing distributions p(s) in the differ-
ent symmetry classes share the same asymptotic behaviors.
For s � 1, we have

lnp(s) ∝ −s (15)

in all five symmetry classes. On the other hand, for s 
 1, we
have (see the insets of Fig. 4)

p(s) ∝
{

−slns (class AI + η+),

s (other four classes).
(16)

As a comparison, the level-spacing distributions of Hermitian
random matrices satisfy lnp(s) ∝ −s2 for s � 1 and p(s) ∝
sβ for s 
 1, where the Dyson index β = 1, 2, 4 characterizes
the Gaussian orthogonal, unitary, and symplectic ensembles,

respectively [1]. The small-s behavior of p(s) and its differ-
ence with Hermitian random matrices are well understood by
analyses of effective small matrices (see Sec. II C for details).
In the large-s regime, the tail of p(s) in the non-Hermitian case
is much heavier than that in the Hermitian case. This differ-
ence in the large-s behavior shows that the correlation between
two neighboring real eigenvalues decays more quickly in non-
Hermitian random matrices than Hermitian ones. When the
distance between two neighboring real eigenvalues of a non-
Hermitian random matrix is larger, more complex eigenvalues
surround them and weaken the correlation between the two
real eigenvalues.

For reference, in the Hermitian random matrix theory, the
level-spacing-ratio distribution pr (r) is well approximated by
[72]

pr (r) 
 1

Cβ

(r + r2)β

(1 + r + r2)(1+ 3
2 β )

θ (1 − r), (17)

where θ (r) is the step function, Cβ is a normalized constant,
and β = 1, 2, 4 is the Dyson index. By contrast, if all real
eigenvalues are uncorrelated and follow the Poisson statistics,
pr (r) is given by

pr (r) = 2

(1 + r)2
θ (1 − r). (18)

None of these level-spacing-ratio distributions pr (r) of Her-
mitian matrices can describe any of our universal pr (r) of
non-Hermitian random matrices in Fig. 5, showing the unique
non-Hermitian nature of our universal distribution functions.

Notably, the mean value of the level-spacing ratios

〈r〉 =
∫ 1

0
pr (r)rdr ≈ 0.371 (19)

in class AII + η+ is smaller than

〈r〉Poisson = −1 + ln 4 ≈ 0.386 (20)
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FIG. 4. Level-spacing distributions p(s) of real eigenvalues of N × N non-Hermitian random matrices in the generalized Gaussian
ensemble for (a) all five symmetry classes, (b) class A + η, (c) class AI, (d) class AI + η+, (e) class AII + η+, and (f) class AI + η−.
For each N and for each symmetry class, the spacing distribution function is averaged over at least 5000 random matrices in the ensemble. The
black points with the error bars are p(s) obtained from 4000 × 4000 random matrices, where the standard deviation error bars are evaluated by
the bootstrap method [69]. The error bars for the smaller matrices are smaller than those for N = 4000 and not shown. In each symmetry class,
p(s) of random matrices with different sizes N (N > 1000) almost overlap with each other. Insets: Asymptotic behaviors of the distribution
function for s � 1 and for s 
 1. For small s, the cumulative distribution function

∫ s
0 p(s′)ds′ is plotted as a function of either s2 or −ln(s)s2.

For s � 1, ln(p(s)) is linear in s, indicating the Poisson-like tail. The comparison of p(s) among the five symmetry classes shows that p(s) for
classes AI and AI + η− are close to each other, and that p(s) for the other three classes are clearly distinguished from p(s) for classes AI and
AI + η−. All the ‘log’ in the figures are the natural log (ln).

of uncorrelated levels. By contrast, 〈r〉 of non-Hermitian ran-
dom matrices in the other four symmetry classes are all larger
than 〈r〉Poisson (see Table I and Fig. 5). In the Hermitian ran-
dom matrix theory, the mean values of level-spacing ratios in
the Gaussian orthogonal, unitary, and symplectic ensembles
are [72]

〈r〉GOE ≈ 0.531, 〈r〉GOE ≈ 0.600, 〈r〉GSE ≈ 0.674, (21)

all of which are larger than 〈r〉Poisson ≈ 0.386. In addition, 〈r〉
increases with the Dyson index β = 1, 2, 4 that describes the
strength of the level repulsion [1]. Thus, 〈r〉 < 〈r〉Poisson in
class AII + η+ indicates unusual level interactions on the real
axis unique to this symmetry class.

To further clarify the nature of the interactions between
real eigenvalues in each symmetry class, we also calculate

the variance �2 of the number NW of real eigenvalues in an
interval on the real axis [9],

�2 ≡ 〈N2
W

〉− 〈NW 〉2. (22)

We have �2 ∝ ln〈NW 〉 in Hermitian random matrix theory,
while we have �2 = 〈NW 〉 for uncorrelated real numbers (i.e.,
Poisson statistics). The spectral compressibility,

χ ≡ lim
NW →∞

d�2

d〈NW 〉 , (23)

quantifies the level interaction between real eigenvalues. For
Hermitian random matrices, the level repulsion is stronger,
leading to χ = 0. On the other hand, we have χPoisson = 1 for
the uncorrelated real spectrum. In the intermediate regime,
such as the metal-insulator transition points in Hermitian
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FIG. 5. Level-spacing-ratio distributions pr (r) of real eigenvalues of N × N non-Hermitian random matrices in the generalized Gaussian
ensemble for (a) all five symmetry classes, (b) class A + η, (c) class AI, (d) class AI + η+, (e) class AII + η+, and (f) class AI + η−. For each N
and for each symmetry class, the level-spacing-ratio distribution function is averaged over at least 5000 random matrices in the ensemble. The
black points with the error bars are pr (r) obtained from 4000 × 4000 random matrices, where the standard deviation error bars are evaluated
by the bootstrap method [69]. The error bars for the smaller matrices are smaller than the error bars for N = 4000 and not shown. In each
symmetry class, pr (r) of random matrices with different sizes N (N � 1000) almost overlap with each other. The mean value 〈r〉 = ∫ 1

0 pr (r)dr
of the spacing ratios and its standard deviation are given for N = 4000 for each symmetry class. The comparison of pr (r) among the five
symmetry classes shows that pr (r) distinguishes between different symmetry classes.

disordered systems, the level repulsion is weaker than the ran-
dom matrices but stronger than the Poisson statistics, resulting
in 0 < χ < 1 [9]. For non-Hermitian random matrices in each
of the five symmetry classes, we find

�2 ∝ 〈NW 〉, (24)

meaning that the spectral compressibility χ gives a universal
constant unique to each symmetry class (see Table I and
Appendix E for details).

Remarkably, we have χ ≈ 1.11 > χPoisson = 1 in class AII
+ η+, again indicating the unusual level interactions. As
shown by p(s) ∝ s → 0 for s → 0, the interaction is repulsive
in the small-s regime even for class AII + η+, although the
level repulsion is much smaller than p(s) ∝ s4 of Hermitian
random matrices in class AII (i.e., Gaussian symplectic en-
semble). Hence, from our numerical results of 〈r〉 < 〈r〉Poisson

and χ > χPoisson, the attractive interaction should appear in

the finite-s regime and dominate the repulsive interaction in
the small-s regime on average. This is also compatible with
the large peak of p(s) and pr (r) compared with the other
symmetry classes (see Figs. 4 and 5). A distinctive feature of
class AII + η+ is the simultaneous presence of TRS and TRS†,
whose signs are −1. While TRS† with the sign −1 leads to the
Kramers degeneracy of generic complex eigenvalues and the
consequent strong level repulsion, TRS with the sign −1 leads
to the strong level repulsion around the real axis, as shown by
the absence of real eigenvalues in class AII. The combination
of TRS and TRS† seems to result in the unusual interactions
between neighboring levels (Kramers pairs) on the real axis
that are repulsive in the small-s regime but attractive in the
larger-s regime. This is a possible reason for 〈r〉 < 〈r〉Poisson

and χ > χPoisson. In Sec. II C, we use effective small matrices
to analyze the interactions between neighboring real eigenval-
ues, and we find that the degrees of freedom of the attractive
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interaction in class AII + η+ are much larger than those of the
other symmetry classes.

Note also that no real eigenvalues generally appear in
classes AII and AII + η−. This should be due to TRS with
the sign −1, which only enforces the Kramers degeneracy
on the real axis. If a real eigenvalue is present in these
symmetry classes, a Kramers partner with the same real
eigenvalue should always appear. While this Kramers pair is
robust against Hermitian perturbations, it is sensitive to non-
Hermitian perturbations and forms a complex-conjugate pair
in the complex plane. Consequently, real eigenvalues are un-
stable in these symmetry classes. On the contrary, in class AII
+ η+, all eigenvalues including complex ones exhibit Kramers
degeneracy because of the additional presence of TRS† with
the sign −1. Consequently, the Kramers pair on the real axis
is robust even against certain degrees of non-Hermitian per-
turbations, which leads to the subextensive number of real
eigenvalues. This is different from class AII + η−, where only
TRS† with the sign +1 is present and no such robust Kramers
degeneracy is allowed generally. We also discuss the absence
of real eigenvalues in classes AII and AII + η− by effective
small matrices in Sec. II C.

C. Effective small matrix analysis

Interactions between two neighboring eigenvalues can be
qualitatively understood by effective small matrices [59].
When two eigenvalues get close to each other by the change
of parameters, the interactions between them can be studied
by nearly degenerate perturbation theory [4]. The strength of
the interactions is generally determined by symmetry such
as TRS and pH. To see the influence of symmetry in each
of the seven symmetry classes, we consider the two adjacent
eigenvalues that are either both real or complex conjugate to
each other. Then, we project the variation of a full Hamilto-
nian onto a smaller space spanned by eigenvectors that belong
to the two adjacent eigenvalues. The small Hamiltonians thus
obtained take forms of either a 2 × 2 matrix or a 4 × 4 matrix,
depending on the presence of the Kramers degeneracy. The
symmetry classes of the small matrices are the same as the
full Hamiltonians.

The small matrices in the seven symmetry classes are of
the following forms:

H(s)
AI =

(
a0 + a1 a2 + a3

a2 − a3 a0 − a1

)
,

H(s)
A+η

=
(

a0 + a1 a3 + ia2

−a3 + ia2 a0 − a1

)
,

H(s)
AI+η+ =

(
a0 + a1 a2

−a2 a0 − a1

)
,

H(s)
AII =

(
a0 + ia1 a3 + ia2

−a3 + ia2 a0 − ia1

)
,

H(s)
AI+η− =

⎛
⎜⎜⎜⎝

a0 + a1 0 a2 + a5 a4 − a3

0 a0 + a1 a4 + a3 a2 − a5

a2 − a5 −a4 + a3 a0 − a1 0

−a4 − a3 a2 + a5 0 a0 − a1

⎞
⎟⎟⎟⎠,

H(s)
AII+η− =

(
a0 a2 + ia1

−a2 + ia1 a0

)
,

H(s)
AII+η+

=

⎛
⎜⎜⎜⎝

a0 + a1 0 a2 + ia5 a4 + ia3

0 a0 + a1 −a4 + ia3 a2 − ia5

−a2 + ia5 a4 + ia3 a0 − a1 0

−a4 + ia3 −a2 − ia5 0 a0 − a1

⎞
⎟⎟⎟⎠,

where a0, a1, . . . , am+n are real random variables. The eigen-
values of the small matrices are written in a unified form as

λ = a0 ± √
X − Y ,

X ≡
{∑m

i=1 a2
i (m �= 0),

0 (m = 0),

Y ≡
m+n∑

i=m+1

a2
i (25)

for the seven symmetry classes (see Appendix A for details).
The two eigenvalues of each of these matrices are either both
real or complex conjugate to each other. For m = 0 (classes
AII and AII + η−), they are always complex conjugate to each
other, meaning the absence of real eigenvalues. For m > 0, the
probability of two real eigenvalues is finite and equal to the
probability for X � Y . This explains the presence and absence
of the δ-function peak on the real axis in the DOS in the seven
symmetry classes. In Appendix A, we analytically obtain the
level statistics of real eigenvalues and the DOS around the
real axis for the above effective small matrices in the seven
symmetry classes.

