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Functional observability and subspace reconstruction in nonlinear systems
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Time-series analysis is fundamental for modeling and predicting dynamical behaviors from time-ordered data,
with applications in many disciplines such as physics, biology, finance, and engineering. Measured time-series
data, however, are often low dimensional or even univariate, thus requiring embedding methods to reconstruct the
original system’s state space. The observability of a system establishes fundamental conditions under which such
reconstruction is possible. However, complete observability is too restrictive in applications where reconstructing
the entire state space is not necessary and only a specific subspace is relevant. Here, we establish the theoretic
condition to reconstruct a nonlinear functional of state variables from measurement processes, generalizing the
concept of functional observability to nonlinear systems. When the functional observability condition holds, we
show how to construct a map from the embedding space to the desired functional of state variables, characterizing
the quality of such reconstruction. The theoretical results are then illustrated numerically using chaotic systems
with contrasting observability properties. By exploring the presence of functionally unobservable regions in
embedded attractors, we also apply our theory for the early warning of seizure-like events in simulated and
empirical data. The studies demonstrate that the proposed functional observability condition can be assessed
a priori to guide time-series analysis and experimental design for the dynamical characterization of complex
systems.
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I. INTRODUCTION

Reconstructing the state space of complex dynamical sys-
tems is a key step for their quantitative understanding and
forecasting. To do so, time-series analysis methods have been
developed to characterize and model dynamical behaviors
from recorded time-ordered data. In practice, such methods
are constrained by the available measurement processes and
data quality. Data are often irregularly sampled, noisy, rela-
tively short, and univariate. In cases that measured time series
are expected to be lower dimensional compared to the system
dynamics, the original state space can be reconstructed with
embedding methods [1–4]. Embedding has been successfully
applied across many fields, including for the characterization
of chaotic dynamics [5,6], ecological and economic modeling
[7,8], financial forecasting [9,10], medical diagnosis [11,12],
and detection of dynamical transitions in palaeoclimate data
[13] and oil-water flows [14]. These applications assume that
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an embedding is possible, that is, that a map from the time-
series data to the original system’s state space exists. However,
such assumption may not hold in general: An established link
between embedding and observability theories shows that re-
constructing the entire original system is not always possible
or suitable depending on the available time series [15,16].

The a priori conditions under which the entire system
state can be reconstructed from available measurements are
determined by the observability property [17]. In the linear
case, observable systems satisfy the necessary and sufficient
conditions for the inference of the full-state of the system,
for example, via embedding methods and state estimators like
Luenberger observers [18] or Kalman filters [19]. For nonlin-
ear systems, a generalized notion of observability [20] sets a
sufficient condition for the existence of an invertible mapping
(diffeomorphism) between the system’s original state space
and the differential embedding space constructed from a given
measurement function [15,16].

Not only the relation between embedding and observabil-
ity determines the possibility of reconstructing the original
dynamical system from the embedding of time-series data,
but it also characterizes how good such reconstruction is. For
example, the embedding space of the Rössler system was
empirically shown to have singularity points depending on the
measured variable [21], which was later theoretically proven
to be a consequence of unobservable regions in the original
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FIG. 1. Functional observability vs complete observability for the reconstruction of the Lorenz attractor from time-series data. (a) Time-
series data y = h(x) = x1 measured from one of the system’s state variables. (b) Differential embedding coordinates of the time-series data.
(c) Reconstruction of the original coordinates of the Lorenz system from the differential embedding. The system is unobservable at the
shaded plane (x1 = 0) and, therefore, the reconstructed attractor (left side) shows large errors closer to this region compared to the ground-
truth (unmeasured) attractor (right side). (d) Reconstruction of the low-dimensional subspace (x1, x2) of the Lorenz attractor. The system is
functionally observable everywhere with respect to the functional z = g(x) = x2 and, therefore, the reconstructed subspace (left side) is accurate
compared to the ground-truth subspace (right side). Brighter colors correspond to states of the attractor closer to the system’s unobservable
plane.

space [22]. Another case is the well-known Lorenz system:
Figures 1(a)–1(c) shows that unobservable regions hamper
the quality of the attractor reconstruction from an embedded
time series. Consequently, the applicability and performance
of methods based on embedding [23–25] and state estimation
[26–28] are highly dependent on the observability properties
of the system. Building from chaotic systems, often used as
benchmark cases due to their short horizon of predictability,
observability studies showed the potential to foster further
discoveries in complex systems, including neuronal models
[29,30], metabolic reactions [31], ecological systems [32],
and networks [33–38].

For many systems and applications, although, complete
observability is a condition that may be too restrictive. In prac-
tice, even if the original state space is not entirely observable
(reconstructible), one may focus on particular subspaces (e.g.,
state variables) that are relevant to the considered applications.
Examples include the estimation of the phase variable of
nonlinear oscillators for synchronization analysis of chaotic
systems [21,39,40], modeling of climate dynamics [41], and
forecasting of financial crashes [42]; the positioning and
tracking of a particular spatial coordinate (e.g., altitude) in
autonomous aerial vehicles from indirect measurements [43];
or the inference of control variables (which dictate how close a
system is to a bifurcation) for the early warning of transitions
from healthy to disease states in atrial fibrillation [44] and
epileptic seizures [45].

These practical problems motivate the concept of func-
tional observability [46,47], which establishes conditions
under which a desired functional of the system variables can
be inferred from the available measurements (e.g., via the
design of functional observers [46,48,49]). However, in spite

of several applications designed for feedback control [49,50],
fault detection [51], and, more recently, large-scale networks
[52], the functional observability property is still restricted
to linear dynamical systems. Therefore, a theory to establish
conditions for the reconstruction of a nonlinear functional of
a nonlinear system, and that provides guidance on how to
perform and leverage this reconstruction, is still missing.

In this paper, we provide a generalization of the functional
observability property to nonlinear dynamical systems. This
establishes a sufficient condition for the reconstruction of a
nonlinear functional of state variables from a (possibly non-
linear) measurement function. If the system is functionally
observable, we show how to determine the mapping between
the differential embedding space and the original functional
sought to be reconstructed, also proposing a coefficient of
functional observability to locally characterize the quality
of the functional reconstruction. Figure 1 shows that, even
though a system may not be completely observable (thus
hampering the state-space reconstruction), it might still be
functionally observable with respect to some low-dimensional
subspace of interest, in which accurate reconstruction is
still feasible. To illustrate the theoretical advantages of such
framework in interpreting the effects of singularities and sym-
metries in the embedded state space, we present numerical
simulations for chaotic benchmark systems with contrasting
observability properties. Finally, we apply our theory for
the analysis of a phenomenological model of seizure-like
events, known as Epileptor [45]. We demonstrate that the
presence of unobservable regions in the Epileptor’s attractor
can be used to provide early-warning signals of transitions
from normal to seizure states in both simulated and empirical
data.
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The paper is organized as follows. Section II provides
a background on the complete observability of dynamical
systems. Section III presents the theoretical results for the
generalization of functional observability to nonlinear sys-
tems. Section IV presents and discusses the numerical results
in chaotic benchmark systems. Section V applies the proposed
framework for the analysis of the Epileptor model and early
warning of seizures. Finally, Sec. VI concludes the paper.

