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Theory of linewidth narrowing in Fano lasers
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We present a general theory for the coherence of Fano lasers based on a bound state in the continuum. We find
that such lasers enable an orders-of-magnitude reduction in the quantum-limited linewidth and, by introducing
mirror symmetry breaking, the linewidth can be further reduced. In contrast to ordinary macroscopic lasers,
though, the linewidth may rebroaden due to optical nonlinearities enhanced by the strong light localization. This
leads to the identification of optimal material systems. We also show that the coherence of this new type of
microscopic laser can be understood intuitively using a simple, effective potential model. Based on this model,
we examine the laser stability and deduce the dependence of the laser linewidth on the general Fano line shape.
Our model facilitates the incorporation of other degrees of design freedom and can be applied to a general class
of lasers with strongly dispersive mirrors.
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I. INTRODUCTION

Realizing ultracoherent nanoscale lasers is important for
numerous applications, including on-chip communications
[1], programmable photonic integrated circuits [2], biologi-
cal or chemical sensing [3], and quantum and neuromorphic
computing [4,5]. However, since the quantum-limited laser
linewidth scales inversely with the number of photons in
the cavity, the small mode volume of nanolasers poses a
fundamental challenge in realizing highly coherent micro-
scopic lasers [6–10]. Indeed, ultrasmall metallic lasers show
linewidths of tens of gigahertz [9], while state-of-the-art semi-
conductor lasers [11], albeit with millimeter lengths, can
achieve linewidths of less than 1 kHz [12]. Nevertheless, a
linewidth of a few megahertz was recently demonstrated in a
microlaser by taking advantage of the unusual properties of
a bound state in the continuum (BIC) [13]. One of the laser
mirrors thus uses a Fano resonance to implement the highly
dispersive characteristic of a BIC. This dispersion reduces
the laser linewidth by several orders of magnitude without
introducing a large cavity. The concept of such a Fano laser
is generic [14], and in this paper, we present a general theory
for the quantum-limited linewidth of this new type of laser.
Compared with Ref. [13], in which the response function
of the Fano mirror is a symmetric Lorentzian corresponding
to the specific case of a Fano-shape parameter q = 0 [15],
we here extend the theory to account for general Fano line
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shapes [16–18]. Our theory can be cast in a form where the in-
stantaneous laser frequency behaves analogously to a particle
moving in a potential and exposed to a randomly fluctuating
force, representing quantum noise. Such an analogy was ini-
tially developed for external cavity lasers [19,20], which today
represent the most important type of narrow-linewidth laser,
but is here extended to the generic case of a Fano laser. We
predict that by introducing mirror symmetry breaking, further
linewidth reduction by a factor of 4 is possible. Surprisingly,
we find that optical nonlinearities may give rise to a funda-
mental limitation to the linewidth.

Our theory not only offers a simple and intuitive explana-
tion of the physics of linewidth reduction in Fano lasers, but
also highlights the qualitative differences between Fano lasers
and external cavity lasers and may inspire future innovations.

II. STRUCTURE AND THEORETICAL MODEL

The Fano laser [Figs. 1(a) and 1(b)] is constructed by
coupling a discrete mode with a (quasi)continuum of modes,
which can be implemented in various configurations. For ex-
ample, it can be realized in an in-plane design [see Fig. 1(a)]
by a photonic crystal membrane with a line-defect semiopen
waveguide (WG) and a right mirror realized by a nanocavity
adjacent to the WG [21–25]. A field propagating to the right
in the WG can take two paths. One path follows the WG,
while the other comprises tunneling through the nanocavity.
These two paths interfere destructively around the nanocavity
resonance wavelength, leading to a high reflectivity within
a narrow bandwidth, which we refer to as a Fano mirror. A
virtual cavity (Fano cavity) can now be formed between the
left mirror and the Fano mirror and has the characteristics
of a BIC. Thus the mode only forms if the phase condition
is fulfilled (the round-trip phase change must be an integer
multiple of 2π ) at the resonance of the nanocavity, where
the Fano mirror reflectivity is high. This leads to a sensitive
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FIG. 1. (a) Fano laser realized in an in-plane geometry. A par-
tially transmitting element (PTE), with a field reflectivity of rB,
is placed in the region hosting a continuum of modes. The gain
material of the laser is placed in the continuum region, while the
region hosting the discrete mode is passive. (b) Fano laser realized
in a vertical configuration, where a photonic crystal slab is used
as the narrowband Fano mirror and serves as the combination of
the PTE and discrete state in the photonic crystal band diagram.
The orange shadings illustrate the lasing field, with the darker area
corresponding to stronger field intensity. (c) and (d) Phase potential
V as a function of instantaneous frequency � for (c) a conventional
external cavity laser and (d) the Fano laser. The laser experiences
phase noise represented by a Langevin force F�. The black curves
represent (c) the external cavity laser and (d) the Fano laser, and the
orange curves represent the Fabry-Perot laser counterpart. For the
Fano laser, the solid (dashed) black curve corresponds to the case
without (with) a PTE. Here, γin/γD takes the values of 5000 and 78
for (c) and (d), respectively. Here, w., with; w/o, without.

geometry dependency of the quality factor (Q factor) of the
cavity mode, which is a hallmark of a BIC [26]. Such a Fano
laser has been realized using buried-heterostructure technol-
ogy [13], where the active material is embedded only in the
WG; however, the laser is of a general nature and can also be
realized in other platforms using various technologies, such
as monolithic integration [27,28], heterogeneous integration
[29], or hybrid integration [30,31]. In addition to the in-plane
configuration, the Fano laser can also be realized in a vertical
configuration [see Fig. 1(b)], e.g., using a dielectric slab as a
broadband mirror and a photonic crystal slab as the narrow-
band Fano mirror [32]. As our interest is on-chip applications,
we here focus on the in-plane configuration.

The dynamics of the Fano laser can be described by
coupled-mode equations [33] combined with conventional

rate equations [13,21]. By assuming that the left mirror has
unity reflectivity, we have

d

dt
A+(t ) = ((1 − jα)GN�N (t ) − γin)A+(t )

+ γinA−(t )/rR(ωr ) + FA+ (t ), (1)

d

dt
N (t ) = R − γN N (t )

− GN (N (t ) − N0)I (t )/Va + FN (t ), (2)

where A+(t ) [A−(t )] is the slowly varying complex amplitude
of the forward (backward) propagating field, α is Henry’s
factor [34], GN is the modal gain factor, ω (ωr) is the lasing
frequency (reference frequency, e.g., the steady-state lasing
frequency excluding quantum noise), N (t ) is the carrier den-
sity in the Fano cavity, N0 is the carrier density at transparency,
�N (t ) = N (t ) − Ns is the carrier density deviation from its
steady-state value Ns, and γN is the carrier decay rate. Fur-
thermore, R, Va, and γin = 1/τin denote the pumping rate,
the active volume, and the round-trip rate of the Fano cavity,
respectively. The number of photons stored within the Fano
cavity is related to the complex field, I (t ) = ςs(ωr )|A+(t )|2,
with the conversion factor obtained from the steady-state solu-
tion [35], ςs(ωr ) = (1 − |rR(ωr )|2)/(2h̄ωrγin ln{1/|rR(ωr )|}).
The backward field is obtained from the nanocavity field,
Ac(t ), which in turn is driven by the forward-propagating field