The finite probability of the real eigenvalues of the random
matrices leads to the square-root scaling of N̄real. According
to the circular law [50], the uniform distribution of complex
eigenvalues within the circle of radius R suggests that the
number of complex eigenvalues near the real axis within an
energy window of a mean complex energy spacing s̄c is scaled
by

√
N ,

N × 2Rs̄c

πR2
= 2

√
N

π
∝

√
N, (26)

with πR2/s̄2
c = N . The complex eigenvalues near the real axis

can be regarded as complex-conjugate pairs of eigenvalues,
each of which is described by the small random matrices. Due
to the finite probability of X > Y , a complex-conjugate pair
of the eigenvalues near the real axis is converted into real
eigenvalues with a finite probability. This gives the square-
root scaling, N̄real ∼ √

N .
For X < Y , the two eigenvalues are complex conjugate

to each other. Thereby, X and Y in Eq. (25) give an attrac-
tive and repulsive interaction between the two eigenvalues,
respectively. The increase of X (Y ) will decrease (increase)
the distance between the two eigenvalues along the imaginary
axis. In symmetry classes A + η, AI, AI + η+, AII + η+, and
AI + η−, we have m > 0, and both attractive and repulsive
interactions are present. By contrast, in classes AII and AII
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TABLE II. Degrees of freedom of Hermitian and anti-Hermitian
parts of traceless effective small random matrices H for the seven
symmetry classes. For each class, the traceless parts of the small
matrix are decomposed into the Hermitian and anti-Hermitian parts,
the degrees of which are denoted by m and n, respectively. If H
belongs to the symmetry class in the first column, iH belongs to the
equivalent symmetry class in the second column.

Symmetry Equivalent Real degree Imaginary degree
class symmetry class of freedom m of freedom n

AI D† 2 1
A + η AIII 1 2
AI + η+ BDI† 1 1
AII C† 0 3
AI + η− DIII† 3 2
AII + η− CI† 0 2
AII + η+ CII† 1 4

+ η−, we have m = 0, and thus no attractive interaction is
present (see Table II).

The DOS around the real axis is determined by the interac-
tion between the two complex-conjugate eigenvalues. When
the attractive interaction along the imaginary axis is absent
(m = 0 in classes AII and AII + η−), the two eigenvalues
are less likely to appear around the real axis than the other
symmetry classes. The repulsion between the two eigenvalues
becomes larger for larger n. In fact, our analysis of the small
matrices in the Gaussian ensemble gives

ρc(x + iy) ∝
{

|y|2 (class AII),

|y| (class AII + η−).
(27)

In the presence of the attractive interaction (m > 0 in classes
A + η, AI, AI + η+, AII + η+, and AI + η−), the larger
attractive interaction converts the complex-conjugate pair of
eigenvalues near the real axis onto two real eigenvalues. As a
result, a subextensive number of eigenvalues of the full matrix
appear on the real axis. In fact, our analysis of the small
matrices in the Gaussian ensemble gives (see Appendix A for
detailed derivations)

ρc(x, y) ∝
{−|y|ln|y| (class AI + η+),

|y| (other four classes)
(28)

for small |y|. These small-|y| behaviors of ρc(x, y) from the
small matrix analyses are consistent with the numerical results
of large random matrices shown in Fig. 1.

For X > Y , the two eigenvalues are real. Thereby, X and Y
in Eq. (25), respectively, give a repulsive and attractive inter-
action between the pair of two real eigenvalues. The increase
of X (Y ) increases (decreases) the distance between the two
eigenvalues along the real axis. We analytically calculate the
spacing distribution function of the two real eigenvalues for
the small matrices in the five symmetry classes with m > 0
(see Appendix A for detailed derivations). For small s, the
real-eigenvalue spacing distribution is obtained as

p(s) ∝
{−slns (class AI + η+),

s (other four classes).
(29)

Note that p(s) from the small matrix analyses and that from
large random matrices are not exactly the same, while they
share the same asymptotic behavior for small s for each of
the five symmetry classes. Note also that in class AII + η+,
the degrees of freedom of the attractive interaction Y (i.e.,
n = 4) are much larger than the degrees of freedom m of the
repulsive interaction X (i.e., m = 1). This is consistent with
〈r〉 < 〈r〉Poisson and χ > 1 in class AII + η+ for large random
matrices (see Sec. II B for details).

III. DISSIPATIVE MANY-BODY SYSTEMS

In the previous section, we study the general behavior
of the level statistics of non-Hermitian random matrices in
symmetry classes AI, A + η, AI + η+, AI + η−, and AII
+ η+. The DOS in these symmetry classes shows a δ-function
peak on the real axis. The number of real eigenvalues is scaled
by the square-root of the dimensions of the matrices.

In this section, we study many-body disordered Hamil-
tonians that belong to symmetry classes AI, A + η, AI +
η+, and AI + η−. We calculate the level-spacing distribu-
tions, level-spacing-ratio distributions, and the numbers of
real eigenvalues in the weak disorder regime (ergodic phase)
and the strong disorder regime (MBL phase). In the weak
disorder regime, we show that the level-spacing and level-
spacing-ratio distributions of real eigenvalues match well with
those of non-Hermitian random matrices in the same sym-
metry classes. In addition, we find that the number of real
eigenvalues in the weak disorder regime is scaled by the
square root of the dimensions of the many-body Hamiltonians,
which is also consistent with the random matrix theory. In the
strong disorder regime, we show that the many-body model
in class AI is characterized by nonuniversal scalings of the
number of real eigenvalues and its standard deviation. We also
provide a phenomenological explanation for this nonuniversal
behavior.

A. Hard-core boson system

We consider the following one-dimensional (1D) hard-core
boson model with the nonreciprocal hopping [36,41]:

HHN =
Lx∑

i=1

{t (egc†
i+1ci + e−gc†

i ci+1) + Uni+1ni + hini}.
(30)

Here, ci is a boson annihilation operator at site i, ni = c†
i ci

is its number operator, and the periodic boundary conditions
are imposed (i.e., cLx+1 = c1). Every site is allowed to be
occupied by no more than one boson under the local hard-core
boson constraint. g controls the degree of nonreciprocity and
non-Hermiticity, and hi is the random potential at site i that
distributes uniformly in [−W/2,W/2] with W � 0. On the
occupation-number basis, HHN satisfies

HHN = H∗
HN (31)

and belongs to class AI. This model can be mapped to an inter-
acting spin model with a random magnetic field and realized,
for example, in ultracold atoms [14,28,41].

The Hermitian limit (g = 0) of the model was pre-
viously studied [11–13,74–77], where the level-spacing
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FIG. 6. (a) Heat map of the density ρc(x, y) of complex eigenvalues of the hard-core boson model in the weak disorder regime (W = 2,
Lx = 16). (b) Integrated density of complex eigenvalues, ρ̄c(y) ≡ 1

10

∫ 9
−1 ρc(x, y)dx. As seen from the heat map, −1 < E < 9 is well within the

ergodic phase for W = 2. (c) Level-spacing distribution p(s) of real eigenvalues within the energy window −1 < E < 9 in the weak disorder
regime of the hard-core boson model, and its comparison with p(s) obtained from non-Hermitian random matrices in symmetry class AI (black
line). Inset: Asymptotic behavior of

∫ s
0 p(s′)ds′ for s 
 1. The consistency between p(s) from the hard-core boson model and p(s) from the

random matrices justifies that −1 < E < 9 for W = 2 is well within the ergodic phase. (d) p(s) in the many-body localized phase (all the real
energies E , W = 30), and its comparison with the Poisson distribution. (e) Mean value of level-spacing ratios 〈r〉 = ∫ 1

0 pr (r)dr as a function
of system size Lx . The average is taken in the ergodic phase (W = 2, −1 < E < 9, Lx = 16). (f) Level-spacing-ratio distribution pr (r) of real
eigenvalues in the ergodic phase (W = 2, −1 < E < 9, Lx = 16) and its comparison to pr (r) obtained from non-Hermitian random matrices
in class AI. (g) pr (r) in the many-body localized phase and its comparison with pr (r) of uncorrelated real numbers. The mean value 〈r〉 of
each level-spacing-ratio distribution is also shown in the figures. (c)–(g) The error ranges are evaluated by the bootstrap method [69]. The error
ranges of the distributions of random matrices are much smaller than those of the hard-core boson model and are not shown here or in the
following figures (i.e., Figs. 8, 13, and 17; see also Figs. 4 and 5).

distribution obtained by the exact diagonalization is one of
the most powerful tools for detecting the MBL. To iden-
tify the ergodic and MBL phases in the non-Hermitian case
(g �= 0), Ref. [41] used a scaling of the proportion of the
number of real eigenvalues, entanglement entropy, and level-
spacing distribution in the complex plane. The proportion
of the number of real eigenvalues increases as the disor-
der strength increases. Furthermore, Ref. [41] conjectured
that complex eigenvalues collapse onto the real axis and
that the proportion of real eigenvalues becomes approxi-
mately 1 when the system undergoes a transition from the
ergodic to MBL phases. Meanwhile, the scaling relationship
between N̄real and N in the ergodic phase was not clari-
fied.

We study the weak (strong) disorder regime of this model
at the half-filling of the boson number with the parameters
t = 1, g = 0.1, U = 2, W = 2 (W = 30). At the half-filling,
the boson number M is the same as the half of the lattice site
number Lx, (i.e., M = Lx/2). At least 400 different disorder
realizations of Eq. (30) are diagonalized for each system size
(the maximal system size is Lx = 16) and for each disorder
strength.

In the weak disorder regime (ergodic phase), we find that
ρ(x + iy) has a δ-function peak on the real axis, ρ(x + iy) =
ρc(x, y) + δ(y)ρr (x), and ρc(x, y) shows a soft gap ρc(x, y) ∝
|y| around the real axis y = 0 [Figs. 6(a) and 6(b)]. We calcu-
late the level-spacing distribution p(s) and level-spacing-ratio
distribution pr (r) of the real eigenvalues from an energy range
around the center of the many-body spectrum. We exclude real
eigenvalues near the edges of the spectrum from the statistics.
For the system sizes Lx � 12, the error bars of the mean values
of the level-spacing ratio with different system size Lx already
overlap with each other [see Fig. 6(e)]. This indicates that the
level statistics in the ergodic phase reach the convergence for
Lx � 12.

We find that the level-spacing distribution and level-
spacing-ratio distribution of real eigenvalues are well de-
scribed by those obtained from non-Hermitian random
matrices in class AI [Figs. 6(c) and 6(f)]. For reference, we
compare the Kolmogorov-Smirnov distances between p(s),
pr (r) of our hard-core boson model in the ergodic phase and
those from the non-Hermitian random matrices in the five
symmetry classes in Appendix D. The comparison further
confirms the consistency between the random matrix theory
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FIG. 7. Average number N̄real of all the real eigenvalues as a
function of the dimensions N of the Hilbert space for the many-body
bosonic models in the weak disorder regimes (W = 2 or Wx = Wy =
Wz = WD = 1). The square-root scaling N̄real ∝ √

N suggests that all
the real eigenvalues of the bosonic models in the weak disorder
regimes are consistent with the random matrix theory and hence well
within the ergodic phase. All the ‘log’ in the figures are the natural
log (ln).

and the physical Hamiltonian. We also calculate the number
Nreal of all the real many-body eigenenergies and its average
N̄real over the different disorder realizations. We find that
N̄real is scaled by the square root of the dimensions N of the
many-body Hamiltonian, N̄real ∼ √

N (Fig. 7), which is also
consistent with the random matrix theory.