II. BACKGROUND ON OBSERVABILITY
OF NONLINEAR SYSTEMS

This section provides background on observability theory
for nonlinear systems [20,38,53]. Consider the following non-
linear dynamical system:

ẋ = f (x),

y = h(x),
(1)

where x ∈ X ⊆ Rn is the state vector, y ∈ Rq is the out-
put vector (measurements), and f : X �→ V (X ) ⊆ Rn and
h : X �→ H(X ) ⊆ Rq are smooth nonlinear functions. The
explicit dependence of time in x(t ) and y(t ) is often omitted
throughout this paper. Let the flow map �T (x(t0)) : X �→ X
be the solution of (1),

�T (x(t0)) := x(t0 + T ) = x(t0) +
∫ t0+T

t0

f (x(t ))dt . (2)

The notion of local observability is formalized as follows.
Definition 1. [20,53] The nonlinear system (1), or the pair

{ f , h}, is locally observable at x0 if there exists a neighbor-
hood U ⊆ X of x0 such that, for every state x0 �= x1 ∈ U ,
h ◦ �T (x0) �= h ◦ �T (x1) for some finite time interval t ∈
[t0, t0 + T ]. Otherwise, { f , h} is locally unobservable at x0.
The system is said to be locally observable if it is locally
observable at every x0 ∈ X .

Definition 1 states that a system is locally observable
around an initial state x(t0) if x(t0) can be uniquely recon-
structed from the measurements y over a finite trajectory,
as defined by the composition map h ◦ �T (x(t0)). The local
observability of a nonlinear system can be verified through
the following algebraic condition.

Definition 2. [53] The observable space O(x) of system (1)
is the linear space of functions over the field R spanned by all
functions of the form

Lν
f h j (x), 0 � ν � s, 1 � j � q, (3)

where Lν
f h j (x) denotes the νth Lie derivative of the jth com-

ponent of h(x) along the vector field f (x), and s is the smallest
integer such that ∇Lk

f h j (x) belongs to the span formed by
functions (3) for all k > s. By definition, L0

f h j (x) := h j (x)
and

Lν
f h j (x) := ∇Lν−1

f h j (x) · f (x), (4)

where ∇ is the gradient operator with respect to x.
Theorem 1. The system (1), or the pair { f , h}, is locally

observable at x0 if there exists a neighborhood U ⊆ X of x0

such that

dim{∇O(x)} = n (5)

holds for every x ∈ U ⊆ X , where O(x) is the observable
space.

Proof. See [20,38,53].
Note that the minimum order ν of Lie derivatives (3) such

that condition (5) is satisfied depends on { f , h}. As a special
case, if { f , h} are rational functions, it suffices to check con-
dition (5) for the observable space O(x) spanned by functions
(3) up to the (n − 1)th Lie derivative (i.e., 0 � ν � n − 1)
[54].

Theorem 1 is a generalization of the observability property
of linear systems to nonlinear systems. If the pair { f , h} is
given by the linear functions Ax and Cx, where A ∈ Rn×n and
C ∈ Rq×n, then it follows that the observable space O(x) is
defined by the row space of Kalman’s observability matrix
[17,55]

∇O(x) = [CT (CA)T (CA2)T . . . (CAn−1)T]T (6)

and therefore the linear system is observable if and only if
rank(∇O) = n.

A. Observability and embedding

Differential embedding relates the original coordinates of
a dynamical system to the derivatives of the measured time
series. Formally, given some measurement y = h(x) over time
t ∈ [0, T ], a differential embedding space E can be con-
structed via an appropriate choice of higher-order derivatives
of y as coordinates:

E = span
{∇y(ν)

j : j ∈ {1, . . . , q} and ν ∈ {0, . . . , s}}, (7)

where y(ν)
j denotes the νth time derivative of the jth com-

ponent of the measured signal y. If the map � : X �→ E is
a diffeomorphism, then the original state space X and the
embedding space E are related by a smooth and invertible
change of coordinates. Therefore, in applications where the
original state space is not available (due to unmeasured state
variables), the underlying dynamical system can be assessed
via an embedding of the measured time series. In practice,
measured time-series data are available in discrete time and
hence the embedding can be constructed by either comput-
ing their differential coordinates y(ν)

j (e.g., via regularization
methods to denoise the derivatives [56,57]) or using time-
delay coordinates y j (t − kτ ), for some time delay τ and k ∈
N, following Takens’ theorem [58,59].

From Definition 1, { f , h} is observable if the map

�(x) =

⎡
⎢⎢⎢⎢⎢⎣

y

ẏ
...

y(ν)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

h(x)
dh(x)

dt

...

dνh(x)
dtν

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

L0
f h(x)

L1
f h(x)

...

Lν
f h(x)

⎤
⎥⎥⎥⎥⎥⎦ (8)

is locally left invertible (injective) for some 0 � ν � s, where
Lν

f h(x) := [Lν
f h1(x) . . . Lν

f hq(x)]T. That is, if x is uniquely
determinable from y and its successive derivatives. The map
(8) is equivalent to the set of functions (3) spanning the
observable space O(x) [15], hence � : X �→ E ≡ O(x). This
equivalence establishes a direct relation between the theories
of observability and embedding [15,16]: Following the inverse
function theorem [53], Sec. 7.1], �(x) is locally invertible if

043195-3



ARTHUR N. MONTANARI et al. PHYSICAL REVIEW RESEARCH 4, 043195 (2022)

its Jacobian matrix has full (column) rank [i.e., if condition
(5) holds]. Therefore, a state x0 is only reconstructible from
the differential embedding of its measurements y over a finite
time interval if � is locally invertible or, in other words, the
system is locally observable at x0.

Note that the choice of differential coordinates y(ν)
j for the

embedding space E is not unique and that an inappropriate
selection of linearly dependent derivatives of y [i.e., func-
tions of form (3)] may lead to dim(∇E ) < dim (∇O(x)) [16].
Accordingly, we assume throughout this paper that the embed-
ding space (7) is defined by a minimum selection of linearly
independent functions (3) such that dim(∇E ) = dim (∇O(x))
around some neighborhood of x0. For example, we consider
the embedding space E = {y, ẏ, ÿ} for the reconstruction of
the Lorenz attractor [Figs. 1(a)–1(c)].

III. FUNCTIONAL OBSERVABILITY
OF NONLINEAR SYSTEMS

Complete observability characterizes the sufficient condi-
tion for the (local) reconstruction of the full-state vector x
of a dynamical system (1) from measurements y over finite
time. Nonetheless, reconstructing the entire state vector x is
often unfeasible or unnecessary in practice, and only a lower-
dimensional function or subspace might be of interest, defined
as

z = g(x), (9)

where z ∈ Rr is the vector sought to be reconstructed, often
with dimension r 	 n, and g : X �→ G(X ) ⊆ Rr is a nonlin-
ear smooth functional.

In what follows, we provide a generalization of the observ-
ability property [20], termed functional observability. Given
a nonlinear dynamical system (1), functional observability
establishes the conditions under which the functional (9) is
reconstructible from the measured signal y, without necessar-
ily requiring the full state x to be reconstructible. Therefore,
a system may be functionally observable with respect to
some functional (9) even though it is (completely) unobserv-
able. Our results also generalize the functional observability
property, originally established for linear systems [47], to
dynamical systems described by a nonlinear vector field f , a
nonlinear measurement function h and a nonlinear functional
g. Figure 2 summarizes the relation between our theory and
previous papers.

Before presenting the main result, we first formally define
functional observability as a generalization of complete ob-
servability (Definition 1):

Definition 3. The nonlinear system (1) and (9), or the triple
{ f , h, g}, is locally functionally observable at x0 if there ex-
ists a neighborhood U ⊆ X of x0 such that, for every state
g(x0) �= g(x1), h ◦ �T (x0) �= h ◦ �T (x1) for some finite time
interval t ∈ [t0, t0 + T ]. Otherwise, { f , h, g} is locally func-
tionally unobservable at x0. The system is said to be locally
functionally observable if it is locally functionally observable
at every x0 ∈ X .