A−(t ) = rBA+(t ) +
√

2γ1Ac(t ), (3)

d

dt
Ac(t ) = [− j(δ0 + δNL(t )) − γt ]Ac(t )

+
√

2γ1e2 jθ1 A+(t ) + FAc (t ). (4)

The nanocavity field is normalized such that |Ac(t )|2 is the
energy stored in the nanocavity. The parameter rB (tB =√

1 − r2
B ) is the reflectivity (transmissivity) of the partially

transmitting element [PTE in Fig. 1(a)], which will be
discussed later. In addition, δ0 = ω0 − ωr is the detuning
between the nanocavity resonance ω0 and ωr , and δNL(t )
is the complex change of the nanocavity resonance due to
optical nonlinearities leading to intensity-dependent detuning
and loss [36]. Furthermore, γv is the nanocavity intrinsic
decay rate, and γ1 (γ2) is the nanocavity coupling rate to
the left (right) side of the WG [Fig. 1(a)], with γc = γ1 +
γ2 and γt = γv + γc. These (field amplitude) decay rates
are related to the nanocavity intrinsic, coupling, and to-
tal Q factors as Qv = ω0/(2γv ), Qc = ω0/(2γc), and Qt =
ω0/(2γt ). In Eqs. (1)–(4), FA+ (t ), FAc (t ), and FN (t ) are the
Langevin noise terms of the fields and carrier density. The
coefficient e2 jθ1 , depending on the coupling phase, can be
derived by exploiting energy conservation and time-reversal
symmetry [17,37], leading to cos(2θ1) = γ2t2

B/(2γ1rB) −
t2
B/(2rB) − rB and sin(2θ1) = −PtB

√
4γ1γ2 − t2

Bγ 2
c /(2γ1rB).

It should be noted that the transmission through a linear
Fano mirror follows the general expression for a Fano line
shape characterized by the shape parameter q [38]: T (δ0) =
t2
B(q + δ0/γt )2/(1 + (δ0/γt )2). Here, q = − tan(ϑ ) with ϑ =
−Pcos−1( − tBγc/(2

√
γ1γ2)).
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III. POTENTIAL PICTURE OF THE FANO LASER
FREQUENCY

For linewidth narrowing, we exploit the fact that the BIC
has a large fraction of its electromagnetic energy stored in the
nanocavity. Now, if the gain material of the laser is excluded
from the nanocavity, the field stored in the nanocavity is
not exposed to spontaneous emission and acts as a restoring
force that counteracts the random phase changes induced by
spontaneous emission in the spatial regions containing gain. In
this case, by defining the instantaneous laser frequency � =
(ωr − ω)τD, where τD is the time delay caused by the right
mirror, and separating the amplitude and phase of the laser
fields, one can derive from Eqs. (1)–(4) (see Appendix A) that
the laser frequency behaves analogously to a particle moving
with strong friction in a potential V and exposed to random
kicks representing spontaneous emission; cf. Figs. 1(c) and
1(d). For a Fano laser, we have

V = VFP + VFM, (5)

where VFP = �2/(2τD) is the potential of an equivalent Fabry-
Perot (FP) laser with cavity length equal to the Fano cavity and
frequency-independent mirror reflectivities. The other term
in Eq. (5) is VFM = γin ln(1 + �2)/2 and originates from the
frequency dependency of the Fano mirror. The laser linewidth
(�v) is represented by the frequency spread resulting from
the random excursions around the potential minimum and is
inversely proportional to the square of the potential curvature,
i.e., 1/�v ∝ (d2V/d�2)2.

This is similar to the case where an FP laser is coupled
to a (large) passive external cavity [Fig. 1(c)], where V =
VFP + VEX and VEX = −κγin cos(θ0 + �) [20] with κ being
the feedback fraction. As seen, an external cavity introduces
a cosine function adding to the original parabolic function of
the FP laser [20]. As a consequence, several potential valleys
appear, corresponding to different external cavity modes that
the laser jumps between on time scales determined by the
height of the potential barriers [19]. In contrast, the Fano
laser has a single minimum corresponding to the single BIC.
Furthermore, compared with the cosine function of VEX, VFM

is a logarithmic function and does not depend on κ , which is
usually much smaller than unity [20,39]. Therefore the Fano
laser configuration is much more effective in narrowing the
laser linewidth and furthermore accomplishes it without intro-
ducing a large external cavity or a large secondary resonator
[29], which would severely increase the footprint of the laser.

If the symmetry of the Fano resonance is changed, which
can be achieved by adding a PTE to change the amplitude
and phase of the continuum path [40], additional linewidth
narrowing can be achieved but at the prize of sacrificing the
monostability of the laser [asymmetric potential in Fig. 1(d)].
The detailed picture is that, compared with the case without
a PTE, the presence of the PTE lowers V on one side. This
means that the laser tends to have multiple solutions, rather
than being monostable, e.g., the laser can jump to another
solution as the right potential barrier is passed. This new
solution corresponds to 2ωnL/c + arg{rR(ω)} = 2mπ , where
n and L are the refractive index and length of the Fano cavity,
respectively, and m is an integer different from the value
corresponding to the original Fano mode. When the laser

oscillation frequency moves away from the nanocavity reso-
nance, |rR(ω)| decreases toward 0 (rB) when the PTE is absent
(present), corresponding to a diverging (finite) laser threshold.
Therefore the PTE increases the chance of mode hopping into
another longitudinal mode of the Fano cavity [24]. However, it
should be noted that the multiple longitudinal modes appear-
ing in a Fano laser with a PTE cannot be captured here, since
our model is derived based on the expansion around a single
longitudinal mode [22].

The field reflectivity of the Fano mirror rR(ω), with the
presence of a PTE, has the general form [37]

rR(ω) = |rR(ω)|e jφR (ω)

=
jr2

Bδ + (γ2 − γ1) + r2
Bγv − jPtB

√
4γ1γ2 − t2

Bγ 2
c

rB( jδ + γt )
.

(6)

Here, δ = δ0 + δNL, with δ0 = ω0 − ω. The parity of the
nanocavity mode with respect to the mirror plane [cf.
Fig. 1(a)] is accounted for by the coefficient, P, with P = 1
(−1) corresponding to an even (odd) mode of the nanocavity
and leading to a red (blue) parity for an asymmetric Fano
resonance with rB �= 0 [37,41]. Compared with the case with-
out the PTE, where the decay ratio R12 = γ1/γ2 = 1, the PTE
can break the nanocavity mirror symmetry (γ1/γ2 �= 1), e.g.,
by incorporating a hole in the WG away from the mirror
plane [42]. This can enlarge the phase slope of rR(ω) without
sacrificing the mirror reflectivity |rR(ω)| at the nanocavity
resonance (see Fig. 4 in Appendix A), indicating that the laser
linewidth can be further reduced by the inclusion of a PTE.