In the strong disorder regime (MBL phase), by contrast, al-
most all the eigenvalues are real, and thus we have N̄real ∼ N .
While the level-spacing-ratio distribution pr (r) of real eigen-
values is the same as pr (r) of uncorrelated real eigenvalues
[Eq. (18)], the level-spacing distribution p(s) of real eigen-
values is slightly different from the Poisson distribution. This
slight difference is due to the finite-size effect and will vanish
if the disorder strength or the system size is increased.

B. Interacting spin system

We consider the following 1D Heisenberg spin models with
random magnetic fields, random energy gain (loss), or random
imaginary Dzyaloshinskii-Moriya (DM) interaction:

HI =
Lx∑

i=1

JSi · Si+1,

H1 = HI +
∑

i

{
h(i)

x S(i)
x + ih(i)

y S(i)
y + h(i)

z S(i)
z

}
,

H2 = HI +
∑

i

{
ih(i)

x S(i)
x + ih(i)

y S(i)
y + h(i)

z S(i)
z

}
,

H3 = HI +
∑

i

{
ih(i)

y S(i)
y + h(i)

z S(i)
z

}
,

H4 = HI +
Lx∑

i=1

{
iD(i)

x

(
S(i)

y S(i+1)
z − S(i)

z S(i+1)
y

)
+ iD(i)

z

(
S(i)

y S(i+1)
x − S(i)

x S(i+1)
y

)}
. (32)

Here, Si ≡ (S(i)
x , S(i)

y , S(i)
z ) ≡ 1

2 (σ (i)
x , σ (i)

y , σ (i)
z ) is the spin-1/2

operators at site i with the periodic boundary conditions (i.e.,
SLx+1 = S1). The lattice site number Lx for H4 is chosen to
be an odd integer to respect TRS whose sign is −1 [see
also Eq. (40) below]. h(i)

x , h(i)
y , and h(i)

z are real random num-
bers that describe random magnetic fields or random energy
gain and loss. h(i)

μ (μ = x, y, z) distributes independently and
uniformly in [−Wμ/2,Wμ/2] with Wμ � 0. D(i)

x and D(i)
z are

real random numbers (random imaginary DM interactions)
that distribute independently and uniformly [−WD/2,WD/2]
with WD � 0. These non-Hermitian terms can be realized,
for example, in continuously measured cold atomic systems
[78,79].

The random spin model H1 satisfies

H1 = H∗
1 (33)

and thus belongs to symmetry class AI. H2 satisfies

H2 =
(

Lx∏
i

σ (i)
z

)
H†

2

(
Lx∏
i

σ (i)
z

)
(34)

and belongs to symmetry class A + η. H3 satisfies

H3 = H∗
3, (35)

H3 =
(

Lx∏
i

σ (i)
z

)
H†

3

(
Lx∏
i

σ (i)
z

)
(36)

with (
Lx∏
i

σ (i)
z

)
=
(

Lx∏
i

σ (i)
z

)∗

, (37)

and thus belongs to symmetry class AI + η+. H4 satisfies

H4 = H∗
4, (38)

H4 =
(

Lx∏
i

σ (i)
y

)
H†

4

(
Lx∏
i

σ (i)
y

)
. (39)

When Lx is an odd integer, the unitary matrix satisfies(
Lx∏
i

σ (i)
y

)
= −

(
Lx∏
i

σ (i)
y

)∗

, (40)

and hence the TRS operator and pH operator anticommute
with each other. Thus, H4 belongs to class AI + η− for
odd Lx.

We study the weak disorder regimes of the four 1D Heisen-
berg models with the parameters J = 1, Wx = Wy = Wz =
WD = 1 and with the different system sizes (the maximal
size is Lx = 13). From the DOS ρ(E = x + iy) = ρc(x, y) +
δ(y)ρr (x), the soft gap of ρc(x, y) around the real axis y = 0
is universally observed with the same asymptotic behavior
for small y [Figs. 8(e)–8(h)]. For different Lx (Lx of H4

changes only for odd numbers), the number N̄real of real
eigenvalues shows the square-root scaling with respect to the
dimensions N of the many-body Hamiltonians, N̄real ∝ √

N
(Fig. 7), which is consistent with the random matrix theory.
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FIG. 8. (a)–(d) Heat maps of the density ρc(x, y) of complex eigenvalues of the non-Hermitian interacting spin models in the weak disorder
regimes (Wx = Wy = Wz = WD = 1, Lx = 13) for (a) class AI, (b) class A + η, (c) class AI + η+, and (d) class AI + η−. (e)–(h) Integrated

density of complex eigenvalues, ρ̄c(y) = 1
5

∫ 2.5
−2.5 ρc(x, y)dx, in the weak disorder regimes. From the heat maps, −2.5 < E < 2.5 for Wx =

Wy = Wz = WD = 1 is well within the ergodic phase for all the spin models. (i)–(l) Level-spacing distributions p(s) of real eigenvalues in the
weak disorder regimes of the interacting spin models, and their comparison to p(s) from non-Hermitian random matrices in the same symmetry
classes (red line). Insets: Asymptotic behavior of

∫ s
0 p(s′)ds′ for s 
 1. (m)–(p) Level-spacing-ratio distributions pr (r) of real eigenvalues in

the weak disorder regimes of the interacting spin models, and their comparison to pr (r) from non-Hermitian random matrices in the same
symmetry classes. The mean value 〈r〉 = ∫ 1

0 pr (r)dr of each level-spacing-ratio distribution is shown in the figures. The statistics are taken in
the weak disorder regime (Wx = Wy = Wz = WD = 1 and −10 < E < 10 in all four spin models). The consistency between p(s) [pr (r)] from
the spin models and p(s) [pr (r)] from the random matrices justifies that all eigenstates with real energy −10 < E < 10 in the weak disorder
regime are in the ergodic phases. (i)–(p) The error ranges are evaluated by the bootstrap method [69]. All the ‘log’ in the figures are the natural
log (ln).

Both level-spacing statistics and level-spacing-ratio statistics
of real eigenvalues for each spin model show the same dis-
tributions as in the random matrices in the same symmetry
class [Figs. 8(i)–8(l) and 8(m)–8(p)]. These results indicate
that the square-root scaling of N̄real universally holds true in

the ergodic phases of interacting disordered systems. It should
be noted that many-body eigenstates in the ergodic phases are
extended in many-body Hilbert space, while single-particle
eigenstates in the metal phase, which are studied in Sec. IV,
are extended in the spatial coordinate space.
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FIG. 9. Level-spacing distributions p(s) of real eigenvalues in
the strong disorder regimes of the non-Hermitian spin model H1

for (a) Wx = Wz = 20, Wy = 2 and (b) Wx = Wz = 15, Wy = 10.
Level-spacing-ratio distributions pr (r) of real eigenvalues in the
strong disorder regimes of H1 for (c) Wx = Wz = 20, Wy = 2 and
(d) Wx = Wz = 15, Wy = 10. The statistics are taken from all the real
eigenvalues of H1.

Moreover, we study the strong disorder regimes of H1 in
class AI with the parameters J = 1, Wx = Wz = 20, Wy = 2
or J = 1, 15 � Wx = Wz � 40, Wy = 10. We find that H2

and H3 in the strong disorder regimes show the level statis-
tics of real eigenvalues similar to those of H1 in the strong
disorder regimes (not shown). Wx and Wz in H1 describe
Hermitian local disorder while Wy describes anti-Hermitian
local disorder. When the Hermitian disorder dominates over
the anti-Hermitian disorder (Wx = Wz = 20, Wy = 2), almost
all the eigenvalues are real, where we have N̄real ∝ N . The
level-spacings and level-spacing ratios of real eigenvalues
satisfy the Poisson distribution [Fig. 9(a)] and the distribution
in Eq. (18) [Fig. 9(c)].

When the anti-Hermitian disorder is of the same order
as the Hermitian disorders (Wy = 10, 10 � Wx = Wz � 40),
the number Nreal of real eigenvalues fluctuates largely from
sample to sample. The standard deviation of Nreal, σ 2

Nreal
≡

〈N2
real〉 − 〈Nreal〉2, grows exponentially with the system size Lx,

and σNreal is much larger than N̄real ≡ 〈Nreal〉 (Fig. 10). Notably,
we find that the scalings of N̄real and σNreal with respect to the
dimensions N of the Hamiltonian are characterized by nonuni-
versal powers, such as N̄real ∼ Nα (see Figs. 10 and 11). The
powers of both N̄real and σNreal increase when the Hermitian
disorders become larger.

The nonuniversal powers α in the scalings of N̄real and σNreal

can be explained with a hypothesis that the MBL phase in the
non-Hermitian case exhibits an emergent integrability as in
the Hermitian case [12,13]. Suppose that the many-body non-

256 512 1024 2048 4096
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FIG. 10. Average number N̄real of all the real eigenvalues and
its standard deviation σNreal in the non-Hermitian interacting spin
model H1 as functions of the dimensions N of the Hilbert space. The
Hermitian and anti-Hermitian disorder strengths are chosen to be on
the same order (Wx = Wz = 15, Wy = 10). pf is an estimation of the
probability p in Eq. (45) by the linear regression on lnN̄real with lnN
or lnσNreal with lnN .

Hermitian Hamiltonian in the MBL phase can be effectively
expanded in terms of Lx mutually commuting bit operators τ (i)

z
(i = 1, 2, . . . , Lx) as

HMBL
1 =

Lx∑
i=1

τ (i)
z +

∑
i, j

Ji jτ
(i)
z τ ( j)

z

+
∑
i jk

Ki jkτ
(i)
z τ ( j)

z τ (k)
z + · · · . (41)

Here, we have [τ (i)
z , τ

( j)
z ] = [HMBL

1 , τ (i)
z ] = 0 for all i and j.

The bit operator τ (i)
z is a two-by-two non-Hermitian matrix.

HMBL
1 respects TRS and belongs to class AI. Given that the
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FIG. 11. Average number N̄real of real eigenvalues as a function
of the dimensions N of the Hilbert space of the interacting spin model
H1. The Hermitian disorder strength and anti-Hermitian disorder
strength are of the same order: the anti-Hermitian disorder strength
is fixed to Wy = 10, while the Hermitian disorder strength is changed
from Wx/z = 15 to 40. p0 is the probability that an eigenvalue of the
local disordered Hamiltonian h(i)

x σ (i)
x + ih(i)

y σ (i)
y + h(i)

z σ (i)
z becomes

real. pf is an estimation of the probability p in Eq. (45) by the linear
regression on lnN̄real with lnN . All the ‘log’ in the figures are the
natural log (ln).
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coefficients such as Ji j and Ki jk are real numbers, the bit
operator must also be real (τ (i)

z )∗ = τ (i)
z :

τ (i)
z =

(
a(i)

0 + a(i)
1 a(i)

2 + a(i)
3

a(i)
2 − a(i)

3 a(i)
0 − a(i)

1

)
(42)

with real numbers a(i)
α (α = 0, 1, 2, 3). The real numbers of

different i and different components are almost independent
of one another in the strong disorder regime. When H1 is
dominated by the on-site random terms (Wx,Wy,Wz � J), the
bit operator is given by the random magnetic fields at each lat-
tice site, a(i)

0 = 0, a(i)
1 = h(i)

z /2, a(i)
2 = h(i)

x /2, and a(i)
3 = h(i)

y /2.

For (a(i)
1 )2 + (a(i)

2 )2 > (a(i)
3 )2, the bit operator τ (i)

z has real
eigenvalues,

λ
(i)
±1 = a0 ±

√(
a(i)

1

)2 + (a(i)
2

)2 − (a(i)
3

)2
.

For (a(i)
1 )2 + (a(i)

2 )2 < (a(i)
3 )2, the bit operator has complex

eigenvalues,

λ
(i)
±i = a0 ± i

√(
a(i)

3

)2 − (a(i)
1

)2 − (a(i)
2

)2
.