Analogous to Definition 1, Definition 3 states that a system
is locally functionally observable around an initial state x(t0)
if the functional g(x(t0)) can be uniquely reconstructed from
the measurements y over a finite trajectory. Analogous to

FIG. 2. Functional observability of nonlinear systems and its
special cases.

Definition 2, we define the functional space related to (9) as
follows:

Definition 4. The functional space F (x) of system (1) and
(9) is the linear space of functions over the field R spanned by
all functions of the form

Lν
f g j (x), 0 � ν � μ, 1 � j � r, (10)

where μ is the smallest integer such that ∇Lk
f g j (x) belongs to

the span formed by (4) for all k > μ.
Based on Definitions 2 and 4, we now establish the con-

dition for the functional observability analysis of nonlinear
systems. Consider a locally unobservable system at x0, i.e.,

dim{∇O(x0)} = k � n, ∀x0 ∈ U ⊆ X . (11)

Recall the theorem for the decomposition of unobservable
systems (Theorem 97 in [53]): There exists a diffeomorphism
T on U such that choosing an appropriate state transformation
x̃ = T (x) yields the partitioned vector

x̃ =
[

x̃a

x̃b

]
, (12)

where x̃a ∈ Rk and x̃b ∈ Rn−k correspond, respectively, to
the observable and unobservable parts of the system in some
neighborhood of T (x0). The transformed vector field is now
given by

f̃ (x̃) ≡ f̃ (x̃a, x̃b) =
[

f̃ a(x̃a)

f̃ b(x̃a, x̃b)

]
, (13)

where f̃ a : Rk �→ Rk and f̃ b : Rn �→ Rn−k , and the trans-
formed measurement function is given by

h̃(x̃) ≡ h̃(x̃a) = h(T−1(x̃)), (14)

which will only depend on x̃a.
After this change of coordinates, the system (1) and (9) is

given by [
˙̃xa
˙̃xb

]
=

[
f̃ a(x̃a)

f̃ b(x̃a, x̃b)

]
,

y = h̃(x̃a),

z = g̃(x̃a, x̃b). (15)
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We now note that if the following condition

dim{∇O(x0)} = dim{∇O(x0),∇F (x0)} (16)

holds locally for every x0 ∈ U ⊆ X , then, for some x̃ = T (x),
we have that g̃(x̃) ≡ g̃(x̃a, x̃b) ≡ g̃(x̃a) for all x ∈ U . Conse-
quently, the system is functionally observable given that

g̃(x̃) ≡ g̃(x̃a) = g(T−1(x̃)) (17)

depends only on x̃a, which is the state vector corresponding to
the observable subsystem.

Condition (16) provides a sufficient condition for the local
functional observability of the nonlinear system (1) and (9),
or the triple { f , h, g}, at x0 ∈ U . Note that this condition is lo-
cally equivalent to F (x0) ⊆ O(x0), that is, that the functional
space (the subspace to be reconstructed) should be contained
inside the observable space (the subspace reconstructible from
the measurement function). The following theorem provides
a condition for the functional observability of a nonlinear
system that is equivalent to condition (16), but easier to im-
plement since it does not require calculation of the functional
space F (x0) and the involved higher-order Lie derivatives
of g.

Theorem 2. The nonlinear system (1) and (9), or the triple
{ f , h, g}, is locally functionally observable at x0 if there exists
a neighborhood U ⊆ X of x0 such that

dim{∇O(x0)} = dim{∇O(x0),∇g(x0)} (18)

holds for every x0 ∈ U ⊆ X , where O(x) is the observable
space.

Proof. See Appendix A.
The functional observability condition (18) establishes an

easy-to-implement test that can be directly verified on the sys-
tem’s equations, that is, functions { f , h, g}. We note that, even
though its derivation is based on the system decomposition
(15) presented in (Theorem 97 in [53]), this condition does
not require any system transformation or prior knowledge
of its equivalence transformation map T (x). This provides a
significant advantage to analyze the limitations in subspace
reconstruction of dynamical systems where deriving the trans-
formation map T (x) and its inverse can be computationally
intensive, such as the Epileptor model studied in Sec. V.

If the triple { f , h, g} is given by linear functions Ax, Cx,
and Fx, where A ∈ Rn×n, C ∈ Rq×n, and F ∈ Rr×n, then the
observable space O(x) is defined by the row space of the
observability matrix (6) and the functional observability of a
linear system can be verified using the following rank condi-
tion derived in [47,60]:

rank(∇O) = rank

([∇O
F

])
. (19)

If the full-state vector is sought to be reconstructed [i.e.,
g(x) = x], then dim{∇g(x)} = n and, therefore, the functional
observability condition (18) reduces to the complete observ-
ability condition (5). Likewise, in the linear case, complete
observability is a special case of functional observability by
considering F = In, where In is the identity matrix of size
n, which reduces condition (19) to the classical condition
rank(∇O) = n.

As an illustrative example, consider a dynamical system
(1) and (9), or equivalently the triple { f , h, g}, defined by

f (x) =
⎡
⎣ 2 x1

x2 + x3√
x1

2x3

⎤
⎦, h(x) = x2, g(x) = x2 + x3√

x1
, (20)

where x = [x1 x2 x3]T ∈ X and X = {x ∈ R3 | x1 �= 0} is the
region of analysis. Following Theorem 2, we first need to
determine a basis for the observable and functional spaces
according to Definitions 2 and 4,

∇O(x) = ∂

∂x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(x)

L f h(x)

L2
f h(x)

L3
f h(x)

L4
f h(x)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

− 1
2

x3

x3/2
1

1 1√
x1

− x3

x3/2
1

1 2√
x1

− 3
2

x3

x3/2
1

1 3√
x1

−2 x3

x3/2
1

1 4√
x1

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

∇g(x) =
[
− 1

2
x3

x1
3/2 1 1√

x1

]
. (22)

Rows {3, 4, 5, ...} of ∇O(x) are linear combinations of the
first and second rows, leading to dim{∇O} = 2, ∀x ∈ X . This
shows that, according to Theorem 1, the pair { f , h} is not
(completely) observable, i.e., it is not possible to reconstruct
the entire state vector x from y = x2. However, the triple
{ f , h, g} may still be functionally observable. By inspection, it
is easy to see that ∇g(x) is a linear combination of the rows of
∇O(x), therefore satisfying condition (18) of Theorem 2 for
all x ∈ X . This example illustrates that, even though a system
is locally unobservable, it can still be locally functionally
observable.

A. Functional observability and embedding

Complete observability establishes a sufficient condition
for the existence of the (local) left-inverse map �−1 : E �→ X
from an embedding space to the original state space. Here,
we generalize this relation by showing that functional ob-
servability establishes a sufficient condition for the existence
of a map � : E �→ G(X ) from the embedding space to the
subspace sought to be reconstructed. Furthermore, we demon-
strate how to construct such a map if the system is functionally
observable.

Let { f , h, g} be a functionally observable system with an
observable space O(x) of local dimension (11). Following
(Theorem 97 in [53]), there exists a diffeomorphism T on
U such that the transformation x̃ = T (x) partitions the state
vector as in (12). Consequently, the triple { f , h, g} can now
be represented by { f̃ , h̃, g̃} as in (15). The diffeomorphism T
is not unique and can be designed by partitioning it as

T (x) =
[

x̃a

x̃b

]
=

[
�a(x)
�b(x)

]
, (23)

for some neighborhood U ⊆ X of x0. The functions �a(x)
and �b(x) can be designed as follows:

(1) Construct a map �a(x) by selecting a minimum set
of linearly independent functions of form (3) such that
dim{∇�a(x)} = dim{∇�a(x),∇O(x)} = k, ∀x ∈ U ⊆ X .
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FIG. 3. Commutative diagram of the composition map � (blue
path), which maps an embedding space E to the subspace sought to
be reconstructed G(U ).