From the laser model, the lasing frequency ω fulfills the
relation ωr = ω − αγin + α Re{KrR(ω)} + Im{KrR(ω)} with
K = γin/rR(ωr ). Based on the perturbation approach [39], one
can derive the Fano laser linewidth above the threshold

�vFL(ωr ) = �vFP(ωr )/η2,

η = 1+γin

(
α

1

|rR(ω)|
∂

∂ω
|rR(ω)|+ ∂

∂ω
φR(ω)

)∣∣∣∣
ω=ωr

,

(7)

where �vFP(ωr ) = (1+α2 )(γi+γin ln{1/|rR (ωr )|})2Csp

R−γN Nth (ωr ) is the linewidth
of the equivalent FP laser and η is the linewidth reduction
factor. Here, γi is the loss rate of the active WG, and Csp =
nsp/(πVa) is a coefficient depending on the population in-
version factor, nsp. The threshold carrier density is given by
Nth(ωr ) = N0 + (γi + γin ln{1/|rR(ωr )|})/GN . As seen from
Eq. (7), the α parameter can also contribute to linewidth nar-
rowing, provided it has the same sign as ∂|rR(ω)|/∂ω, which
leads to negative feedback between the laser frequency change
and the refractive index change induced by the change in free-
carrier density [43]. Equation (7) is in accordance with the
previous result in Ref. [44] and can be related to the effective
Q factor of the Fano laser.

To evaluate the effective Q factor (QFL) of the Fano laser,
we consider the electromagnetic energy stored in the entire
Fano laser, EFL, which consists of the energy stored in the
Fano cavity, EF , and the energy stored in the nanocavity, Enc.
By neglecting the waveguide dispersion, the stored energies
are proportional to the group delay of each part [45], τin and
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FIG. 2. (a) Calculated Fano laser linewidths �vFL (black, red, and blue curves) vs (normalized) lasing frequency for different values of
the α parameter. The frequency dependence of the Fano mirror reflectivity and phase are also shown (upper gray and green curves). The
solid (dashed) parts of the curves represent stable (unstable) solutions. Here, r2

B = 0.8 and R12 = 1. (b) Phase potential V as a function of
instantaneous frequency � (left) and the resulting temporal trajectory of the complex field A+ of the Fano laser (right), corresponding to
the spectral positions (cases I, II, and III) for α = 3 circled in (a). The trajectory of A+ in case II will evolve into a “fuzzy” circle as the
simulation time is prolonged. The trajectory of A+ in case III corresponds to self-pulsations. (c) The minimum Fano laser linewidth and (d) the
corresponding lasing frequency ωm as a function of rB and R12 for α = 3. The gray parameter regions are not accessible. In all the cases, a high
pump power of R = 1035 m−3 s−1 is assumed.

τD, as

EFL = EF + Enc = EFP
τin + τnc

τin

= EFP

(
1 + ∂

∂ω
arg (rR(ω))

/
∂

∂ω

(2Lωn

c

))∣∣∣∣∣
ω=ωr

. (8)

Here, EFP is the energy stored in a FP cavity with a di-
mension equivalent to the Fano cavity (FP counterpart).
∂

∂ω
( 2Lωn

c )|
ω=ωr

= τin. The time-averaged power dissipation Ps

is caused by the propagation loss in the Fano cavity and the
power leakage from the right mirror. The value of this quantity
is the same for both the Fano laser and the FP counterpart,
leading to

QFL = ωr
EFL

Ps
= QFP

(
1 + γin

∂

∂ω
arg (rR(ω))

∣∣∣∣
ω=ωr

)
.

Here, QFP is the Q factor of the FP cavity laser. Equation (8)
slightly deviates from the one derived in Ref. [13]. We think
this is because we here take into account the energy (usually
negligible) stored in the WG on the right side of the left
reference plane of the Fano mirror, which is also part of the
lasing mode.

In the following, we investigate how the response func-
tion of the Fano resonance affects the laser linewidth. The
simulation parameters, unless specified, are kept fixed: Qc =
1000, ω0 = 2πc/λ0 with λ0 = 1550 nm, α = 3, γi = 4.7 ×
1010 s−1, γin = 9.5 × 1012 s−1, γN = 4.2 × 108 s−1, GN =
5.2 × 10−13 m3/s, N0 = 0.4 × 1024 m−3, and Csp = 1.1 ×

1020 m−3. These values are in accordance with the results in
Refs. [13,22]. For simplicity, we assume negligible intrinsic
losses of the isolated nanocavity, corresponding to Qv → ∞
(a finite value, Qv � 105, does not change the picture). In
addition, we chose P = 1, i.e., the Fano resonance has blue
parity, which leads to narrower laser linewidth for the com-
mon case in semiconductors, where α is positive [29,46].

IV. FANO LASER LINEWIDTH IN THE LINEAR CASE

We first focus on the linear case where δNL = 0. As seen
from Eq. (7) and the expression for Nth(ωr ), the Fano laser
linewidth can, for fixed pumping, be reduced either by re-
ducing the linewidth of the solitary FP laser by increasing
the Fano mirror reflectivity |rR(ωr )|2 (to lower the laser
threshold), or by increasing the linewidth reduction factor
by increasing the (absolute) value of the (normalized) am-
plitude differential L1(δ) = 2πα|rR(ω)|−1( ∂

∂ω
|rR(ω)|)|

ω=ωr
or

the phase differential L2(δ) = 2π ( ∂
∂ω

φR(ω))|
ω=ωr

. All three
quantities can be controlled by δ and R12. In general, for a
given R12, large values for |L1(δ)| [|L2(δ)|] are found on the
low (high) reflectivity side of the Fano mirror (see Fig. 4 in
Appendix A). Examples of the Fano laser linewidth variation
with laser operation frequency are shown in Fig. 2(a). A pump
power of R = 1035 m−3 s−1 is applied, which is ∼37 dB above
the lowest laser threshold obtained for R12 = 1. Such a high
pump power is beyond (about 10 dB higher than) our cur-
rent experimental possibilities, and it is not a requirement for
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achieving narrow linewidth but is chosen to ensure that lasing
can occur even around the minimum reflectivity coefficient
of the Fano mirror. Submegahertz linewidths can already be
achieved at R < 2 × 1033 m−3 s−1, even with a relatively low
nanocavity Q factor of 1000.

For α �= 0, the laser linewidth exhibits two local minima.
The right minimum, with a sharp spectral feature, corresponds
to the reflectivity minimum, and the linewidth narrowing here
is due mainly to the amplitude-phase coupling, where a large
L1(δ) [because of a large value of ∂|rR(ω)|/∂ω accompanied
by a small value of |rR(δ)|] provides negative feedback, sup-
pressing laser frequency fluctuations. The left local linewidth
minimum, with a broader spectral feature, occurs close to
the reflectivity maximum of the Fano mirror and is due to a
combination of low threshold [high |rR(ω)|] and prolonged
photon storage in the passive nanocavity [large L2(δ)]. For this
case, the influence of L1(δ) is negligible.