From them, a many-body eigenvalue of HMBL
1 is given by

E ({β j}) =
Lx∑
j=1

λ
( j)
β j

+
∑
i, j

Ji jλ
(i)
βi

λ
( j)
β j

+ · · · (43)

with β j = ±1,±i for j = 1, 2, . . . , Lx.
Let p be a probability of the bit operator of i having real

eigenvalues. The probability is independent of i, and two bit
operators at different i and j are uncorrelated with each other.
Thus, a probability of a given many-body eigenvalue being
real-valued equals a probability of all λ

(i)
βi

being real, which is
pLx . The average and standard deviation of the number of real
eigenvalues are estimated as

N̄real = (2p)Lx ,

σNreal =
√〈

N2
real

〉− N̄2
real = 2Lx

√
pLx − p2Lx


 (2
√

p)Lx (44)

for Lx � 1 and p < 1. Here, 〈· · · 〉 means the average over
different disorder realizations. These evaluations lead to the
scalings

N̄real ∼ Nα, α = 1 + log2 p < 1,

σNreal ∼ Nβ, β = 1 + 1
2 log2 p < 1. (45)

Note that in the MBL phase with p < 1, σNreal is much larger
than N̄real for large N , being consistent with the numerical
observation (Fig. 10). When the on-site disorders in H1 be-
come much more dominant than the Heisenberg interaction
J , the probability p in the scaling forms can be determined
only by Wx, Wy, and Wz (see p0 in the caption of Fig. 11). The
numerical data with the finite disorder strengths are approx-
imately well fitted by Eq. (45) with similar values of p
(Fig. 11). In the strong disorder regime, the probability dis-
tribution of Nreal shows two peaks around Nreal = 0 (i.e., none
of eigenvalues are real) and Nreal = N (i.e., all eigenvalues are
real) (Fig. 12), which are also consistent with the phenomeno-
logical explanation in Eq. (43).

FIG. 12. Probability distribution of the number Nreal of real
eigenvalues of the interacting spin model H1 in the strong disorder
regime (Wx = Wz = 20, Wy = 10). The distribution is obtained from
the diagonalization of 400 samples with the system size Lx = 12. The
dimensions of the Hilbert space are N = 2Lx = 4096. The two peaks,
Nreal = 0 and Nreal = N , appear in the distribution.

The level-spacing statistics of real eigenvalues show the
Poisson distribution in the strong disorder regime. To illus-
trate this with σNreal � N̄real, we unfold the level-spacing of
many-body eigenvalues by the density ρc(x, y) of complex
eigenvalues in each sample of different disorder realizations,

si ≡ (λi+1 − λi ) ρ̄
(k)
r

(
λi+1 + λi

2

)

with

ρ̄ (k)
r (x) ≡ N (k)

real

N̄real

∑
λi∈R

〈δ(x − λi )〉. (46)

Here, λi (i = 1, 2, . . . , 2L
x ) stands for the many-body eigen-

values in descending order, and N (k)
real is the number of the

real eigenvalues in the kth sample. The real-eigenvalue spac-
ing thus normalized shows the Poisson distribution in the
strong disorder regime with σNreal � Nreal [Fig. 9(b)]. The
spacing-ratio statistics over samples with very different num-
bers of real eigenvalues inevitably increase statistical errors
[Fig. 9(d)].

IV. DISSIPATIVE FREE FERMIONS

In the previous section, we demonstrate the universal level
statistics of real eigenvalues in the ergodic phases of the
bosonic many-body Hamiltonians. In this section, we study
noninteracting fermionic Hamiltonians with disorder and non-
Hermiticity that belong to symmetry classes AI + η+ and AII
+ η+. We calculate the DOS, the level-spacing statistics, and
the number of real eigenvalues in the weak and strong disorder
regimes. In both regimes, the DOS has a δ-function peak
on the real axis, ρ(E ≡ x + iy) = ρc(x, y) + δ(y)ρr (x). In the
metal phases, we demonstrate that the number of real eigen-
value is scaled by the square root of the dimensions of the
Hamiltonians, being consistent with the random matrix theory.
We also find that the real-eigenvalue spacings and spacing
ratios for class AI + η+ show the same distributions as those
of the random matrices in the same symmetry class while we
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FIG. 13. (a) Heat map of the density ρc(x, y) of complex eigenvalues in 3D class AI + η+ for the weak disorder regime (W1 = 3, W2 = 1,
16 × 16 × 16 sites). (b) Integrated density of complex eigenvalues, ρ̄c(y) ≡ 1

2x1

∫ x1
−x1

ρc(x, y)dx, around the real axis y = Im(E ) = 0 with
x1 = 2. (c) Level-spacing distribution p(s) of real eigenvalues in the metal phase (|E | < 4, W1 = 3, and W2 = 1), and its comparison to p(s)
from non-Hermitian random matrices in the same symmetry class (black line). Inset: Asymptotic behavior of

∫ s
0 p(s′)ds′ for s 
 1 in the metal

phase. (d) p(s) in the localized phase of the 3D model (all the real energy E , W1 = W2 = 60) and its comparison to the Poisson distribution.
(e) Mean value of level-spacing ratios 〈r〉 = ∫ 1

0 pr (r)dr as a function of system size L. (f) Level-spacing-ratio distribution pr (r) of real
eigenvalues in the metal phase (|E | < 4, W1 = 3, W2 = 1) and its comparison to pr (r) from non-Hermitian random matrices in the same
symmetry class. (g) pr (r) of real eigenvalues in the localized phase (all real energy E , W1 = W2 = 60) and its comparison to pr (r) of
uncorrelated real numbers. The mean value 〈r〉 of each level-spacing-ratio distribution is shown in the figures. (c)–(g) The error ranges are
evaluated by the bootstrap method [69]. All the ‘log’ in the figures are the natural log (ln).

find discrepancies for class AII + η+. We discuss possible
reasons for these discrepancies. In the localized phases, by
contrast, the level-spacings of real eigenvalues show the Pois-
son distribution, and the number of real eigenvalues is linearly
scaled by the dimensions of the Hamiltonians.

A. 3D class AI + η+

We study a non-Hermitian extension of the Anderson
model on the three-dimensional (3D) cubic lattice:

H3D =
∑

i

(c†
i (εiσ0 + ε′

iσz )ci + iωic
†
i σyci ) + t

∑
〈i, j〉

c†
i σ0c j .

(47)

Here, εi and ε′
i describe the Hermitian disordered po-

tentials that distribute independently and uniformly in
[−W1/2,W1/2], and ωi describes the anti-Hermitian disor-
dered potential that distributes uniformly in [−W2/2,W2/2].
The non-Hermitian Hamiltonian H3D satisfies TRS,

H3D = H∗
3D, (48)

and pH,

H3D = σzH†
3Dσz, (49)

where the TRS operator and the pH operator commute with
each other. Thus, this model belongs to symmetry class
AI + η+.

We investigate the weak (strong) disorder regime with the
parameters t = 1, W1 = 3, W2 = 1 (W1 = 60, W2 = 60) and
with the periodic boundary conditions. We diagonalize H3D

with 240 different disorder realizations with different system
sizes (the maximal system size is 16 × 16 × 16). We find
that eigenstates with real energy E undergo the Anderson
transition in the weak disorder regime. An energy region near
E = 0 (|E | < 4) is in the metal and localized phases in the
weak and strong disorder regimes, respectively. We calculate
the DOS, the level-spacing distribution, and the number of real
eigenvalues in the weak and strong disorder regimes. In the
weak disorder regime, ρc(x, y) shows a soft gap ρc(x, y) ∝
−|y|ln|y| around the real axis y = 0 [Figs. 13(a) and 13(b)],
sharing the same scaling as in the random matrix theory for
symmetry class AI + η+. The mean value of the level-spacing
ratios converges for the system size L � 8 [Fig. 13(e)]. The
level-spacing distribution p(s) and level-spacing-ratio dis-
tribution pr (r) of real eigenvalues, respectively match well
with p(s) and pr (r) from non-Hermitian random matrices in
class AI + η+ [Figs. 13(c) and 13(f)]. The number of real
eigenvalues is scaled by the square root of the dimensions of
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FIG. 14. Average number N̄real of real eigenvalues as a function
of the dimensions N of the non-Hermitian disordered Hamiltonian
in 3D class AI + η+. The lines with the different colors are for the
different disorder strengths. The blue line is for the metal phase in the
weak disorder regime (|E | � 4, W1 = 3, and W2 = 1). The red line
is for the localized phase in the strong disorder regime (all the real
energy E , W1 = W2 = 60). For reference, the black lines are N̄real ∝
N and N̄real ∝ √

N , respectively. All the ‘log’ in the figures are the
natural log (ln).

the Hamiltonian, being consistent with the scaling from the
random matrix theory. In the strong disorder regime, on the
other hand, the level-spacing and level-spacing-ratio statistics
of real eigenvalues are consistent with those of uncorrelated
real eigenvalues [Figs. 13(d) and 13(g)], and the soft gap of
ρc(x, y) near the real axis disappears (not shown here).

In the strong disorder regime, Nreal is scaled linearly in
N (Fig. 14). This linear scaling N̄real ∝ N in the localized
phase is explained as follows. A disordered Hamiltonian in the
localized phase can be viewed as (L/ξ )d almost independent
blocks. Here, ξ is a localization length in the localized phase,
L is the linear dimensions of the system size, and d is the spa-
tial dimensions. Each block can be regarded as an independent
random matrix, and dimensions of each block are of the order
of ξ d . Thus, Nreal is evaluated as

Nreal ∼ (L/ξ )d
√

ξ d ∝ N, (50)

which is consistent with the numerical results.

B. 2D class AII + η+

We study a non-Hermitian extension of the disordered
SU(2) model [80] on the 2D square lattice:

H2D =
∑

i

(εic
†
i σ0ci + ε′

id
†
i σ0di )

+
∑
〈i, j〉

t1[c†
i R(i, j)c j + d†

i R′(i, j)d j]

+
∑
〈i, j〉

t2[c†
i U (i, j)d j + d†

i U ′(i, j)c j], (51)

where ci and di are annihilation operators for two different
orbitals defined on site i. Both operators have a pseudo-spin-
1/2 degree of freedom. 〈i, j〉 denotes the nearest-neighbor
square-lattice sites. σ0 stands for the two-by-two identity ma-
trix acting on the spin degree of freedom. εi and ε′

i are on-site
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FIG. 15. Normalized localization length � = ξx/L as a function
of real energy E in the 2D non-Hermitian SU(2) model in the weak
disorder regime (W = 0.4, W ′ = 0). The localization length ξx along
the x direction is calculated in the quasi-1D geometry (Lx × L with
Lx � L). Eigenstates with energy E and eigenstates with energy −E
share the same localization length. For |E | < Ec (|E | > Ec) with
Ec ≈ 3.3, � increases (decreases) as L increases, and thus the system
is in the metal (localized) phase. All the ‘log’ in the figures are the
natural log (ln).

random potentials that distribute independently and uniformly
in the range [−W/2,W/2]. t1 and t2 are real numbers. R(i, j),
R′(i, j), U (i, j), and U ′(i, j) are SU(2) matrices that distribute
uniformly with respect to the Harr measure of SU(2) [80] and
satisfy the following symmetry properties:

R(i, j) = R†( j, i), (52)

R′(i, j) = R′†( j, i), (53)

U (i, j) = −U ′†( j, i). (54)

The term with t2 is anti-Hermitian and the others are Her-
mitian. Let τz be a two-by-two matrix acting on the orbital
space, satisfying τz(ci, di )T ≡ (ci,−di )T . The Hamiltonian in
Eq. (51) satisfies TRS,

H2D = σyH∗
2Dσy, (55)

and pH,

H2D = τzH†
2Dτz, (56)

where the TRS operator and the pH operator commute with
each other. Thus, the Hamiltonian belongs to symmetry class
AII + η+. This Hamiltonian is a minimal model to study the
interplay between the spin-orbit coupling [81] and pH.