(2) Construct an arbitrary map �b(x) such that
dim{∇T (x)} = n, ∀x ∈ U ⊆ X , i.e., ∇T (x) has full rank.

Remind that �a(x) and �b(x) are only valid around a local
neighborhood U ⊆ X of some state x0 ∈ X . The transforma-
tion �a(x) : U �→ E defines a basis for the embedding space
E , which depends only on y and its successive derivatives
[see Eq. (7)]. Since y = h(x) = h̃(x̃a) is a function only of x̃a

[following Eq. (14)], then step 1 guarantees that x̃a ∈ E . Step
2 constructs an arbitrary function �b(x) : U �→ Ec that defines
a basis to the complement of the embedding space Ec in order
to accomplish the inverse function theorem. Therefore, the
designed diffeomorphism T : U �→ E ∪ Ec has a local inverse
map T−1.

Since the system is functionally observable, then relation
(17) holds and z = g(x) = g̃(x̃a), which depends only on x̃a ∈
E . Therefore, there exists a map g̃ : E �→ G̃(E ) from the em-
bedding space E to the functional sought to be reconstructed
z = g̃(x̃a). Equivalently, z = g(x) can be reconstructed from
the composition map � = g ◦ T−1, which can be locally
constructed from the known function g and the designed trans-
formation T according steps 1 and 2. Finally, if the system is
functionally observable, then

[� : E ∪ Ec T−1

�−−→ U g�−→ G(U )] ≡ [g̃ : E �→ G̃(E )]. (24)

Figure 3 illustrates a commutative diagram of the compo-
sition map (24). Clearly, if k = n, then the relation between
complete observability and embedding follows as a special
case,

T (x) = �a(x) and � : E �−1
a�−−→ U g�−→ G(U ). (25)

Building on the previous example, given that the system
(20) is functionally observable, we demonstrate how to com-
pute (reconstruct) the sought vector z from the measurement
signal y. To this end, we first decompose the system as in (12)
by constructing a diffeomorphism T (x) partitioned as (23),

x̃ :=
⎡
⎣x̃a

—
x̃b

⎤
⎦ = T (x) =

⎡
⎢⎢⎣

h(x)
L f h(x)
——-
�b(x)

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

y
ẏ

—–
�b(x)

⎤
⎥⎥⎦, (26)

where x̃a ∈ R2, x̃b ∈ R1, and dim{∇O} = k = 2. Note that
�a(x) = [y ẏ]T defines a map between the observable vector
and the differential embedding coordinates, while �b(x) is
chosen arbitrarily to accomplish the inverse function theorem.
Therefore, the diffeomorphism

x̃ = T (x) =

⎡
⎢⎢⎣

x2

x2 + x3√
x1

———
x1

⎤
⎥⎥⎦ (27)

has the inverse function

x = T−1(x̃) =

⎡
⎢⎢⎣

x̃3

x̃1

————
(x̃2 − x̃1)

√
x̃3

⎤
⎥⎥⎦, ∀x ∈ X . (28)

Consequently, z can be computed as

g̃(x̃) = g(T−1(x̃)) = x̃2 = x2 + x3√
x1

= ẋ2 = ẏ. (29)

As expected, we have that g̃(x̃a, x̃b) ≡ g̃(x̃a) and, therefore,
g(T−1(x̃)) depends only on x̃a, which is a function of y and its
subsequent derivatives.

IV. OBSERVABILITY OF CHAOTIC SYSTEMS

We explore the functional observability property in dif-
ferent types of chaotic dynamical systems with contrasting
observability properties, considering different measurement
functions as well as functionals sought to be reconstructed.
Following the theoretical conditions established in Sec. III,
functional (or full-state) reconstruction is possible when the
system is functionally (or completely) observable. Beyond
this binary characterization of the system observability (i.e.,
either the system is or is not observable), we show that the
accuracy of the reconstructed functional (full-state) vector is
dependent on the proximity of the system state to functionally
(completely) unobservable regions in the state space. The
reconstruction errors are related to the sensitivity of the maps
�−1 and � to small perturbations [e.g., noise in the measured
signals y(t )], and can be quantified by the absolute condition
number of the inverse maps between the embedding coordi-
nates and the reconstructed state,

κ (�−1) = ‖(∇�)−1‖, κ (�) = ‖∇g · (∇T )−1‖. (30)

We address the condition numbers κ (�−1) and κ (�) as the
coefficients of complete and functional observability, respec-
tively; a nomenclature that was previously adopted for κ (�−1)
in studies restricted to complete observability [16,22,35,38].
Results show that these coefficients can be employed to assess
the quality of the (functional) state reconstruction as x(t )
approaches unobservable regions: the larger κ , the higher the
reconstruction error in the corresponding states.

In what follows, chaotic systems were numerically inte-
grated using a fourth-order Runge-Kutta integrator with time
step dt = 0.01s for a total simulation time T = 1100s, where
the initial transient Ttrans = 1000s was discarded and initial
conditions were randomly drawn from a normal distribu-
tion [i.e., xi(0) ∼ N (0, 1), i = 1, . . . , n]. Codes are publicly
available at GitHub [61] The symbolic construction of Lie
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FIG. 4. Reconstruction error (red line) of the Lorenz system as a
function of time for the (a) entire state vector x(t ) and (b) functional
vector z(t ) = x1(t ) sought to be reconstructed. Time series of x1(t )
(blue line) is shown for reference.

derivatives (3) spanning the observable space O(x), as well
as maps � and �, is illustrated in these codes. Note that
� is composed by the minimum set of linearly independent
functions (3) spanning O(x). Therefore, as a special case for
q = 1 and ν = n − 1, �(x) = O(x).

A. Lorenz system: Observability and symmetry

The well-known Lorenz’63 system is given by

ẋ1 = σ (x2 − x1),
ẋ2 = Rx1 − x2 − x1x3,

ẋ3 = x1x2 − bx3,

(31)

where (R, σ, b) = (28, 10, 8/3) is a set of parameters that
leads to a chaotic attractor [Fig. 1(c), right]. Here, we consider
that only the state variable x1 is available for measurement
[i.e., y = h(x) = x1] . The observability of the pair { f , h} can
thus be verified through the observability matrix

∇O(x) =
⎡
⎣ 1 0 0

−σ σ 0
σ 2 + σ (ρ − x3) −σ (σ + 1) −σx1

⎤
⎦. (32)

Since det (∇O(x)) = −σ 2x1, then, following condition (5),
the system is locally observable at every state x ∈ R3 except
at x0 = [0 x2 x3]T, where dim{∇O(x0)} < 3.

Given the differential embedding coordinates E = {y, ẏ, ÿ}
[Fig. 1(b)], the entire state vector x can be reconstructed by
computing the inverse map O−1(y) : E �→ X [where, as a spe-
cial case, �(x) = O(x)]. Theoretically, existence of this map
is not guaranteed only when the system is locally unobserv-
able. In this example, the unobservable subspace corresponds
to the exact region in the state space where x1 = 0, which
has null Lesbegue dimension. However, in practice, this map
degenerates as the system trajectory approaches the neighbor-
hood of x1 = 0, corresponding to a gradual loss of system
observability [22]. Figure 4(a) illustrates the reconstruction
error ex(t ) = ‖x(t ) − x̂(t )‖, where x̂ = O−1(y, ẏ, ÿ) is the
reconstructed (estimated) state vector, considering a small

FIG. 5. Coefficient of (a) complete observability and (b) func-
tional observability [g1(x) = x2] computed over the state space of
the Lorenz attractor.

additive noise to the measured time series: y(t ) = h(x, t ) +
v(t ), v(t ) ∼ N (0, 10−2). Note that noise is largely amplified
and the reconstruction error increases significantly as the sys-
tem state approaches the unobservable region (x1(t ) → 0).