The laser linewidth also assumes a local maximum, which
is blue or red detuned with respect to the linewidth minimum,
depending on the sign of α. Such a maximum corresponds to
η = 0, where L1(δ) = −(2π/γin + L2(δ)).

Here, we will focus on the good-cavity case, where the Q
factor is high, so that the Petermann factor [47] is close to
unity and the dispersion of the gain material can be neglected;
these effects will become important in the bad-cavity case and
lead to correction factors of Eq. (7) [48]. It should also be
pointed out that Eq. (7) only is valid for stable solutions. The
laser stability can be checked by a linear stability analysis or
direct numerical simulations including Langevin terms (see
Appendix C) and can for certain kinds of instability (saddle-
point instabilities) also be inferred from the laser potential
[20]. Large fluctuations of the Langevin force may cause the
laser to switch from one local potential minimum to another
minimum or cause switching to another solution, which is not
described by the same effective potential, similar to the case
of external cavity lasers [49]. Considering that the right local
minimum corresponds to a very large laser threshold and can
lead to laser instabilities, we, in the following, focus only on
the left minimum.

Figures 2(c) and 2(d) show, in color, the minimum
linewidth and the corresponding lasing frequency ωm versus
rB and R12. The gray regions cannot be accessed since R12 is
bounded by Rmin � R12 � Rmax, where Rmax = (1 + rB)/(1 −
rB) and Rmin = 1/Rmax [50]. As seen, the smallest linewidth
always occurs at λm ≈ λ0 with R12 = Rmax, corresponding to
the upper edge of the contour of Fig. 2(c) (and q = 0 for
the general Fano formula). This reflects that the main factors
contributing to the laser linewidth are |rR(δ)| and L2(δ), which
are large at δ = 0 in the case of R12 = Rmax (see Fig. 4 in
Appendix A).

Next, we focus on highly asymmetric structures, i.e., the
upper edge of the contour of Fig. 2(c). Based on Eq. (7),
utilizing δ 	 γc and R12 = Rmax, a simple expression for the
Fano laser linewidth can be derived:

�vFL(ωm) =
(

1

1 + (1 + rB)(γin/γt )

)2

�vFP, (9)

where

ωm = ω0

(
1 − αγi

t2
Bω0(1 + (1 + rB)(γin/γt ))

)
≈ ω0. (10)

Equation (9) shows that compared with the corresponding
FP laser, with a linewidth of �vFP ≈ (1 + α2)Cspγ

2
i /R un-

der the high-pumping assumption, where R − γN Nth(ωr ) ≈
R, the Fano mirror can significantly improve the laser co-
herence. Such an improvement becomes more pronounced
as γin (γt ) increases (decreases), e.g., by reducing the Fano
cavity size or improving the nanocavity Q factor. Com-
pared with conventional external cavity lasers [39,51], which
are based on weak feedback with a linewidth of �vext =
[1/(1 + κ (γin/γt ))]2�vFP, where κ 	 1, the Fano laser in-
trinsically operates in the regime of strong feedback and
thereby enables a much larger linewidth reduction without
significantly increasing the size of the laser. At the same
time, the Fano laser does not experience any modal doublets,
in contrast to ordinary strong injection-locking or feedback
systems [46].

For ultrasmall lasers, where γin/γt 
 1, Eq. (9) shows that
by breaking the mirror symmetry, �vFL(ωm) can be further
reduced by a (maximum) factor of 4, compared with the
ordinary symmetric case (R12 = 1). This is because a higher
rB enables a larger Rmax and thus a larger γ1 for a fixed
Qc, leading to a larger |Ac| [52] (compared with the case of
rB = 0, the nanocavity field gets doubled under the condition
of rB = 1 and R12 = Rmax). This can also be understood in
another way: To achieve an effective Fano destructive inter-
ference at the output of the WG, the decay of the nanocavity
field to the right side, |√2γ2Ac|, should be balanced by the
field | jtBA+| transmitted directly through the WG. Therefore
a smaller γ2, a larger |Ac|, or a stronger field localization in the
passive nanocavity region is needed. This enhances the laser’s
composite Q factor. This is consistent with Figs. 4(a) and 4(b)
of Appendix A, in which |rR(ω0)|2 approaches unity with the
frequency slope doubled as R12 → Rmax.

In the case of a high PTE reflectivity, the Fano laser may
appear to be equivalent to a system of two coupled cavities.
However, in contrast to the case of two coupled cavities, the
Fano laser mode still bears the characteristics of a BIC, even
for rB = 1, where the PTE completely blocks the right end of
the WG. This can be concluded by analyzing the Fano mode
as a superposition of two coupled modes (see Appendix B).

The linewidth expressed by Eq. (9) is identical to the result
derived using the Langevin approach (see Appendix C), where
stochastic Langevin noises are introduced for the Fano cavity
field A+(t ). The absolute output power is, of course, also im-
portant. It can be shown that the external quantum efficiency
is much higher for the cross port [24] and the left mirror rather
than the port involving transmission through the Fano mirror
(see Appendix D).

V. FANO LASER LINEWIDTH IN THE NONLINEAR CASE

The theory and results presented so far assumed the
nanocavity to have a linear response, i.e., δNL(t ) = 0. How-
ever, the spatially localized field in the nanocavity of the
Fano laser can induce a large power-dependent change in the
laser output by spectrally shifting or changing the amplitude
of rR(ωr ) through optical nonlinearities [36]. We incorporate
nonlinear absorption and index changes by taking

δNL(t ) = (KK − jKT )|Ac(t )|2 + (KD − jKA)Nc(t ). (11)
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Here, KK |Ac(t )|2 and KDNc(t ) account for the nanocavity res-
onance shifts due to Kerr and free-carrier effects, with KK

being the Kerr coefficient and KD accounting for free-carrier
dispersion and band filling [36]. The terms KT |Ac(t )|2 and
KANc(t ) account for absorption, with KT being the two-photon
absorption (TPA) coefficient and KA being the free-carrier ab-
sorption coefficient. Furthermore, Nc(t ) is the mode-averaged
free-carrier density generated by TPA in the nanocavity, gov-
erned by

∂Nc(t )/∂t = −γncNc(t ) + GT |Ac(t )|4, (12)

where γnc is the effective carrier decay rate in the nanocavity
and GT is the free-carrier generation coefficient due to TPA.
The coefficients KK , KT , GT , and γnc depend on the nonlinear
optical mode volumes of the nanocavity [36]. We compare
photonic crystal L7 nanocavities made of InP, Si, and SiN
working at ∼1.55 μm and choose γin = 1.9 × 1012 s−1 and
γnc = 2 × 1010 s−1. We calculate the linewidth including non-
linearities also using the potential approach [see Eqs. (A6) and
(A7) in Appendix A], with parameters for the three material
systems considered (see Table I), which agrees well with the
conventional Langevin approach (see Appendix C).