We investigate the weak (strong) disorder regime of
Eq. (51) with the parameters t1 = 1, t2 = 0.1, W = 0.4
(W = 80) and with the periodic boundary conditions. In the
weak disorder regime, we find that eigenstates with real
eigenvalues E undergo the Anderson transition at a certain
mobility edge E = Ec. The normalized localization length
�(E , L) ≡ ξx(E , L)/L shows a scale-invariant behavior at
E = Ec (Fig. 15). Here, the localization length ξx(E , L) is
calculated along the x direction by the transfer matrix method
in the quasi-1D geometry L × Lx (Lx � L) [48,82–84]. For
the weak disorder regime, |E | < Ec ≈ 3.3 and |E | > Ec corre-
spond to the metal and localized phases, respectively (Fig. 15).
We diagonalize the Hamiltonians in Eq. (51) with 240
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FIG. 16. Average number N̄real of real eigenvalues as a function
of the dimensions N of the 2D non-Hermitian SU(2) model. The dif-
ferent colored lines are for the different disorder strength and energy
regions. The blue line is for the metal phase (|E | � 3 with W = 0.4,
W ′ = 0), the purple line is for the localized phase (|E | � 3.5 with
W = 0.4, W ′ = 0), the red line is for the localized phase I (all the
real energies E with W = 80, W ′ = 0), and the yellow line is for the
localized phase II (all the real energies E with W = 40, W ′ = 40).
For reference, the black lines are N̄real ∝ N and N̄real ∝ √

N , respec-
tively. All the ‘log’ in the figures are the natural log (ln).

different disorder realizations for each system size (the max-
imal system size is 55 × 55 sites), where eigenstates near the
mobility edge are excluded from the level statistics of real
eigenvalues.

In the weak disorder regime, the density ρc(x, y) of com-
plex eigenvalues shows the soft gap ρc(x, y) ∝ |y| in the metal
phase [|x| = |Re(E )| < Ec] for y = Im(E ) much smaller than
the mean level-spacing [Figs. 17(a) and 17(b)]. The soft-gap
behavior is consistent with the DOS of non-Hermitian random
matrices in class AII + η+. The number of real eigenval-
ues within the metal phase, N̄metal

real ≡ ∫ Ec

−Ec
dxρr (x), shows the

square-root scaling with respect to the dimensions N of the
Hamiltonian, N̄metal

real ∝ √
N (Fig. 16), which is also consis-

tent with the random matrix theory. On the other hand, the
number of real eigenvalues in the localized phase, N̄ loc

real ≡∫
|x|>Ec

dxρr (x), is scaled by N , N̄ loc
real ∝ N (Fig. 16).

The mean value 〈r〉 of the level-spacing ratios in the metal-
lic phase converges to the value 〈r〉 ≈ 0.41 for larger system
size [Fig. 17(d)]. This value is larger than the mean value
〈r〉 ≈ 0.37 of non-Hermitian random matrices in class AII +
η+, suggesting a possible discrepancy of the level statistics
between the physical model and the random matrices. In fact,
the level-spacing distribution p(s) and level-spacing-ratio dis-
tribution pr (r) in the metallic phase are also different from
those of the random matrices [Figs. 17(e) and 17(g)], although
the small-s behavior of p(s) is consistent with the random
matrix theory [inset of Fig. 17(e)]. The Kolmogorov-Smirnov
distances between p(s), pr (r) in the metallic phase and those
of the random matrices are around 0.06 (Appendix D) while
the distances are less than 0.01 in the other four symmetry
classes. Similar discrepancies of the level statistics were pre-

viously reported in physical models near the mobility edge
of the Anderson transition [9] or the MBL transition [85].
Nonetheless, in our study, an energy window |E | < 3 for the
level statistics of the physical model is well within the metallic
phase |E | < Ec ≈ 3.3 (Fig. 15). No previous works found
such discrepancies of p(s) and pr (r) between physical models
in the metallic phases and the random matrices.

A possible reason for the discrepancies is unusual level
interactions in non-Hermitian random matrices in class AII
+ η+. As discussed in Sec. II, the small level-spacing ratio
〈r〉 < 〈r〉Poisson and the large spectral compressibility χ >

χPoisson, which are also supported by the small random matrix
analyses, suggest that the attractive interaction between real
eigenvalues in the finite-s regime dominates the repulsive
interaction in the small-s regime on average. We speculate that
this unconventional level attraction makes the level statistics
of the random matrices in the finite-s region unstable against
details of physical models. Only for smaller level spacing
s 
 1, the behaviors between the physical model and random
matrices are consistent. It is unclear whether p(s) and pr (r)
of physical models in class AII + η+ are universal or not,
and we leave this issue for future study. It is also interesting
to investigate whether the non-Hermitian generalization of
other random matrix ensembles, such as the power-law ran-
dom banded matrix ensemble [86] and the Rosenzweig-Porter
random-matrix ensemble [87,88], can describe the physical
models in class AII + η+.

In the strong disorder regime (W = 80), the soft gap in
the DOS around the real axis y = 0 disappears (not shown
here). The level-spacings of real eigenvalues show the Poisson
distribution [Fig. 17(f)], and the level-spacing ratios of real
eigenvalues show the same distribution as uncorrelated real
numbers in Eq. (18) [Fig. 17(h)]. The average number of all
the real eigenvalues becomes proportional to N (Fig. 16). In
this phase, the Hamiltonian is dominated by the Hermitian
part and almost all the eigenvalues are real, resulting in the
linear scaling N̄real ∝ N . To confirm that this linear scaling is a
general property of the Anderson localized phase, we general-
ize the model in Eq. (51) and study the following model H′

2D:

H′
2D = H2D + �H,

�H =
∑

i

ωic
†
i σ0di − ωid

†
i σ0ci. (57)

Adding �H does not change the symmetry class of H2 (class
AII + η+). Here, ωi distributes uniformly in [−W ′/2,W ′/2].
We calculate the DOS, the level-spacing distribution p(s),
and the number of real eigenvalues with the parameter
W ′ = W = 40. Thereby, ρc(x, y) has no soft gap around y = 0
[Fig. 17(c)], p(s) is consistent with the Poisson distribution,
and N̄real ≡ ∫ +∞

−∞ dxρr (x) remains linear in N (Fig. 16).

V. CONCLUSIONS

Non-Hermitian Hamiltonians in the seven symmetry
classes (classes A + η, AI, AI + η±, AII, and AII + η±)
have TRS or pH. Real eigenvalues respect these symme-
tries with complex or Hermitian conjugation. We find that
a subextensive number of eigenenergies of non-Hermitian
random matrices in classes A + η, AI, AI + η±, and AII
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FIG. 17. (a) Heat map of the density ρc(x, y) of complex eigenvalues of the 2D non-Hermitian SU(2) model in the weak disorder regime
(W = 0.4, W ′ = 0, 55 × 55 sites). (b,d) Integrated density of complex eigenvalues, ρ̄c(y) ≡ 1

2x1

∫ x1
−x1

ρc(x, y)dx, as a function of small y =
Im(E ) around the real axis y = 0 (b) in the weak disorder regime (W = 0.4, W ′ = 0, x1 = 3) and (c) in the strong disorder regime (W =
W ′ = 40, x1 = 20). (d) Mean value of level-spacing ratios as a function of system size in the metal phase (|E | < 3, W = 0.4, W ′ = 0). (e)
Level-spacing distribution p(s) of real eigenvalues in the metal phase of the non-Hermitian SU(2) model (|E | < 3, W = 0.4, W ′ = 0), and its
comparison to p(s) from random matrices in symmetry class AII + η+ (red line). Inset: Asymptotic behavior of

∫ s
0 p(s′)ds′ in the metal phase

for s 
 1. (f) p(s) in the localized phase of the 2D non-Hermitian SU(2) model (all the real energies E , W = 80, W ′ = 0), and its comparison
to the Poisson distribution. (g) Level-spacing-ratio distribution pr (r) of real eigenvalues in the metal phase of the 2D non-Hermitian SU(2)
model (|E | < 3, W = 0.4, W ′ = 0) and its comparison to pr (r) from non-Hermitian random matrices in symmetry class AII + η+. The
difference between the physical model and random matrices cannot be neglected. (h) pr (r) of real eigenvalues in the localized phase (all real
energy E , W = 40, W ′ = 0) of the 2D non-Hermitian SU(2) model and its comparison to pr (r) of uncorrelated real numbers. The mean value
〈r〉 = ∫ 1

0 pr (r)dr of each level-spacing-ratio distribution is also shown in the figures. (d)–(h) The error ranges are evaluated by the bootstrap
method [69].

+ η+ are real, where the DOS on the complex plane has a
δ-function peak on the real axis. We clarify the universal level-
spacing distributions on the real axis in these five symmetry
classes for non-Hermitian random matrices, as well as bosonic
many-body Hamiltonians in the ergodic phases and fermionic
noninteracting Hamiltonians in the metal phases. In classes A
+ η, AI, and AI + η±, the level statistics of real eigenvalues
show good agreement between the ergodic physical models
and random matrices, while we find discrepancies in class
AII + η+. The average number of real eigenvalues in the
ergodic phases universally shows the square-root scaling with
respect to the dimensions of the Hamiltonians. We explain
the universal asymptotic behaviors of the DOS around the
real axis and the level-spacing distributions on the real axis
by small random matrix analyses. We also clarify the level
statistics of the physical models in the Anderson localized
and MBL phases by extensive numerical calculations together
with the phenomenological interpretations.

The universal level-spacing and level-spacing-ratio dis-
tributions of real eigenvalues and the scaling relationship
of the number of real eigenvalues obtained in this paper
provide powerful methods of studying level statistics of non-
Hermitian systems with TRS and/or pH. They are also useful

for detecting quantum chaos, many-body localization, and
real-complex transitions in non-Hermitian systems with the
symmetries.

For example, the level statistics of real eigenvalues help us
answer fundamental questions on non-Hermitian disordered
systems. Analyzing level spacings or level-spacing ratios of
real eigenvalues in the different energy windows, we can
determine the presence of mobility edges in non-Hermitian
many-body systems. By the finite-size scaling analysis of
spacing ratios [89], we can also evaluate the critical exponents
of the Anderson transitions in non-Hermitian systems with
TRS and/or pH. Comparisons of the critical exponents with
systems without TRS or pH tell us whether TRS and/or pH
change the universality classes of MBL transitions in non-
Hermitian systems. We believe that with the help of the results
in this paper, a number of spectral analysis methods and quan-
tum chaotic studies used in Hermitian systems are ready to be
applied to non-Hermitian systems with TRS and/or pH.

The real spectrum is related to the stability of non-
Hermitian systems in their long-time dynamics [15,41,90,91].
The square-root scaling of the number Nreal of real eigen-
values hints at possible dynamical instability in ergodic
non-Hermitian systems. In contrast, the linear scaling of Nreal
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in the Anderson localized phase may imply that disorder can
stabilize the dynamics of non-Hermitian systems. The nonuni-
versal scaling of the number of real eigenvalues, together
with our explanation, also serves as evidence for the emergent
integrability in the MBL phase of non-Hermitian systems.

The eigenstates on the real (imaginary) axis can only
respect TRS (PHS†), TRS†, and pH (CS) among all the sym-
metries, as long as they are away from zero in the complex
plane. Thus, for all 38 symmetry classes, we believe that the
level-spacing distributions of real (purely imaginary) eigen-
values away from zero satisfy one of the five universal level
spacing distributions found in this paper. For example, for
non-Hermitian random matrices in symmetry class BDI (i.e.,
with TRS whose sign is +1 and PHS whose sign is +1), PHS
affects the spectral statistics only around zero, and hence the
real-eigenvalue spacing distribution away from zero should be
the same as that in class AI. We leave testing this for all 38
symmetry classes for future work.