Despite the unobservability at x1 = 0, the system { f , h, g1}
is always functionally observable with respect to the func-
tional g1(x) = x2, where row (∇g(x)) ⊆ row (∇O(x)), ∀x ∈
R3. In practice, z = g1(x) can be reconstructed from the com-
position map (24) given by

x̃ =

⎡
⎢⎢⎣

y
ẏ

—
x3

⎤
⎥⎥⎦, T−1(x̃) =

⎡
⎢⎢⎣

x̃1

x̃1 + x̃2
σ

———
x̃3

⎤
⎥⎥⎦, g̃(x̃) = y + ẏ

σ
. (33)

Figure 4(b) shows the reconstruction error ez(t ) =
‖z(t ) − ẑ(t )‖, where ẑ = �(y, ẏ). As expected, since the
system is functionally observable for all x ∈ R3, the recon-
struction error ez(t ) of the functional is not affected by the
unobservable region x1 = 0 and remains bounded [see also
Fig. 1(d)].

Figure 5 presents the coefficients of observability for the
Lorenz system. The coefficient of complete observability in-
creases as x1(t ) → 0, indicating a substantial increase of
sensitivity of the local reconstruction map �−1(x) to small
perturbations, as observed in the large reconstruction errors
ex(t ) for x1(t ) → 0 in Fig. 4(a). On the other hand, the coeffi-
cient of functional observability remains well-conditioned and
constant throughout the entire attractor, which is supported by
the insensitivity to noise in the reconstruction error ez(t ) in
Fig. 4(b). These results demonstrate that these coefficients can
provide proxy indicators of the “practical” consequences of
the lack of (functional) observability of these systems as the
state approaches (functionally) unobservable regions, where
local reconstruction maps become highly sensitivity to noise
and, therefore, fail to provide an accurate reconstruction of the
original state space.

The Lorenz system is marked by a clear relation be-
tween observability and symmetry. Since h(x) = x1 is directly
measured and g(x) = x2 is functionally observable, one can
observe (reconstruct) the dynamics in the (x1, x2) plane of
the Lorenz attractor. The functional observability of this plane
is directly related to the global invariance of the Lorenz at-
tractor under the map [x1 x2 x3]T �→ [−x1 − x2 x3]T [22].
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FIG. 6. Cord system. (a) State space of the Cord attractor.
(b) Time series of the slow phase θs(t ). (c) Time series of the fast
phase θf (t ).

Given that x3 is invariant under this symmetry, one can only
distinguish which “wing” of the chaotic attractor the system
state belongs to at a given time instant t by accurately observ-
ing variables x1 and x2 [Fig. 1(d)]. Therefore, the functional
observability of the triple { f , h, g1} provides the necessary
and sufficient information for this characterization based on
the measured time series y(t ). Moreover, it is evident that the
lack of complete observability in the system { f , h, g1} is due
to variable x3, which can be rigorously verified by noting that
the functional observability condition (18) is only satisfied for
a triple { f , h, g2}, g2(x) = x3, if x1 �= 0.

B. Cord system: Fast and slow dynamics

The Cord system, a variation of the Lorenz’84 system, is
given by [62]

ẋ1 = −x2 − x3 − ax1 + aF,

ẋ2 = x1x2 − bx1x3 − x2 + G,

ẋ3 = bx1x2 + x1x3 − x3,

(34)

where (a, b, F, G) = (0.258, 4.033, 8, 1). The chaotic attrac-
tor is illustrated in Fig. 6(a). The system dynamics is marked
by two oscillation modes with a clear timescale separation
[63]. Oscillations in the slow timescale can be approximately
monitored by the “slow phase” variable θs = x1 [Fig. 6(b)], in
which a full revolution of the system is completed every time
the trajectory approaches the cord filament close to the ori-
gin (defining the Poincaré section P = {x : x1 = 0, ẋ1 > 0})
[40]. Oscillations in the fast timescale, on the other hand, can
be monitored by the “fast phase” variable θf = tan−1(x2/x3)
[Fig. 6(c)].

Here, we consider the measured time series y = h(x) = x2

and that the slow and fast phase variables are the functionals
sought to be reconstructed, i.e., g1(x) = θs and g2(x) = θf .
Figure 7 shows the coefficients of observability for the Cord
system. Full-state reconstruction of the Cord system from the
measured time series is not possible for a considerable range
of states in the system trajectory [Fig. 6(a)], defined by the
plane

det (O(x)) = b2x3(−aF + 2x2
1 + x2 + 2x3) + 2b3x2

1x2

− b(Gx1 − aFx2 + x2
2 + 3x1x3) + x2

2

= 0, (35)

FIG. 7. Coefficient of (a) complete observability, (b) functional
observability with respect to g1(x), and (c) functional observability
with respect to g2(x) computed over the state space of the Cord
attractor.

and is expected to be ill conditioned when the system state is
close to the vicinity of this plane. The unobservable plane can
be visualized in the (x2, x3) section of the attractor in Fig. 7(a).

Similarly to the full-state reconstruction problem, the re-
construction of the system’s slow timescale [i.e., g1(x)] from
time-series data of a state variable dominated by a fast
timescale (e.g., x2) is hampered by the lack of observability
in a large subspace of the state space, as indicated by the
regions with very large coefficients of functional observability
in Fig. 7(b). Contrariwise, reconstruction of the fast timescale
[i.e., g2(x)] from x2 is well conditioned throughout the entire
system trajectory, except as (x2, x3) → (0, 0) [Fig. 7(c), red
circle]. The lack of functional observability at this singularity
region in the attractor is not surprising: it corresponds exactly
to the region in which the fast phase variable θf is a (locally)
ill-defined function,

∇θf (x) =
[
0 − x3√

x2
2+x2

3

x2√
x2

2+x2
3

]
, (36)

and the fast phase “collapses”, undergoing an inversion of its
rotational direction [62].

This example illustrates that, even though the system may
have a (relatively) large unobservable region Xu ⊂ X , one
may find that, even in this unobservable region, the system
can still be functionally observable with respect to some
functional g(x) aside from a significantly smaller subregion
X ′

fu ⊂ Xu. In this example, the region of interest X is the
Cord attractor A, the “completely” unobservable region Xu

is the 2-dimensional plane defined by (35), and the func-
tionally unobservable region is the 1-dimensional line Xfu =
{(x1, 0, 0) | x ∈ A}.
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FIG. 8. Coefficients of (a) complete observability, (b) functional observability with respect to g1(x), and (c) functional observability with
respect to g2(x) computed over the state space of the HR neuron model, considering the measured time series y = h2(x). Simulations are
presented for (T, Ttrans ) = (2500, 1500).