To simplify the situation, we assume that the nanocav-
ity resonance is tuned so that the nonlinear resonance shift
is always compensated at steady state, i.e., Re{δNL} = 0. In
practice, this can be implemented by placing electrodes close
to the nanocavity for temperature or electric-field tuning.
Here, considering the lack of analytical solutions and thus
more time-consuming computations when including optical
nonlinearities, we focus on the close-to-optimum point, ωr =
ω0. With nanocavity nonlinearities [Fig. 3(a)], the Fano laser
linewidth exhibits similar dependence on the Fano line shape
as in the linear case; that is, the narrowest linewidth is still
located close to Rmax. The smallest linewidth in the linear case
[black curve in Fig. 3(b)] agrees perfectly with the approxi-
mate solution [Eq. (9)].

The linewidth obtained when considering optical nonlin-
earities is larger than the linear one and does not depend
monotonically on rB. This can be attributed to two factors:
(1) the reduction of the Fano mirror reflectivity caused by
nonlinear absorption in the nanocavity, which lowers the Q
factor of the laser, and (2) the additional Langevin noise intro-
duced by nanocavity nonlinearities, which causes additional
phase fluctuations. To determine which factor is dominant,
we examine |rR(ωr )|2 [see the blue curve in Fig. 3(b)].
As seen, |rR(ωr )|2 varies almost oppositely to the laser
linewidth with rB, indicating that the reduced Fano mirror
reflectivity plays an important role. A reduced mirror re-
flectivity at large rB is ascribed to the fact that a higher
rB can enable a larger Rmax and thus stronger field storage
in the nanocavity, resulting in higher nanocavity absorption.
Indeed, the Fano mirror reflectivity decreases dramatically
for high pump powers [Fig. 3(c)]. Therefore, unlike the
linear case, the laser linewidth in the nonlinear case suffers
from a trade-off between enhanced field localization and en-
hanced nanocavity absorption. This trade-off means that the
linewidth does not follow the inverse-power dependence pre-
dicted by the Schawlow-Townes formula [53] [Fig. 3(d)]. The
linewidth saturates and eventually increases with increasing

FIG. 3. (a) Fano laser linewidth �vFL(ω0) (color scale) as a
function of rB and R12 when nanocavity nonlinearities are accounted
for. Here, the nanocavity is made of InP, and a relatively high pump
power of R = 1035 m−3 s−1 is chosen to better illustrate the nonlinear
effects. (b) The minimum linewidth extracted from Fig. 3(a) (red
curve) and Fig. 2(c) (black curve) as a function of rB. The Fano
mirror reflectivity |rR(ω0)|2 (blue curve) corresponding to the red
curve is also plotted. (c) Variation of the Fano mirror reflectivity
with pump power. The pump power has been normalized, with 0 dB
corresponding to the threshold. Here, rB = 0, and the nanocavity
is made of InP. (d) Fano laser linewidth vs pump power. The red,
green, and orange curves correspond to the case where nanocavity
nonlinearities are accounted for, and the nanocavity is made of InP,
Si, and SiN, respectively. The black and blue curves correspond to
the linear case (nanocavity nonlinearities are absent), and |rR(ω0)|2
of the blue curve is set identical to that of the red curve. Here, rB = 0.

pump power. Simulations of other nanocavities, e.g., the H0
type [36], which has a smaller mode volume and a faster car-
rier decay rate, give qualitatively the same result. It should be
noted that the nonlinear result [e.g., the red curve in Fig. 3(d)]
agrees well with the linear result when accounting for the
power dependence of |rR(ωr )|2 [blue curve in Fig. 3(d)], fur-
ther confirming that the reduction of the reflectivity due to
nonlinear absorption is the dominant effect causing linewidth
rebroadening. Figure 3(d) predicts that for an InP nanocavity,
it may be difficult to reach submegahertz linewidth. However,
the problem is significantly reduced by using a material with
smaller nonlinear loss, such as Si or SiN [see the green and
orange curves in Fig. 3(d)]. Such structures can be realized
using heterogeneous integration technology [29,54]. We also
find that nonlinear effects become orders of magnitude weaker
if the nanocavity of the Fano mirror is replaced by a much
larger cavity.

VI. SUMMARY AND OUTLOOK

In summary, we have presented a general theory of the
quantum-limited linewidth of a Fano laser based on a bound
state in the continuum. In particular, we have developed
a potential picture valid for lasers with strongly dispersive
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laser mirrors. Based on the theory, we show that the Fano
laser allows orders-of-magnitude linewidth reduction with-
out compromising the monostability and without significantly
increasing the size of the laser. This enables microscopic
lasers featuring similar linewidth narrowing as conventional
macroscopic external cavity lasers, but with different modal
properties. By breaking the symmetry of the Fano mirror,
we find that the Fano laser linewidth can be reduced by an
additional factor of 4. This improvement, however, may be
compromised by optical nonlinearities that limit the minimum
linewidth obtained for a given material system.

Our theory provides insights into the stability and coher-
ence of microscopic lasers. The potential model accounts for
global dynamics of the system that cannot be inferred from
small-signal analysis. The model thus facilitates the incor-
poration of other degrees of design freedom and physics,
exemplified by the mirror symmetry breaking and optical non-
linearities considered here, which have been largely neglected
in previous linewidth investigations. Therefore the developed
theory can be used to investigate other configurations, e.g.,
considering other dispersive laser mirrors, such as those en-
abled by multiple Fano resonances, Autler-Townes splitting,
or electromagnetically induced transparency [14,16,55,56].
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APPENDIX A: THE EFFECTIVE POTENTIAL OF
LASERS WITH A DISPERSIVE MIRROR

By separating the amplitude and phase of A+(t ) in Eq. (1),
i.e., A+(t ) = |A+(t )|e jφ+(t ), we arrive at two differential equa-
tions

d

dt
|A+(t )| = GN�N (t )|A+(t )| − γin|A+(t )|

+ Re{KA−(t )/A+(t )}|A+(t )| + F|A+|(t ), (A1)

d

dt
φ+(t ) = −αGN�N (t ) + Im{KA−(t )/A+(t )} + Fφ+ (t ),

(A2)

where F|A+|(t ), Fφ+ (t ) are the Langevin noise terms of the field
amplitude and phase. The steady state, in the absence of noise,
is found by solving d|A+(t )|/dt = 0 and dφ+(t )/dt = ωr −
ω, leading to αGN�N = αγin − α Re{KrR(ω)} and

ωr = ω − αγin + α Re {KrR(ω)} + Im {KrR(ω)}. (A3)

Here, rR(ωr ) = A−/A+, and ω is the oscillation frequency
of the entire laser system. Based on the small-perturbation
approach, by using rR(ω) = |rR(ω)|e jφR (ω), from Eq. (A3) one
finds the following relation between changes in ωr and ω:

�ωr = �ω + γin

(
α

1

|rR(ω)|
∂

∂ω
|rR(ω)| + ∂

∂ω
φR(ω)

)∣∣∣∣
ωr

�ω.