While we have focused on non-Hermitian Hamiltonians
in this paper, our results should also be relevant to Lind-
bladians, which govern the open quantum dynamics of the
Markovian master equation [92]. Similarly to closed quantum
systems, it was conjectured that the level-spacing statistics of
Lindbladians obey those of non-Hermitian random matrices
in the nonintegrable phases and the Poisson statistics in the
integrable phases [59,60,62]. This conjecture was previously
verified for generic complex eigenvalues of Lindbladians
away from the real axis. Notably, Lindbladians always re-
spect TRS, where time reversal is effectively defined by the
combination of complex conjugation and the swap operation
between the bra and ket spaces. Thus, we expect that our
results of the level statistics of real eigenvalues for non-
Hermitian random matrices should coincide with those of
nonintegrable Lindbladians in the same symmetry classes. It is
also notable that the quadratic Lindbladians can be classified
by the AZ† symmetry class [93], which is the same as the
tenfold symmetry class studied in this paper.

Before concluding this paper, we note in passing that a non-
Hermitian extension of the disordered Su-Schrieffer-Heeger
model was shown to exhibit the level-spacing statistics of
the Gaussian orthogonal ensemble [94]. This is due to an
additional symmetry that enables a similarity transformation
between this non-Hermitian model and the Hermitian Su-
Schrieffer-Heeger model. Thus, in this non-Hermitian model,
only the Hermitian degrees of freedom are present, and all
eigenvalues are real, which are different from generic non-
Hermitian random matrices studied in this paper.
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APPENDIX A: ANALYSES OF SMALL
RANDOM MATRICES

Small non-Hermitian random matrices in the seven sym-
metry classes are written in the following unified form:

H(s) = a0I +
m∑

i=1

aiLi +
m+n∑

i=m+1

iaiLi. (A1)

Here, I is the identity matrix, L1, L2, . . . , Lm+n are anticom-
muting Hermitian traceless matrices, {Li, Lj} = 2δi, j I , and
a0, a1, . . . , am+n are real numbers. Note that

Tr(H(s)†H(s) ) =
(

m+n∑
i=0

a2
i

)
Tr(I ). (A2)

The real numbers a0, a1, . . . , am+n are independent of each
other and obey the identical standard Gaussian distribution.
Note that

∑k
i=1 a2

i obeys the χ2 distribution with the degree k
[59]. The probability of

∑k
i=1 a2

i = X is given by

p(X ; k) =

⎧⎪⎨
⎪⎩

X
k
2 −1e− X

2

2
k
2 �( k

2 )
, X � 0,

0, X < 0.

(A3)

The square of the traceless part of H(s) is proportional to I ,⎛
⎝ m∑

i=1

aiLi +
m+n∑

i=m+1

iaiLi

⎞
⎠

2

=
⎛
⎝ m∑

i=1

a2
i −

m+n∑
i=m+1

a2
i

⎞
⎠I. (A4)

Thus, eigenvalues of H(s) are given by

λ = a0 ± √
X − Y , X ≡

m∑
i=1

a2
i , Y ≡

m+n∑
i=m+1

a2
i . (A5)

The probability that the eigenvalues are real is given by the
probability of X � Y :

pλ=λ∗ =
∫ ∞

−∞
dX
∫ +∞

−∞
dY θ (X − Y ) p(X ; m) p(Y ; n), (A6)

where θ (u) is the step function satisfying θ (u) ≡ 1 for u � 0
and θ (u) ≡ 0 for u < 0.

In terms of Pauli matrices σμ and τμ (μ = 0, x, y, z) and
their Kronecker products τμσν , the traceless parts of the small
random matrices in the seven symmetry classes are given as

H̃(s)
AI = a1σz + a2σx + ia3σy,

H̃(s)
A+η

= a1σz + ia2σx + ia3σy,

H̃(s)
AI+η+ = a1σz + ia2σy,

H̃(s)
AII = ia1σz + ia2σx + ia3σy,

H̃(s)
AI+η− = a1τz + a2τx + a3τyσy + ia4τyσx + ia5τyσz,
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H̃(s)
AII+η− = ia1σx + ia2σy,

H̃(s)
AII+η+ = a1τz + ia2τy + ia3τxσx + ia4τxσy + ia5τxσz.

(A7)

In fact, the small matrix in each class respects the following
symmetries:

H̃(s)
AI = H̃(s)∗

AI ,

H̃(s)
A+η

= σzH̃(s)†
A+η

σz,

H̃(s)
AI+η+ = H̃(s)∗

AI+η+ , H̃(s)
AI+η+ = σzH̃(s)†

AI+η+σz,

H̃(s)
AII = σyH̃(s)∗

AII σy,

H̃(s)
AI+η− = H̃(s)∗

AI+η− , H̃(s)
AI+η− = σyH̃(s)†

AI+η−σy,

H̃(s)
AII+η− = σyH̃(s)∗

AII+η−σy, H̃(s)
AII+η− = σzH̃(s)†

AII+η−σz,

H̃(s)
AII+η+ = σyH̃(s)∗

AII+η+σy, H̃(s)
AII+η+ = τzH̃(s)†

AII+η+τz. (A8)

The number m of the real degrees of freedom and the number
n of the imaginary degrees of freedom for the small random
matrices in each symmetry class are summarized in Table II.
The probability of real eigenvalues is finite for H(s) in classes
AI, A + η, AI + η+, AI + η−, and AII + η+ because of
m �= 0; on the other hand, the probability of real eigenvalues
is zero for H(s) in classes AII and AII + η− because of m = 0.

1. Real-eigenvalue spacing

With a finite probability, the small random matrices in
classes AI, A + η, AI + η±, and AII + η+ have a pair of real
eigenvalues. The distance s between the two real eigenvalues
is given by

s = 2

√√√√ m∑
i=1

a2
i −

m+n∑
i=m+1

a2
i . (A9)

The probability of (s/2)2 = X under the condition that the
eigenvalues are real is calculated as follows:

P(X ) =
∫∞
−∞ dX ′ ∫∞

−∞ dY ′δ(X ′ − Y ′ − X )p(X ′; m)p(Y ′; n)∫∞
−∞ dX ′ ∫∞

−∞ dY ′θ (X ′ − Y ′)p(X ′; m)p(Y ′; n)

=
∫∞

0 dx(x + X )
m
2 −1e− x+X

2 x
n
2 −1e− x

2∫∞
0 dx

∫∞
0 dX (x + X )

m
2 −1e− x+X

2 x
n
2 −1e− x

2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 e− X

2 , (m, n) = (2, 1),
1

2(
√

2−1)
e

X
2 erfc(

√
X ), (m, n) = (1, 2),

1
π

K0( X
2 ), (m, n) = (1, 1),

e− X
2 [

√
πeX erfc(

√
X )+2

√
X]

2(2
√

2−1)
√

π
, (m, n) = (3, 2),

e− X
2 [2

√
X−√

πeX (2X−1)erfc(
√

X )]
2
√

π(4
√

2−5) , (m, n) = (1, 4),

with
∫∞

0 dXP(X ) = 1. Here, erfc(u) ≡ 2√
π

∫∞
u e−t2

dt is the
complementary error function and Kν (u) is the modified
Bessel function of the second kind. Then, the probability of
the distance being s under the condition that the eigenvalues
are real is given by

Ps(s) = s

2
P

((
s

2

)2
)

, (A10)

with
∫∞

0 Ps(s)ds = 1. Note that the real-eigenvalue spacing
distribution function p(s) in the main text is defined for
the distance normalized by the mean value of the distance:∫∞

0 p(s)sds = 1. Thus, we have

p(s) ≡ s̄Ps(s̄s), (A11)

with the mean value

s̄ ≡
∫ ∞

0
sPs(s)ds. (A12)

From Eqs. (A10) and (A11), we obtain the probability distri-
bution functions of the normalized distances between the two
real eigenvalues as follows:

p(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2πse− π

4 s2
, (m, n) = (2, 1),

1
4

(√
2 + 1

)
s̄2

2se
1
8 s̄2

2s2
erfc
( s̄2s

2

)
, (m, n) = (1, 2),

8s�( 3
4 )4

K0

(
2s2�( 3

4 )4

π2

)
π3 , (m, n) = (1, 1),

s̄2
3se− s̄2

3s2

2
(√

πes̄2
3s2

erfc(s̄3s)+2s̄3s
)

(2
√

2−1)
√

π
, (m, n) = (3, 2),

s̄2
4se− 1

8 s̄2
4s2(

s̄4s−√
πe

1
4 s̄2

4s2
( 1

2 s̄2
4s2−1)erfc( s̄4s

2 )
)

4(4
√

2−5)
√

π
, (m, n) = (1, 4),

(A13)

with

s̄2 ≡ 2(1 + √
2)
(
2 − √

2 sinh−1(1)
)

√
π

≈ 2.053, (A14)

s̄3 ≡ 6 − √
2 sinh−1(1)

(2
√

2 − 1)
√

π
≈ 1.467, (A15)

s̄4 ≡ 20 − 14
√

2 sinh−1(1)

(4
√

2 − 5)
√

π
≈ 2.190. (A16)
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Note that p(s) takes the following asymptotic forms for s 
 1:

p(s) ∼
{

s, (m, n) = (2, 1), (1, 2), (3, 2), (1, 4),

−sln(s), (m, n) = (1, 1).
(A17)

2. Density of states

We calculate the DOS of the small random matrices. For
m �= 0, the DOS ρ(E = x + iy) is decomposed into the den-
sity ρc(x, y) of complex eigenvalues and the density ρr (x) of
real eigenvalues, ρ(E ) = ρc(x, y) + δ(y)ρr (x), while for m =
0, the density of real eigenvalues always vanishes, ρ(E ) =
ρc(x, y). The density ρc(x, y) of complex eigenvalues is the
probability of E being x + iy. For m �= 0, it is given by

ρc(x, y) = 2|y|e− x2

2√
2π

∫ ∞

−∞
dX
∫ ∞

−∞
dY δ(Y − X − y2)

× p(Y ; n) p(X ; m)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2|y|e y2

2 − x2

2 erfc(|y|), (m, n) = (2, 1),
√

2|y|e− y2

2 − x2

2 , (m, n) = (1, 2),√
2
π
|y|K0( y2

2 )e− x2

2 , (m, n) = (1, 1),√
1
2 |y|e− y2

2 − x2

2 , (m, n) = (3, 2),√
1
2 (2y2 + 1)|y|e− y2

2 − x2

2 , (m, n) = (1, 4),

(A18)

with the normalization
∫∞
−∞ dx

∫∞
−∞ dyρ(x, y) = 2. Here, the

constant 2 is the number of different eigenvalues of small
matrices. Note also that we have

∫∞
−∞ dx

∫∞
−∞ dyρc(x, y) �=∫∞

−∞ dx
∫∞
−∞ dyρ(x, y) = 2 under this normalization condi-

tion. For m = 0, the DOS in the complex plane ρ(x, y) =
ρc(x, y) is given by

ρc(x, y) = 2|y|e− x2

2√
2π

∫ +∞

−∞
dY δ(Y − y2) p(Y ; n)

= 1

2
n−1

2
√

π�
(

n
2

) |y|n−1e− y2

2 − x2

2

=
⎧⎨
⎩

1√
2π

|y|e− y2

2 − x2

2 , (m, n) = (0, 2),

1
π
|y|2e− y2

2 − x2

2 , (m, n) = (0, 3),
(A19)

with the same normalization
∫∞
−∞ dx

∫∞
−∞ dyρ(x, y) = 2. For

|y| 
 1, the density ρc(x, y) of complex eigenvalues takes the
following asymptotic forms for each symmetry class:

ρc(x, y) ∼

⎧⎪⎪⎨
⎪⎪⎩

|y|, (m, n) = (2, 1), (1, 2), (3, 2),
(1, 4), (0, 2),

|y|2, (m, n) = (0, 3),

−|y|ln(|y|), (m, n) = (1, 1).
(A20)

APPENDIX B: RANDOM MATRIX ENSEMBLES

1. Class AI

For a random matrix in class AI, let UT be the identity
matrix I . In this choice, H is a real matrix. The probability
distribution function in the Gaussian ensemble is given by

p(H)dH = CN exp

⎛
⎝−β

∑
i j

H2
i j

⎞
⎠∏

i j

dHi j, (B1)

where β is a constant and CN is a normalization constant. With
UT = I , the probability distribution function in the Bernoulli
ensemble is given by

Hi j =
{

1 with the probability 1/2,

−1 with the probability 1/2.
(B2)

Notably, the probability distribution in the Bernoulli ensemble
is not invariant under unitary transformations.