C. Hindmarsh-Rose system: A neuron model

Building up from the chaotic benchmarks, we now con-
sider a phenomenological model of neuron dynamics given
by the Hindmarsh-Rose (HR) model [64],

ẋ1 = x2 − ax3
1 + bx2

1 − x3 + I,
ẋ2 = c − dx2

1 − x2,

ẋ3 = r(sx1 − xR) − x3,

(37)

where x1 is the membrane potential, x2 is the fast recov-
ery current, and x3 is the slow adaptation current. Providing
both a simplification of the biophysical Hodgkin-Huxley
neuronal model and a generalization of the FitzHugh-
Nagumo model, the HR model can reproduce a wide range
of dynamical behaviors, including quiescence and (irreg-
ular) spiking and bursting [65]. Moreover, depending on
the bifurcation parameters, this system can also shift to
chaotic regimes, as investigated both computationally [65]
and experimentally [66]. Here, we consider the set of pa-
rameters lying in the chaotic regime: (a, b, c, d, I, r, s, xR ) =
(1, 3, 1, 5, 3.25, 0.001, 4,−8/5).

The measurement functions h1(x) = x1, h2(x) = x2, and
h3(x) = x3 yield observability matrices with determinants
given by, respectively, det (O1(x)) = r − 1, det (O2(x)) =
4d2x2

1, and det (O3(x)) = r2s2. Thus, for the considered
set of parameters, { f , h1} and { f , h3} are locally observ-
able everywhere, while { f , h2} becomes locally unobservable
only at x1 = 0 [30]. Accordingly, the coefficients of com-
plete observability show a considerable increase as x1 → 0
[Fig. 8(a)]. One might wonder if, despite the lack of complete
observability at x1 = 0, the system { f , h2, gi} is still function-
ally observable with respect to, for example, g1(x) = x1 or
g2(x) = x3. However, unlike the previous examples, the HR
model remains locally unobservable at x1 = 0 with respect to
both functionals, as observed in the coefficients of functional
observability shown in Figs. 8(b) and 8(c). Nevertheless, note
that the neighborhood of x1 = 0 where the reconstruction
map is (locally) ill conditioned is substantially smaller for
{ f , h2, g1} compared compared to { f , h2, g2}. These results
suggest that reconstruction of g1(x) is more reliable than g2(x)
in the presence of small perturbations as x1 → 0.

Examining the local maps yield

∇g1∇O−1
2 = [− 1

2dx1
− 1

2dx1
0
]
, (38)

∇g2∇O−1
2 =

[
1 − ξ

2dx2
1

x1+ξ

2dx2
1

1
2dx1

]
, (39)

where ξ = I + x2 − x3 − 4ax3
1 + 3bx2

1. The presence of the
terms x1 and x2

1 in the denominator of Eqs. (38) and (39)
elucidate the results shown in Figs. 8(b) and 8(c). The sensi-
tivity to small perturbations in the reconstruction of functional
g1(x) is only inversely proportional to the distance between
x1 and the unobservable region, whereas the sensitivity of
the reconstruction of g2(x) is inversely proportional to the
quadratic of this distance—leading to a highly ill-conditioned
map for |x1| 	 1. This theoretical (local) analysis is also sup-
ported by computing the reconstruction maps � : E �→ G(X )
and evaluating the corresponding reconstruction performance
for each functional. Figure 9 shows that, in the presence of
small measurement noise v(t ) ∼ N (0, 0.01), reconstruction
of ẑ2 = g2(x) yields very poor results, with a high root-mean-
square error (RMSE) of 0.4006, compared to the RMSE of
0.0242 for the reconstructed vector ẑ1 = g1(x).
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FIG. 9. Reconstructed functional states (a) ẑ1 and (b) ẑ2 as a
function of time (red lines) for the HR neuron model. Time series
of z1 = g1(x) and z2 = g2(x) (blue lines) are shown for reference.
Simulations are presented for (T, Ttrans ) = (2500, 1500).
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As in the Cord example, reconstruction of the slow
timescale dynamics [g2(x) = x3 in the HR model] from time-
series data corresponding to a variable dominated by the fast
timescale [h2(x) = x2] is marked by the presence of unobserv-
able regions, which significantly hamper the quality of the
reconstruction in the vicinity of these regions. On the other
hand, measuring a variable dominated by the fast timescale
can still provide accurate reconstruction of other variables
dominated by the same timescale [g1(x) = x1]. This relation
between the timescale separation and functional observability
of a system, with respect to variables belonging to the same
or different timescales than the measured variable, can be
observed both in the Cord and HR models.

V. EARLY WARNING OF SEIZURES

Characterizing and predicting epileptic seizures are long-
standing challenges in clinical neuroscience [67,68]. Accurate
and interpretable methods for the prediction of seizure events
will drastically improve epilepsy management, providing
early warnings to alert patients or trigger interventions [69].
On top of black-box and data-greedy deep learning algo-
rithms, dynamical-based topological analysis can concur in
discovering universal routes to epilepsy and foster new meth-
ods for early warning, many of which can be based on the
embedding of time-series data [45,70]. We investigate the
observability and embedding properties of such application by
considering a dynamical model describing seizure dynamics
in the brain. The model, termed Epileptor [45], involves bifur-
cation dynamics to reproduce resting, spiking, and bursting
behaviors observed in electroencephalogram (EEG) signals,
modeling the multiple timescale oscillations recorded during
epileptic seizures. The Epileptor is defined by [45]

ẋ1 = x2 − f (x1, x4) − x3 + I1,

ẋ2 = r2 − 5x2
1 − x2,

ẋ3 = 1

τ0
(4(x1 − r1) − x3),

ẋ4 = −x5 + x4 − x3
4 + I2 + 0.002g(x1) − 0.3(x3 − 3.5),

ẋ5 = 1

τ2
( − x5 + f2(x4)), (40)

where (r1, r2, I1, I2, γ ) = (−1.6, 1, 3.1, 0.42, 0.01) are the
system parameters, (τ0, τ2) = (2857, 10) are the timescale
constants, and the coupling functions are given by

g(x1) =
∫ t

t0

exp ( − γ (t − τ ))x1(τ )dτ,

f1(x1, x4) =
{

x3
1 − 3x2

1, x1 < 0,

(x4 − 0.6(x3 − 4)2)x1, x1 � 0,

f2(x4) =
{

0, x4 < −0.25,

6(x4 + 0.25), x4 � −0.25.
(41)

This model consists of three subsystems with different
timescales: (x1, x2) governs the system’s oscillatory behavior,
(x4, x5) introduces the spikes and wave components typical
in seizure-like events, and x3 represents a slow permittivity
variable that determines how close the system is to the seizure

threshold. Due to the slow-fast timescale separation induced
by τ0, x3 is usually interpreted as a quasi-steady-state param-
eter [45], enabling bifurcation analysis.

A. Functional observability analysis

Monitoring the permittivity variable x3 provides an early-
warning signal of a dynamical transition from normal to
seizure states in the Epileptor model. Despite the phenomeno-
logical nature of the model, this permittivity variable is most
likely related to slowly changing biophysical parameters (e.g.,
extracellular processes or ionic concentrations) [45]. Given
that such parameters are hardly measurable in biomedical
setups, we investigate whether it is possible to infer the per-
mittivity variable [i.e., the functional z = g(x) = x3] from
more easily accessible measurements, such as EEG recordings
of seizure-like events (modeled as the measurement signal
y = h(x) = x1 + x4 due to its close resemblance to actual
EEG data [45]). Figure 10(a) illustrates the dynamics of the
functional z(t ) and output y(t ). Under the assumption that the
Epileptor is a proper representation of the underlying process,
a functional observability analysis of model (40) can establish
if it is feasible to reconstruct this functional and, therefore,
provide an early-warning signal of seizure events from EEG
data.