(A4)

If the laser has a dispersionless mirror, i.e.,
∂|rR(ω)|/∂ω, ∂φR(ω)/∂ω = 0, this reduces to the case
of the equivalent FP laser, with mirrors that have the same
reflectivity as the Fano laser evaluated at its operation point
but with no frequency dependence, and a cavity length given
by that of the Fano cavity [see Fig. 1(a)]. In this case, one
has �ωr = �ω. The factor by which the linewidth of the
composite cavity laser is reduced compared with the FP laser
counterpart is given by the ratio (�ω/�ωr )2 [39], where �ω

is the change in the oscillation frequency of the composite
laser system upon a change �ωr in the oscillation frequency
of the corresponding FP laser. Using Eq. (A4), one gets

�vFL

�vFP
=

(
�ω

�ωr

)2

= 1

η2

= 1/
(

1 + γin

2π
(L1(δ) + L2(δ))

)2
, (A5)

where L1(δ) = 2πα|rR(ω)|−1 ∂
∂ω

|rR(ω)||
ω=ωr

is the normal-

ized amplitude derivative and L2(δ) = 2π ∂
∂ω

φR(ω)|
ω=ωr

is the
normalized phase derivative (see Fig. 4). For the Fano laser
with the Fano mirror reflectivity of Eq. (6), we have

∂

∂ω
φR(ω) =

(
− δr (ω)

δr (ω)2 + (δi(ω) − γt )2 − r2
B(PSe − r2

Bδr (ω))(
PSe − r2

Bδr (ω)
)2 + [

r2
B(δi(ω) − γv ) − γ2 + γ1

]2

)
∂

∂ω
δi(ω)

+
(

δi(ω) − γt

δr (ω)2 + (δi(ω) − γt )2 − r2
B[r2

B(δi(ω) − γv ) − γ2 + γ1](
PSe − r2

Bδr (ω)
)2 + [

r2
B(δi(ω) − γv ) − γ2 + γ1

]2

)
∂

∂ω
δr (ω) (A6)

and

|rR(ω)|−1 ∂

∂ω
|rR(ω)| =

(
− δr (ω)

δr (ω)2 + (δi(ω) − γt )2 − r2
B(PSe − r2

Bδr (ω))(
PSe − r2

Bδr (ω)
)2 + [

r2
B(δi(ω) − γv ) − γ2 + γ1

]2

)
∂

∂ω
δr (ω)

−
(

δi(ω) − γt

δr (ω)2 + (δi(ω) − γt )2 − r2
B[r2

B(δi(ω) − γv ) − γ2 + γ1](
PSe − r2

Bδr (ω)
)2 + [

r2
B(δi(ω) − γv ) − γ2 + γ1

]2

)
∂

∂ω
δi(ω), (A7)

043194-7



YU, ZALI, AND MØRK PHYSICAL REVIEW RESEARCH 4, 043194 (2022)

FIG. 4. (a) The Fano mirror reflectivity (|rR(δ)|2) for different reflectivities of the PTE (r2
B) and different decay ratios (R12 = γ1/γ2). Here,

δ = ω0 − ω, with ω0 being the nanocavity resonant frequency. (b) The phase change of the Fano mirror reflection [arg{rR(δ)}] for different
reflectivities of the PTE and the decay ratios [the phase change was normalized so that arg{rR(0)} = 0]. (c) The mirror reflectivity |rR(δ)|2,
(d) normalized amplitude derivative L1(δ), and (e) normalized phase derivative L2(δ) of the Fano mirror, as a function of δ/γt and R12. Here,
r2

B = 0.5 and α = 3. In (d) and (e), the ranges of the color scales are restricted to the interval from 0 to 5 × 10−11 s for a clearer illustration.

where δr (ω) [δi(ω)] is the real (imaginary) part of δ + δNL(ω),
and its specific form depends on the type of optical nonlinear-
ities in the nanocavity, δNL(ω).

In the linear case where δNL = 0 [δr (ω) = ω0 − ω = ω0 −
ωr , δi(ω) = 0], the above equations reduce to

∂

∂ω
φR(ω) = γt

δ2 + γ 2
t

− r2
B

(
r2

Bγv + γ2 − γ1
)

(
PSe − r2

Bδ
)2 + (

r2
Bγv + γ2 − γ1

)2

and

|rR(ω)|−1 ∂

∂ω
|rR(ω)|

= δ

δ2 + γ 2
t

+ r2
B

(
PSe − r2

Bδ
)

(
PSe − r2

Bδ
)2 + (

r2
Bγv + γ2 − γ1

)2 , (A8)

in which Se = tB
√

4γ1γ2 − t2
B(γ1 + γ2)2. The laser stability

can be investigated through a conventional small-signal anal-
ysis or investigated in the time domain, where we solve
Eqs. (1)–(4) numerically by treating the Langevin noise
terms as random sources with normal distribution [57]. From
Eqs. (A1) and (A2), and neglecting amplitude fluctuations,

one gets
d

dt
φ+(t ) = −α(γin − Re {KrR(ω)}) + Im {KrR(ω)} + Fφ+ (t )

= −αγin + γin

∣∣∣∣ rR(ω)

rR(ωr )

∣∣∣∣[α cos (φR(ω) − φR(ωr ))

+ sin (φR(ω) − φR(ωr ))] + Fφ+ (t ). (A9)
Next, we extend the approach taken in Ref. [19] for exter-

nal cavity lasers to the general scenario. We introduce φ+(t −
τD), which is the phase delayed by a time, τD. Such a delay
is caused by field dwelling in the external cavity in conven-
tional external cavity lasers or field storage in the nanocavity
in the Fano laser. For example, τD = 1/γD = ∂φR(ω)/∂ω =
1/γt is the time delay at ωr = ω0 when γv = 0 and γ2 =
γ1. By defining � = φ+(t ) − φ+(t − τD), using � ≈ (ωr −
ω)τD and 〈∂φ+(t − τD)/∂t〉 ≈ γD�, we derive from Eq. (A9)
the following equation for �:

d

dt
� = d

dt
φ+(t ) − d

dt
φ+(t − τD)

= d

dt
φ+(t ) −

(〈
d

dt
φ+(t − τD)

〉
+ Fφ+ (t − τD)

)

= − dV

d�
+ F�(t ), (A10)
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where
dV

d�
= �γD + αγin − γin|rR(ω)/rR(ωr )|

× [α cos (φR(ω) − φR(ωr )) + sin (φR(ω) − φR(ωr ))]
(A11)

and F�(t ) = Fφ+ (t ) − F+
φ (t − τD) is a Langevin term with

a correlation strength 〈F�(t )F�(t ′)〉 = 4π�vFP(ωr )δ(t − t ′).