2. Class AI + η+

For a random matrix in class AI + η+, let us choose UT =
I and Uη = σz ⊗ I N

2 × N
2

with the identity matrix I N
2 × N

2
. Then,

HAI+η+ generally takes

HAI+η+ =
(

A B

−BT C

)
, (B3)

where A, B,C are N
2 × N

2 real matrices with

Ai j = Aji,Ci j = Cji. (B4)

The probability distribution function in the Gaussian ensem-
ble is

p(H)dH = CN exp

⎧⎨
⎩−β

⎡
⎣2
∑
i, j

B2
i j + 2

∑
i> j

(
A2

i j + C2
i j

)

+
∑

i

(
A2

ii + C2
ii

)⎤⎦
⎫⎬
⎭
∏
i, j

dBi j

∏
i� j

dAi jdCi j .

(B5)

The probability distribution function in the Bernoulli ensem-
ble is

Bi j, Ai j (i � j),Ci j (i � j)

=
{

1 with the probability 1/2,

−1 with the probability 1/2,
(B6)

with Eq. (B4).

3. Class AI + η−

For a random matrix in class AI+ η−, let us choose UT = I
and Uη = σy ⊗ I N

2 × N
2
. Then, HAI+η− takes a form of

HAI+η− =
(

A B

C AT

)
, (B7)

where A, B,C are N
2 × N

2 real matrices satisfying,

Bi j = −Bji,Ci j = −Cji. (B8)
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The probability distribution function in the Gaussian ensem-
ble is

p(H)dH = CN exp

⎧⎨
⎩−2β

⎡
⎣∑

i, j

A2
i j +

∑
i> j

(
B2

i j + C2
i j

)⎤⎦
⎫⎬
⎭

×
∏
i, j

dAi j

∏
i> j

dBi jdCi j . (B9)

The probability distribution function in the Bernoulli ensem-
ble is

Ai j, Bi j (i > j),Ci j (i > j)

=
{

1 with the probability 1/2,

−1 with the probability 1/2,
(B10)

with Eq. (B8).

4. Class A + η

For a random matrix in class A with pH, let Uη be σz ⊗
I N

2 × N
2
. Then, HA+η is given by

HA+η =
(

A B

−B† C

)
, (B11)

where A, B,C are N
2 × N

2 matrices satisfying

Ai j = A∗
ji,Ci j = C∗

ji. (B12)

The probability distribution function in the Gaussian ensem-
ble is given by

p(H)dH = CN exp

{
−β

[∑
i

(
A2

ii + C2
ii

)

+2
∑
i> j

(|Ai j |2 + |Ci j |2
)+ 2

∑
i, j

|Bi j |2
⎤
⎦
⎫⎬
⎭

×
∏
i> j

dAi jdA∗
i jdCi jdC∗

i j

∏
i

dAiidCii

∏
i, j

dBi jdB∗
i j .

(B13)

The probability distribution function in the Bernoulli ensem-
ble is given by

Aii,Cii =
{

1 with the probability 1/2,

−1 with the probability 1/2,
(B14)

and

Ai j (i > j),Ci j (i > j), Bi j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + i with the probability 1/4,

−1 + i with the probability 1/4,

1 − i with the probability 1/4,

−1 − i with the probability 1/4,

(B15)

and Eq. (B8).

5. Class AII

For a random matrix in class AII, let UT be σy ⊗ I N
2 × N

2
.

Then, HAII is given by

HAII =
(

A B

−B∗ A∗

)
, (B16)

with N
2 × N

2 matrices A and B. The probability distribution
function in the Gaussian ensemble is

p(H)dH = CN exp

⎡
⎣−2β

∑
i j

(|Ai j |2 + |Bi j |2)

⎤
⎦

×
∏

i j

dAi jdA∗
i jdBi jdB∗

i j . (B17)

The probability distribution function in the Bernoulli ensem-
ble is

Ai j, Bi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + i with the probability 1/4,

−1 + i with the probability 1/4,

1 − i with the probability 1/4,

−1 − i with the probability 1/4.

(B18)

6. Class AII + η+

For a random matrix in class AII+ η+, let us choose UT =
τ0σy ⊗ I N

4 × N
4

and Uη = τzσ0 ⊗ I N
4 × N

4
with the identity matrix

I N
4 × N

4
. Then, HAII+η+ generally takes

HAI+η+ =

⎛
⎜⎜⎜⎝

A1 A2 B1 B2

−A2∗ A1∗ −B2∗ B1∗

−B1† B2T C1 C2

−B2† −B1T −C2∗ C1∗

⎞
⎟⎟⎟⎠, (B19)

where Aμ, Bμ,Cμ (μ = 1, 2) are N
4 × N

4 matrices satisfying

A1
i j = A1∗

ji ,C1
i j = C1∗

ji , A2
i j = −A2

ji,C2
i j = −C2

ji. (B20)

The probability distribution function in the Gaussian ensem-
ble is

p(H)dH = CN exp

⎧⎨
⎩−β

⎡
⎣2
∑

i

((
A1

ii

)2 + (C1
ii

)2)

+4
∑

μ=1,2

∑
i> j

(∣∣Aμ
i j

∣∣2 + ∣∣Cμ
i j

∣∣2)

+ 4
∑

μ=1,2

∑
i, j

∣∣Bμ
i j

∣∣2
⎤
⎦
⎫⎬
⎭

×
∏
i> j

dA1
i jdA1∗

i j dA2
i jdA2∗

i j dC1
i jdC1∗

i j dC2
i jdC2∗

i j

×
∏

i

dA1
iidC1

ii

∏
i, j

dB1
i jdB1∗

i j dB2
i jdB2∗

i j . (B21)

The probability distribution function in the Bernoulli ensem-
ble is

A1
ii,C1

ii =
{

1 with the probability 1/2,

−1 with the probability 1/2,
(B22)
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FIG. 18. Density ρc(x, y) of complex eigenvalues for non-Hermitian random matrices in the Bernoulli ensemble for classes (a) AI, (b) AII,
(c) AI + η+, (d) A + η, (e) AI + η−, (f) AII + η+, and (g) AII + η−. Here, ρc(x, y) is shown as a function of y = Im(E ) for fixed x = Re(E )
near the real axis y = 0 of complex energy E . The data are obtained from diagonalizations of 5000 samples of 4000 × 4000 random matrices
in each symmetry class. Note that ρc(x, y) is almost independent of x as long as E is away from the boundary of a circle inside which the
complex eigenvalues E distribute. All the ‘log’ in the figures are the natural log (ln).

Aμ
i j (i > j),Cμ

i j (i > j), Bμ
i j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + i with the probability 1/4,

−1 + i with the probability 1/4,

−1 − i with the probability 1/4,

−1 − i with the probability 1/4

(B23)

for μ = 1, 2 with Eq. (B20).

7. Class AII + η−

For a random matrix in class AII+ η−, let us choose UT =
σy ⊗ I N

2 × N
2

and Uη = σz ⊗ I N
2 × N

2
. Then, HAII+η− is given by

HAII+η− =
(

A B

−B∗ A∗

)
, (B24)

where A, B are N
2 × N

2 matrices satisfying

Ai j = A∗
ji, Bi j = Bji. (B25)

The probability distribution function in the Gaussian ensem-
ble is given by

p(H)dH = CN exp

{
−β

[∑
i

2
(
A2

ii + |Bii|2
)

+ 4
∑
i> j

(|Ai j |2 + |Bi j |2)

⎤
⎦
⎫⎬
⎭

×
∏
i> j

dAi jdA∗
i j

∏
i

dAii

∏
i� j

dBi jdB∗
i j . (B26)

The probability distribution function in the Bernoulli ensem-
ble is given by

Aii =
{

1 with the probability 1/2,

−1 with the probability 1/2,
(B27)

Ai j (i > j), Bi j (i � j)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + i with the probability 1/4,

−1 + i with the probability 1/4,

1 − i with the probability 1/4,

−1 − i with the probability 1/4,

(B28)

with Eq. (B25).

8. Level statistics in the Bernoulli ensemble

We diagonalize non-Hermitian random matrices in the
Bernoulli ensemble for the seven symmetry classes and ob-
tain the universal properties of the DOS as well as the level
statistics of real eigenvalues in the Bernoulli ensemble. The
DOS in each symmetry class shows the same property as
the DOS in the Gaussian ensemble. The soft-gap behaviors
of the density ρc(x, y) of complex eigenvalues around the real
axis (y = 0) are consistent with the DOS in the Gaussian
ensemble (Fig. 18). For non-Hermitian random matrices in
classes AII and AII + η−, no real eigenvalues appear. By
contrast, the average numbers of real eigenvalues in classes
AI, A + η, AI + η±, and AII + η+ are proportional to

√
N

in the Bernoulli ensemble (Fig. 19). In these five symme-
try classes, both the level-spacing distribution p(s) and the
level-spacing-ratio distribution pr (r) of real eigenvalues in
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FIG. 19. Average number N̄real of real eigenvalues of non-
Hermitian random matrices in the Bernoulli ensemble as a function
of

√
N for the five symmetry classes. Here, N is the dimensions of

the random matrices. The error bars in the plot stand for the standard
deviations of N̄real. The plots clearly demonstrate the square-root
scaling N̄real ∝ √

N in all five symmetry classes. For each symmetry
class and matrix size, N̄real from the Bernoulli ensemble is almost the
same as N̄real from the Gaussian ensemble.

the Bernoulli ensemble are consistent with the distribution
functions in the Gaussian ensemble (Figs. 20 and 21). These
results demonstrate the universality of the soft gap of the DOS
around the real axis, the level-spacing and level-spacing-ratio
distributions of real eigenvalues, and the scaling relation of
the average number of real eigenvalues.

APPENDIX C: GENERALIZED GAUSSIAN ENSEMBLE

1. Probability distribution functions

Suppose that H is a non-Hermitian random matrix in one
of the seven symmetry classes (i.e., classes A + η, AI, AI +
η±,, AII, and AI + η±). Then,

H′ = x

2
(H + H†) + 1 − x

2
(H − H†) (C1)

is a non-Hermitian random matrix in the same symmetry class
as H when x is a real number satisfying x �= 0, 1. Thus, we
can generalize the Gaussian ensemble in each symmetry class
into the generalized Gaussian ensemble. H′ in the generalized
Gaussian ensemble is realized with the same probability as H
in the Gaussian ensemble,

p′(H′)dH′ = p(H)dH. (C2)

The inverse transform of Eq. (C1) is given by

H = 1

2x
(H′ + H′†) + 1

2(1 − x)
(H′ − H′†). (C3)

As Eq. (C1) is a linear transform, the Jacobian matrix of the
transform depends only on x,

dH′ = CxdH, (C4)

where Cx is an x-dependent constant. The probabil-
ity distribution in the generalized Gaussian ensemble is

FIG. 20. Real-eigenvalue spacing distribution functions p(s) of 4000 × 4000 non-Hermitian random matrices in the Bernoulli ensemble
(BE) for the five symmetry classes and their comparisons to p(s) obtained from non-Hermitian random matrices in the generalized Gaussian
ensemble (GGE) with β2/β1 = 16. Insets: Asymptotic behaviors of the distribution functions for s 
 1, where the cumulative distribution
function

∫ s
0 p(s′)ds′ is plotted as a function of either s2 or −ln(s)s2. The error ranges are evaluated by the bootstrap method [69]. The error

ranges of p(s) of the GGE random matrices are much smaller than those of the BE random matrices and not shown here (see also Fig. 4). All
the ‘log’ in the figures are the natural log (ln).
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FIG. 21. Level-spacing-ratio distributions pr (r) of real eigenvalues obtained from 4000 × 4000 non-Hermitian random matrices in the
Bernoulli ensemble for the five symmetry classes and their comparisons to pr (r) obtained from non-Hermitian random matrices in the
generalized Gaussian ensemble with β2/β1 = 16. The mean value 〈r〉 = ∫ 1

0 pr (r)dr of each distribution is also shown in each figure. The
error ranges are evaluated by the bootstrap method [69]. The error ranges of pr (r) of the GGE random matrices are much smaller than those
of the BE random matrices and not shown here (see also Fig. 5).

given by

p′(H′)dH′ = p(H)dH

= C−1
N e−βTr(H†H)dH

= C−1
N C−1

x e−Tr[ β

4 (H+H† )2− β

4 (H−H† )2
]dH′

= C−1
N C−1

x e−Tr[ β

4x2 (H′+H′† )2− β

4(1−x)2
(H′−H′† )2

]dH′,
(C5)

which reduces to Eq. (12) with C−1
N,(β1,β2 ) ≡ C−1

N C−1
x , β1 ≡ β

4x2 ,

and β2 ≡ β

4(1−x)2 .