Due to the model complexity, an analytical derivation of
the functionally unobservable regions of the Epileptor model
is hardly tractable. Instead, Figs. 10(b) and 10(c) presents the
coefficients of functional observability of the triple { f , h, g}
computed over the system’s attractor. The system alternates
between two regions of the attractor, the normal state and the
seizure state, as x3 crosses predetermined thresholds marking
bifurcation points (i.e., points in the parameter space where
qualitative changes in system dynamics occur). While the co-
efficients κ are fairly well conditioned in the seizure region of
the attractor (κ < 102), the normal region has relatively larger
coefficients (κ ≈ 104) with two remarkable ill-conditioned
singularities (κ > 107) highlighted in Fig. 10(b). This indi-
cates the presence of two functionally unobservable states
in the normal region of the Epileptor’s state space, one of
them located exactly at the saddle-node bifurcation point from
normal to seizure regime (x3 ≈ 2.9, ẋ3 < 0 [71]). Introducing
linear additive process noise to the model (40) promotes a
larger exploration of system’s state space, uncovering other
functionally unobservable singularities in the normal region
[Fig. 10(c)], including a few in the seizure region. Nonethe-
less, the analysis remains qualitatively similar between the
deterministic and stochastic systems: both show considerably
larger values of κ in the normal region compared to the seizure
region [see also Fig. 12(b)]. Consequently, high errors are
expected in the reconstruction of the permittivity variable
from the measured signal y(t ) during the normal regime of
the Epileptor.

B. Early-warning signals and observability

At first, large coefficients of functional observability in
the Epileptor’s normal region indicate that reconstructing
the slow permittivity variable from EEG data is particularly
challenging. However, our analysis established an interesting
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FIG. 10. Functional observability of the Epileptor model. (a) Time series of the measured signal y(t ) (modeling EEG data) and the
functional z(t ) (slow permittivity variable) for the deterministic model. [(b), (c)] Coefficients of functional observability computed over the
state space of the Epileptor’s attractor, considering (b) deterministic and (c) stochastic representations of the Epileptor. Red arrows point
highly functionally unobservable states in the attractor. Transitions from seizure (S) to normal (N) regime in the Epileptor are indicated in the
plots. Simulations are presented for (T, Ttrans, dt) = (104, 0, 0.01) and x(0) = [0 −5 3 0 0]T. For the stochastic model, the model (40) was
numerically integrated using Euler-Maruyama method where additive process noises N (0, 0.01) and N (0, 0.1) were introduced to subsystems
(x1, x2) and (x4, x5), respectively.

relation between the Epileptor’s observability and topological
features: normal (seizure) regions of the attractor correspond
to regions with large (small) coefficients of functional observ-
ability. This relation can be explored to develop early-warning
indicators of seizure-like events in simulated and empirical
data.

Typical early-warning signals of critical transitions studied
in the literature, such as variance and autocorrelation, are
computed from time-series data [72]. Evaluating the system’s
observability, on the other hand, requires prior knowledge
of the system’s equations (1), often absent for real-world
systems. Theory states that unobservable regions in the state
space are associated to the loss of dimension of the observable
space [i.e., condition (18) does not hold]. As a consequence,
closer to unobservable regions, embedded trajectories squeeze

into a small low-dimensional neighborhood due to the loss of
diffeomorphism between the embedding space and the origi-
nal state space [15]. This phenomenon is illustrated in Fig. 11
for the embedded attractors of different dynamical systems
with poorly observable regions as well as real-world data.
Such local topological feature can be assessed by monitoring
the smallest singular value σde computed from an embedded
time series with embedding dimension de (see Appendix B for
details). As σde → 0, the effective dimension of the embedded
time series drops, implying that the diffeomorphism between
the embedded and original attractors is not locally preserved
(and, therefore, the system is locally unobservable). In what
follows, we apply the coefficient σde , hereby referred to as
“time-series-based singular value decomposition” (tSVD), as
a proxy measure of the system’s observability computed from
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FIG. 11. Embedded attractors of different dynamical systems.
Differential embedding coordinates of the (a) Cord system and
(b) Rössler system. Time-delay embedding coordinates of the
(c) Epileptor model and (d) human EEG data. Unobservable regions
in subplots (a)–(c) are pointed out by arrows.

time-series data, which, as we show next, has a high correla-
tion with the coefficients of observability [Fig. 12(d)].

Figures 12(a)–12(c) shows the coefficient of functional
observability and the tSVD for a given time series y(t ). For
the deterministic model, κ and σde are anticorrelated: as κ

increases (decreases) during normal (seizure) regimes of the
Epileptor, the tSVD decreases (increases). The anticorrelation
is confirmed by a Pearson’s correlation index of ρ = −0.96
between both coefficients in logarithmic scale [Fig. 12(d),
top]. As expected, when the Epileptor switches to the normal
region, which is poorly functionally observable (κ > 104),
the smallest singular value σde tends to zero (σde ≈ 10−16),
implying an effective loss of dimension of the embedded
time series. For the stochastic model, the broader state-space
exploration of this system yields a higher variation of κ and
σde . Nevertheless, the same anticorrelation between κ and σde

can be observed by smoothing the coefficients over a moving
average window. On average, κ (σde ) increases (decreases)
during the normal regime of the Epileptor, yielding a Pear-
son’s correlation index of ρ = −0.82 [Fig. 12(d), bottom].

The behavior of the tSVD measure is remarkably aligned
with that of typical early-warning signals used to detect criti-
cal transitions from time-series data [74], including those for
seizure warning from EEG data [75]. Indeed, there is a sharp
increase of the tSVD close to the dynamical transition from
normal to seizure state [Fig. 12(c)]. This may be attributed
to the Epileptor’s unobservability at the saddle-node bifur-
cation point, as pinpointed in Sec. V A. Figure 11(c) shows
that the embedded trajectories squeeze to singularity point at
the unobservable (bifurcation) point—a feature that can be
further explored for early-warning detection of seizure events.
This topological characteristic of the embedded attractor is
present not only in the Epileptor model but also in real data, as
shown in Fig. 11(d) for the embedding space constructed from

human intracranial EEG data (public data available at [73];
sampling protocols and preliminary analysis are described
in [68]). Further computing the tSVD in human EEG data
provides interesting results as illustrated for a representative
patient in Fig. 13: The seizure onset is often preceded by
a decrease of σde followed by a sharp increase close to the
critical transition, a characteristic that may be explored for
real-time monitoring and detection of seizure events. The
same pattern was observed for all patients in the considered
dataset, although a thorough statistical investigation of the
tSVD as a early-warning signal of seizure events (and other
critical transitions in complex systems) is left for future work.

VI. DISCUSSION

The established relation between observability and embed-
ding theories opens a new research direction of special interest
to (nonlinear) time-series analysis. Our theory formally de-
termines the conditions for reconstructing the system state
from time-series data, often low-dimensional or univariate. In
fact, measuring every relevant state variable is in practice con-
strained by physical limitations or operational costs. Hence,
indirect estimation of unmeasured variables is required for
the observation of physical, biological, ecological, and other
complex dynamical systems.

For applications, which require reconstructing only a few
key state variables or lower-dimensional subspaces, we for-
malize the notion of functional observability for nonlinear
systems. Our results can provide a priori knowledge of the
reconstruction limitations and embedding features, depending
on the available time-series data. We show that, even if a
system is not completely observable (reconstructible), it may
still be functionally observable with respect to the variables or
subspace of interest. This provides useful insights about the
dynamical system’s properties and can be used to guide exper-
imental design and data-processing methods according to the
investigated hypotheses and available measurement processes.