Equation (A10) is analogous to the equation of motion for
a particle with coordinate � moving with strong friction in
a potential V and exposed to a fluctuating force F�(t ) [20].
The coordinate � plays the role of the instantaneous laser
frequency as well as the phase change over the time interval
τD. Taking the Fano mirror reflectivity [Eq. (6)] and consider-
ing the simple case of γ1 = γ2 = γc/2 ≈ γt/2, we obtain by
integrating Eq. (A11)

V = 1

2
γD�2 + αγin� − γin

2γD

2rB(γD� + δ)(γt − αδ) + 2γt (tB(αγt + δ) − rB(γt − αδ)) tan−1
(

γD�+δ

γt

)
tBγt − rBδ

+ γin

2γD

γt (rB(αγt + δ) + tB(γt − αδ)) ln
{
γ 2

t + (γD� + δ)2
}

tBγt − rBδ
, (A12)

where γD = 1/((∂φR(ω)/∂ω). For α = 0, rB = 0 (tB = 1),
and ωr = ω0, we have γD = γt ; so Eq. (A12) reduces to

V = 1
2γD�2 + γin

1
2 ln{1 + �2}. (A13)

The potential [Eq. (A13)] for the Fano laser is different from
the potential for an external cavity laser [20], which (for α =
0) assumes the form

V = 1
2γD�2 − κγin cos (θ0 + �). (A14)

From Eq. (A11), by considering ∂ω/∂� = −γD when ω →
ωr , we find the curvature of the potential V in the minimum
point:

1

γD

d2V

d�2

∣∣∣∣
ω=ωr

≈ 1 + γin

(
α|rR(ω)|−1 ∂

∂ω
|rR(ω)| + ∂

∂ω
φR(ω)

)∣∣∣∣
ω=ωr

= η =
(

�vFP

�vFL

) 1
2

. (A15)

Equation (A15) shows that the curvature of V at ω = ωr ,
normalized by γD, is identical to the linewidth reduction factor
for the Fano laser compared with the FP laser counterpart.

APPENDIX B: COUPLED-CAVITY SYSTEM VERSUS THE
FANO SYSTEM WITH A PARTIALLY TRANSMITTING

ELEMENT

For simplicity, we consider a Fano laser system with a
PTE, where rB = 1 (tB = 0) and R12 = Rmax. We neglect
the linewidth enhancement factor and optical nonlinearities
in the nanocavity. By replacing AFP(t ) = jA+(t )/

√
γin, and

assuming that the laser oscillates at a frequency where the
Fano mirror reflectivity is close to unity [|rR(ωr )| → 1 with
γv → 0] so that the inverse of the photon lifetime of the Fano
cavity can be simplified as γp = 2γi + 2γin ln{1/|rR(ωr )|} ≈
2γi + 2γin(1 − |rR(ωr )|), Eqs. (1) and (4) can be reduced, in a
matrix form, to

d

dt

(
Ac(t )
AFP(t )

)
= M

(
Ac(t )
AFP(t )

)
, (B1)

where

M =
(− jδ0 − γt κc

κc g − γin

)
.

Here, g = GN (N − N0) − γi, and κc is, in general, complex
but approaches

√
2γinγc for γv 	 γc. By using |rR(ωr )| → 1

and GN (N − N0) → γi, Eq. (B1) leads to two eigenfrequen-
cies:

ωe,1 = ω0 − 1

2
(δ0 − j(2γin + γt )

+ j
√

8γinγc − (δ0 + j(2γin − γt ))2),

ωe,2 = ω0 − 1

2
(δ0 − j(2γin + γt )

− j
√

8γinγc − (δ0 + j(2γin − γt ))2).

We can get the Q factors of the eigenmodes of the Fano
laser system as Qe,1/2 = − Re{ωe,1/2}/(2 Im{ωe,1/2}), and for
δ0 = 0, we get Qe,1 = ∞, Qe,2 = ω0/(2(2γin + γc)). The cor-
responding eigenvectors are

ve,1 =
(√

2γin/γt

1

)
, ve,2 =

(−√
γt/(2γin )

1

)
.

As seen, eigenmode 1, with Qe,1 = ∞, corresponds to the
Fano mode where the field is concentrated in the nanocav-
ity (since γin 
 γt ). This agrees with our previous analysis
[13]. Eigenmode 2 corresponds to the case where the field is
concentrated in the WG part. Interestingly, eigenmode 2 has a
low Q factor even though the reflectivity of the PTE is unity,
i.e., the WG is closed at the right end. Such a low Q factor
can be ascribed to the fact that when the field is concentrated
in the WG part while the nanocavity is almost empty, the
phase change of the WG field induced by the reflection off the
right Fano mirror has a phase difference of π compared with
the case where the nanocavity field is well established. This
means that eigenmode 2 does not meet the resonant condition
of the FP cavity defined by the left end of the WG and the right
PTE. So the field dissipates quickly. Therefore the Fano mode
can be still classified as a BIC even when the PTE completely
blocks the WG.
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From Eq. (B1), since κc is almost purely real for the Fano
laser, it contrasts with ordinary coupled-cavity systems where
κc is imaginary [33]. This distinguishes the Fano system from
the case of Autler-Townes splitting [58], which corresponds to
a mode doublet with similar Q factors. Our system rather bears
resemblance to the parity-time system [59,60] working in the
parity-time broken regime where the two eigenmodes split
in loss. However, a fundamental difference is that the lasing
mode of the Fano laser is eigenmode 1, with the field con-
centrated in the passive (low loss) nanocavity region, while it
is distributed evenly between the passive and active regions
in the parity-time symmetric regime, or concentrated in the
active (high loss) region in the parity-time broken regime.
This is because a real κc in the Fano laser enables the loss of
one cavity to be compensated by the feedback from the other
one, i.e., the lasing is promoted by decreasing the mirror loss
of the mode through field destructive interference between
Ac (discrete mode) and AFP (quasicontinuum mode). For the
parity-time laser (in the parity-time broken regime), instead,
the loss is compensated by an enhanced modal gain as in that
regime, |κc| is usually small. A smaller |κc| will localize a
larger portion of the field in the active region, i.e., the lasing is
promoted by increasing the lateral optical confinement factor.
It should be noted that the BIC of our Fano system can transit
to a conventional coupled-cavity system when tB = 0 and
γv 
 γc. In this case, κc → jκc, i.e., κc becomes imaginary,
which means in practice that the nanocavity and WG have a
large spatial separation.