2. Level statistics

We show that level-spacing and level-spacing ratio distri-
butions, p(s) and pr (r), in the generalized Gaussian ensemble
(GGE) with β2 > β1 converge faster than those in the Gaus-
sian ensemble (GE). Figures 3(d) and 3(i) show that p(s) and
pr (r) in class AII + η+ converge more slowly than those in
the other symmetry classes. Thus, we focus on p(s) and pr (r)
in class AII + η+ and compare their convergence in the GGE
and GE. For the other four symmetry classes, random matrices
in the GGE have the same properties.

We find that for N × N non-Hermitian random matrices
in the GGE with different parameter β1, β2, the average
number of real eigenvalues N̄real is approximately scaled by

0 1 2 3 4 5
0

10

20

30

40

FIG. 22. Average number N̄ ′
real for real eigenvalues of 256 × 256

non-Hermitian random matrices in the generalized Gaussian ensem-
ble as a function of β2/β1 (class AII + η+). Here, β1 and β2 are
the parameters of the generalized Gaussian ensemble in Eq. (12).
The plot clearly demonstrates N̄ ′

real ∝ √
β2/β1. For random matrices

with different sizes and in the other four symmetry classes, the same
scaling relation also holds true.
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FIG. 23. (a)–(d) Comparison between level-spacing-ratio distributions pr (r) and level-spacing distributions p(s) of real eigenvalues
obtained from N ′ × N ′ non-Hermitian random matrices in the generalized Gaussian ensemble and N × N non-Hermitian random matrices
in the Gaussian ensemble for class AII + η+. (e) Mean value of the level-spacing ratio 〈r〉 = ∫ 1

0 pr (r)dr as a function of the average number
N̄real of real eigenvalues in the GE and GGE for class AII + η+. For N̄real � 70 (N ′ > 1000), the error bars of 〈r〉 for different sizes overlap with
one another. The error ranges are evaluated by the bootstrap method [69]. The error ranges of the distributions of the GGE random matrices
are much smaller than those of the GE random matrices and not shown here (see also Figs. 4 and 5).

(see Fig. 22)

N̄real ∝
√

β2

β1
, (C6)

which is compatible with Eq. (13). When the average numbers
of real eigenvalues of two GGE random matrices with dif-
ferent β2/β1 and different N are approximately the same, we
also numerically find that the level-spacing and level-spacing
ratio distributions, p(s) and pr (r), from the two matrices are
the same In Fig. 23, we compare p(s) and pr (r) from 252 ×
252 (128 × 128) GGE random matrices with β2/β1 = 16 and
those from 4000 × 4000 (2000 × 2000) GE random matrices.
The error bars for almost all the data points overlap with each
other, and the average number of real eigenvalues is approx-
imately the same (e.g.,

√
252 × 16 = √

4032 ≈ √
4000). In

the limit of N → ∞, p(s) and pr (r) in the GGE with different
β2/β1 converge to the same universal distribution. For the
same matrix size N of the random matrices, p(s) and pr (r)
converge faster in the GGE with larger β2/β1, as shown in
Fig. 23(e). The square-root scaling of Nreal with respect to the
dimensions N of the matrices and the soft gap of density of
complex eigenvalues around the real axis are also universally
observed in random matrices of the GGE (not shown).

APPENDIX D: KOLMOGOROV-SMIRNOV DISTANCE

It is more feasible to use cumulative distribution functions
than probability distribution functions, when comparing er-
godic phases of physical systems with random matrices. Here,
we calculate the Kolmogorov-Smirnov (KS) distance from
the cumulative spacing distribution function

∫ s
0 p(s′)ds′ and

cumulative spacing-ratio distribution function
∫ r

0 pr (r′)dr′
among physical systems and random matrices in different
symmetry classes (Tables III and IV). In the calculations,
we first obtain the empirical cumulative distribution function
Fe(x) from a set of real random variables {x1, x2, . . . , xn} for
the spacing and spacing ratio,

Fe(x) ≡ 1

n

n∑
i

θ (xi − x), (D1)

with the step function θ . This function Fe(x) corresponds to
the cumulative level-spacing and level-spacing-ratio distribu-
tion function of real eigenvalues. The KS distance between
the two empirical cumulative distribution functions Fe1(x) and
Fe2(x) is defined by the maximum value of the difference
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TABLE III. Kolmogorov-Smirnov (KS) distance among level-
spacing distribution functions p(s) of real eigenvalues obtained from
4000 × 4000 non-Hermitian random matrices in the five symme-
try classes (classes A+η, AI, AI + η±, and AII + η+), and KS
distance between p(s) obtained from the physical systems in the
ergodic phases and p(s) obtained from the random matrices in the
five classes. The first column specifies the random matrices (RM) and
Hamiltonians of the physical models. The physical models are the 2D
disordered free fermions in class AII + η+ (H2D), the 3D disordered
free fermions in class AI + η+ (H3D), the hard-core boson model
with the nonreciprocal hopping (HHN), and the four interacting spin
models (H1,H2,H3,H4). The second column denotes the symmetry
classes to which the random matrices or the Hamiltonians in the first
column belong. The first row labels the RM in the five symmetry
classes. The KS distances between p(s) from the first column and
p(s) from the first row are shown. For each system in the first column,
the shortest distance to random matrices is highlighted with the bold
characters.

System Class AI AI + η+ A + η+ AI + η− AII + η+

RM AI 0 0.052 0.089 0.011 0.165
RM AI + η+ 0.052 0 0.038 0.063 0.114
RM A + η+ 0.089 0.038 0 0.098 0.077
RM AI + η− 0.011 0.063 0.098 0 0.174
RM AII + η+ 0.165 0.114 0.077 0.174 0

HHN AI 0.010 0.043 0.079 0.020 0.155
H1 AI 0.009 0.045 0.081 0.018 0.157
H3D AI + η+ 0.050 0.003 0.040 0.060 0.115
H3 AI + η+ 0.055 0.004 0.036 0.066 0.111
H2 A + η+ 0.093 0.043 0.005 0.102 0.073
H4 AI + η− 0.010 0.062 0.097 0.003 0.174
H2D AII + η+ 0.118 0.066 0.032 0.129 0.052

between the two functions over all x,

De1,e2 ≡ sup
x

|Fe1(x) − Fe2(x)|. (D2)

Tables III (Table IV) summarizes the KS distance among
p(s) [pr (r)] from 4000 × 4000 random matrices in the gen-

TABLE IV. Kolmogorov-Smirnov (KS) distance among level-
spacing-ratio distribution functions pr (r) of real eigenvalues ob-
tained from 4000 × 4000 non-Hermitian random matrices in the five
symmetry classes (classes A+η, AI, AI + η±, and AII + η+), and
KS distance between pr (r) obtained from the physical systems in the
ergodic phases and pr (r) obtained from the random matrices in the
five classes. The notation is the same as Table III.

System Class AI AI + η+ A + η+ AI + η− AII + η+

RM AI 0 0.070 0.114 0.016 0.194
RM AI + η+ 0.070 0 0.044 0.085 0.125
RM A + η+ 0.114 0.044 0 0.129 0.083
RM AI + η− 0.016 0.085 0.129 0 0.209
RM AII + η+ 0.194 0.125 0.083 0.209 0

HHN AI 0.007 0.067 0.110 0.021 0.191
H1 AI 0.003 0.071 0.114 0.017 0.195
H3D AI + η+ 0.069 0.006 0.045 0.084 0.126
H3 AI + η+ 0.067 0.004 0.047 0.083 0.128
H2 A + η+ 0.119 0.049 0.006 0.134 0.081
H4 AI + η− 0.015 0.085 0.128 0.004 0.208
H2D AII + η+ 0.138 0.069 0.025 0.154 0.062

eralized Gaussian ensemble with β2/β1 = 16 for the five
symmetry classes. Table III (Table IV) also give the KS
distance between p(s) [pr (r)] from the physical systems in
the ergodic phases with the maximal system size, and p(s)
[pr (r)] from the random matrices in the five symmetry classes.
Tables III and IV show that in classes AI, AI + η±, and A +
η, the probability distribution functions p(s) and pr (r) from
the physical systems in the ergodic phases have the shortest
distance to p(s) and pr (r) from the random matrices in the
same symmetry class, and the shortest distances are less than
0.01. Tables III and IV also show that p(s) and pr (r) of the
physical systems in class AII + η+ have the shortest KS
distance with p(s) and pr (r) of the random matrices in class A
+ η but have the larger distance (>0.05) with p(s) and pr (r)
of the random matrices in class AII + η+.

FIG. 24. Variance �2 and mean value 〈NW 〉 of the number of real eigenvalues of non-Hermitian random matrices in the five symmetry
classes. �2 and 〈NW 〉 within different energy windows are obtained from 4000 × 4000 non-Hermitian random matrices in the (a) generalized
Gaussian ensemble with β2/β1 = 16, (b) Gaussian ensemble, and (c) Bernoulli ensemble. The scaling relation �2 
 χ〈NW 〉 holds for all five
symmetry classes. The spectral compressibility χ is obtained by the linear fitting of the data points for each symmetry class.

043196-28



LEVEL STATISTICS OF REAL EIGENVALUES IN … PHYSICAL REVIEW RESEARCH 4, 043196 (2022)

APPENDIX E: NUMBER VARIANCE AND
SPECTRAL COMPRESSIBILITY

For an ensemble of non-Hermitian random matrices, we
count the number NW (E ) of real eigenvalues in an energy
window [−E , E ] with E � 0 in each sample. We evaluate the
mean value 〈NW (E )〉 and the variance �2(E ) = 〈NW (E )2〉 −
〈NW (E )〉2 of the number in the energy window for different
E . In our evaluation, only less than 50% of all the real eigen-
values are included in the energy window. Note also that in
classes AI + η− and AII + η+, we regard each Kramers
pair as one real eigenvalue, and we characterize the level
interaction between neighboring Kramers pairs by �2(E )
and 〈NW (E )〉.

In all random matrix ensembles studied in this paper (i.e.,
generalized Gaussian ensemble with β2/β1 = 16, Gaussian

ensemble, and Bernoulli ensemble), we have the scaling
relation

�2(E ) 
 χNW (E ) (E1)

for all five symmetry classes (Fig. 24). The spectral com-
pressibility χ in each symmetry class takes the same value
for the different ensembles, suggesting the universality of
χ . While χ is less than χPoisson = 1 in classes AI, AI +
η±, and A + η+, χ is larger than χPoisson = 1 in class AII
+ η+. This unusual relation χ > χPoisson = 1 in class AII
+ η+ indicates that attractive interactions are more dom-
inant than repulsive interactions in this symmetry class,
which has no analogs in Hermitian random matrices and also
non-Hermitian random matrices in the other four symmetry
classes.
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