In the context of systems biology, observing system dy-
namics is often hampered by technical limitations that prevent
the simultaneous measurement of multiple biophysical vari-
ables (e.g., multiple ion channels in single neurons). By
identifying conditions for accurate inference of variables from
time-series data, the presented functional observability analy-
sis can thus guide experimental design. Consider, for example,
the HR neuron model investigated in Sec. IV C. The fast
recovery current and the slow adaptation current represented
by the system’s state variables are related to transport rates
of fast (e.g., sodium and potassium) and slow (e.g., calcium)
ion channels, respectively [66]. Our analysis reveals structural
limitations in the HR neuron model that prevent an accurate
inference of calcium flux from measures of sodium/potassium
fluxes. The opposite, instead, seems feasible, given that the
system is completely observable everywhere when inferring
sodium/potassium flux from measures of calcium flux.

Likewise, in a biomedical context, evaluating the func-
tional observability of the Epileptor model shows that
reconstructing the slow permittivity variable from EEG data
(y = x1 + x4) is complicated by the system’s poor observ-
ability in the attractor’s normal state (Sec. V). Contrariwise,
independently measuring the state variables x1 and x4 (i.e.,
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FIG. 12. Observability and early-warning signal of the deterministic (left) and stochastic (right) Epileptor models. (a) Time series of the
functional z(t ) and the measured signal y(t ). In the stochastic case, noise can trigger more transitions for the same time interval. (b) Coefficient
of functional observability κ as a function of time. (c) tSVD σde as a function of time, computed over a moving time-series window with
length N = 5s and embedding parameters (de, τ ) = (5, 0.1s). Orange curves show the smoothed coefficients computed over a moving average
window with length Navg = 150 s, sampled every 30 s. (d) Correlation between κ and σde for the deterministic (top) and stochastic (bottom)
system.

y = [x1 x4]T) yields well-conditioned coefficients of observ-
ability throughout the entire attractor. This suggests that
applying data preprocessing methods in EEG time series to
decouple the oscillatory behavior (modeled by x1) from the
spikes and wave components (modeled by x4) may lead to
better performance in reconstructing the permittivity variable
for early-warning of seizures.

FIG. 13. Early warning of seizure events in human intracranial
EEG data. (a) Intracranial EEG data (channel 2) of patient 10 in
database [73]. (b) tSVD σde computed over a moving time-series
window with parameters (de, τ, N ) = (5, 0.05 s, 1 s). Seizure onset
(informed by expert opinion) is marked by the dashed line.

In addition to applications, the proposed theory opens new
theoretical research directions for many disciplines. First, the
Cord and HR neuron examples show interesting links be-
tween the functional observability of a system and its intrinsic
timescales. In both cases, high reconstruction errors stem from
estimating slow variables from measures of fast variables.
Future works can formally explore this interesting relation,
complementing the analysis for linear systems [76], by ex-
tending the notion of functional observability to (nonlinear)
differential-algebraic systems of form

ẋ1 = f 1(x1, x2),
0 = f 2(x1, x2), (42)

where a strong timescale separation arises from a quasi-
steady-state assumption (ẋ2 ≈ 0).

Second, our analysis of the Epileptor model shows a po-
tential relation between the system’s observability and its
bifurcation points. Whether the loss of observability close to
critical transitions is a universal behavior or a particularity
of the Epileptor remains to be investigated. In ecological
networks, time-series data of variables that make the system
completely observable often lead to earlier warning of critical
transitions [32]. Our time-series-based coefficient tSVD, aside
from indirectly quantifying observability, may also capture
features related to the central limit theorem [77] (that, close to
bifurcation points, dynamical systems can be locally reduced
to low-dimensional normal forms). However, it is still to be
investigated whether our framework only applies to transitions
induced by local bifurcations, or it can be extended to other
types like boundary crisis involving chaotic attractors [78,79].
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The potential use of tSVD for early-warning detection of
critical transitions in complex systems, similar to other signals
like increasing variance and autocorrelation [74,80], may lead
to promising theoretical developments and applications.

Third, our theory fosters data-driven methods for the auto-
mated construction of the embedding space, and its map � to
the original system’s attractor, in applications where analytical
analysis of the model is untractable (e.g., due to unknown
parameters or high dimensionality). This would thus extend
previous works on automated embedding construction [81]
and full system identification from embedding coordinates
[82]. Although our application examples focus on univariate
measurements and functionals, the theory is formalized for
multivariate cases (q, r � 1) and can be directly applied to de-
termine the existence and conditioning of such map, assessing
how good the reconstruction is expected to be (locally).

Finally, for the study of high-dimensional problems, our
results call for extensions based on graph-theoretical con-
ditions [31,37,52] or network motifs [35]. In fact, as the
computation of Lie derivatives is particularly demanding for
high-dimensional systems, scalable strategies have yet to be
developed to investigate the functional observability of large-
scale nonlinear networks.
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APPENDIX A: PROOF OF THEOREM 2

Proof. Given sufficiently smooth functions f (x) and h(x),
we show that condition (16) holds if and only if condition (18)
holds.

Sufficiency. If condition (16) holds, then there exists some
matrices Li ∈ Rr×q, i = 1, . . . , s, such that

∇L0
f g(x) =

s∑
i=0

Li∇Li
f h(x). (A1)

Thus, condition (18) holds given that L0
f g(x) = g(x).

Necessity. If condition (18) is satisfied, then relation (A1)
holds. Right-multiplying (A1) by f (x) yields

L1
f g(x) =

s∑
i=0

LiLi+1
f h(x). (A2)

By induction, successively taking the gradient on both
sides yields

∇L1
f g(x) =

s+1∑
i=1

Li1∇Li
f h(x),

...

∇Lμ

f g(x) =
s+μ∑
i=μ

Liμ∇Li
f h(x),

(A3)

for some matrices Li j ∈ Rr×q, i = 1, . . . , s and j = 1, . . . , μ.
From Definition 2, ∇Ls+ j

f h(x) is a linear combination of

{∇L0
f h(x), . . . ,∇Ls

f h(x)}. Therefore, equations (A3) can be
expressed as

∇L j
f g(x) =

s∑
i=0

Li j∇Li
f h(x), (A4)

which implies that condition (16) is satisfied. �

APPENDIX B: COEFFICIENTS OF OBSERVABILITY
FROM TIME-SERIES DATA

The coefficients of observability (30) can be indirectly
inferred from time-series data by exploring the topolog-
ical features associated with unobservable regions in the
embedded state space. Let Y (t ) ∈ RN be the recorded
time-series data, for time instants t ∈ [0, N], and X =
[Y (t ) Y (t − τ ) . . . Y (t − (de − 1)τ )] ∈ RN×de be the corre-
sponding time-delay embedding for some embedding di-
mension de and delay τ . Methods based on singular value
decomposition of embedded time-series data were shown to
indirectly quantify the system’s local observability, by mea-
suring the geometrical complexity around some neighborhood
of the embedded attractor to identify singularities in the em-
bedded trajectories [23,83].

Here, we indirectly measure the system’s observability by
monitoring the smallest singular value σde corresponding to
the singular value decomposition X = U�V T. Note that the
subindex de corresponds to the embedding dimension. The
coefficient σde is addressed as tSVD throughout the paper. To
compare the local coefficient of functional observability κ (t )
at some time instant t to the tSVD σde (t ) (Fig. 12), σde (t ) must
be locally computed using a short time-series window close to
the time instant t . In this paper, we consider that σde (t ) is com-
puted using the embedding of a moving time-series window
of length N : {X (t − N ), . . . , X (t )}. Since numerical results
may show high variability, we can also use a second moving
average window of length Navg to smooth the computed tSVD.
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