APPENDIX C: LASER LINEWIDTH BASED ON THE
LANGEVIN APPROACH

Based on Eqs. (1)–(4) and Eqs. (11) and (12), neglecting
the Langevin noise forces, we obtain the steady-state solu-
tions of the Fano laser system (for ωr = ω0) by solving the
following set of algebraic equations:

Nc = GT |Ac|4/γnc,

rR(ω0) = rB + 2γ1e2 jθ1

jδ0 + γt + KT |Ac|2 + U |Ac|4
,

N = N0 + (γi + γin ln {1/|rR(ω0)|})/GN ,

|A+| =
√

h̄ω0Va(R − γN N )(
1 − |rR(ω0)|2)[γi/(γin ln {1/|rR(ω0)|}) + 1]

,

A− = rR(ω0)
∣∣A+∣∣, Ac = (

A− − rB

∣∣A+∣∣)/√2γ1,

φ+ = 0, φ− = − j ln (A−/|A−|),
φc = − j ln (Ac/|Ac|). (C1)

Here, we define U = GT KA/γnc, and |Ac|2 is the real and
positive solution (X ) of the following equation:

U 2X 5 + 2UKT X 4 + (
K2

T + 2Uγt
)
X 3 + 2KT γt X

2

+ (
δ2

0 + γ 2
t

)
X − 2γ1

∣∣A+∣∣2 = 0. (C2)

We assume that the Fano resonance can be tuned so
that the nonlinear resonance shift of the nanocavity is al-

ways compensated at steady state, i.e., Re{δNL} = 0. Next,
we separate the amplitude and phase of the fields, i.e.,
A±(t ) = |A±(t )|e jφ±(t ), Ac(t ) = |Ac(t )|e jφc (t ), expand the per-
turbation of the dynamical variables to first order around
their steady states, i.e., H(t ) = H + �H(t ) with H =
[|A+|, |A−|, |Ac|, φ+, φ−, φc, N, Nc]T being the steady-
state values. After that, by Fourier-transforming the perturba-
tions to the frequency domain, we arrive at the relation

O�H(ω) = F(ω). (C3)

Here, O is a coefficient matrix depending on the laser pa-
rameters, the nonlinear coefficients, and steady-state values
[61]. F(ω) is the Langevin noise terms [F|A+|(ω), 0, F|Ac|(ω),
Fφ+ (ω), 0, Fφc (ω), FN (ω), 0]T whose correlation strengths can
be evaluated by inspecting the average particle exchange rates
into and out of various reservoirs [61]. For simplicity, if ne-
glecting the shot noise associated with nanocavity resonance
shift, after some algebra, we get

〈F|A+|F|A+|〉 = GN (N − N0)nsp/ςs(ω0),

〈Fφ+Fφ+〉 = 〈F|A+|F|A+|〉/|A+|2,

〈FN FN 〉 = 4GN (N−N0)ςs(ω0)|A+|2(nsp−1)/V 2
c +2R/Vc,

〈F|A+|FN 〉 = GN (N − N0)(ςs(ω0)(1 − 2nsp)|A+|2 − nsp)

ςs(ω0)Vc|A+| ,

〈F|Ac|F|Ac|〉 = h̄ω0
(
KANc + KT |Ac|2 + γv

)
/2,

〈Fφc Fφc〉 = 〈F|Ac|F|Ac|〉/|Ac|2. (C4)

Here, 〈 〉 indicates a statistical ensemble average, which is
identical to a time average in the present case of an ergodic
system. We have neglected the Langevin noise terms due
to the free carriers generated in the nanocavity. The phase
�φc(ω) can be obtained by solving Eq. (C3), and the laser
frequency fluctuation is vc(ω) = − jω�φc(ω)/(2π ), which
can be expressed analytically in terms of the Langevin noise
sources

vc(ω) = ζ1F|A+|(ω) + ζ2F|Ac|(ω) + ζ3Fφ+ (ω)

+ ζ4Fφc (ω) + ζ5FN (ω).

The noise frequency spectrum can thus be obtained as

Sv (ω) = 1

2π

∫ 〈
vc(ω)vc(ω′)∗

〉
dω′

= |ζ1|2〈F|A+|F|A+|〉 + |ζ2|2〈F|Ac|F|Ac|〉

+ |ζ3|2〈Fφ+Fφ+〉 + |ζ4|2〈Fφc Fφc〉 + |ζ5|2〈FN FN 〉
+ (ζ1ζ

∗
5 + ζ ∗

1 ζ5)〈F|A+|FN 〉, (C5)

which depends on the Langevin noise correlation strengths.
The laser linewidth is finally found as

�vFL = 2πSv (0). (C6)

Noting that by neglecting the Langevin noise correlation terms
in Eq. (C5), except the dominating terms, 〈F|A+|F|A+|〉 and
〈Fφ+Fφ+〉, the expression for the Fano laser linewidth reduces
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TABLE I. Nonlinear coefficients for the simulations.

Coefficient InP Si SiN

KK (W−1 s−2) −8.8 × 1023 −1.2 × 1023 −1.2 × 1023

KT (W−1 s−2) 1.85 × 1024 2.9 × 1022 6.6 × 1021

KD (m3/s) 1.95 × 10−12 4.8 × 10−13 0
KA (m3/s) 2.13 × 10−13 6.9 × 10−14 0
GT (W−2 m−3 s−3) 3.35 × 1061 5.3 × 1059 1.2 × 1059

to Eq. (7) in the main text. Here, the nonlinear coefficients
KK , KT , KD, KA, and GT , obtained based on the calculated
nanocavity nonlinear mode volumes combined with material
parameters [36,62,63], are listed in Table I.

APPENDIX D: OUTPUT POWER OF THE FANO LASER

When the Fano laser operates around the nanocavity reso-
nance, the output power transmitted through the Fano mirror
(termed the through port) is limited due to the very high
reflectivity of the Fano mirror. Therefore it is preferable to
use another channel for the output, for example, e.g., either the
left mirror (the left end of the WG) by reducing (increasing)
the left mirror reflectivity (transitivity), rL (tL), or through
a cross port by placing an additional WG adjacent to the
nanocavity with a coupling efficiency γ3 [24]. These channels
are expected to have a higher external quantum efficiency than
the through port [24]. The ratio of the output power of the
left mirror, PL, with respect to the through port, PT , can be
obtained as

RLT (ωr ) = PL

PT
=

(
1 − r2

L

)|rR(ωr )|
rL(1 − |rR(ωr )|2)

,

FIG. 5. (a) The ratio of output powers in the left port and the
through-port (RLT , black curve) and the ratio of output powers in
the cross port and through port (RCT , red curve), as a function of rB

when the Fano laser operates at the frequency point of the optimum
linewidth ωm (as R12 = Rmax). (b) The output power ratio (log scale)
between the left port and cross port as a function of rB and R12. The
Fano laser operates at the reflectivity peak of the Fano mirror.

and the ratio of the output power of the cross port, PC , with
respect to the through port is

RCT (ωr ) = PC

PT

= 4γ1γ3

|tB(ω0 − ωr ) − jtB(γv + γ3) + Se/tB|2 .

Figure 5 compares RLT and RCT . Here, we choose rL = 0.99
and ω0/(2γ3) = 1 × 105 so that the maximum of the Fano
mirror reflectivity |rR(ω)| = rL (when rB = 0). As seen, both
RLT and RCT are much larger than unity, and the cross port, in
general, exhibits the highest external quantum efficiency when
working around the frequency point of the optimum linewidth
ωm [Fig. 5(a)]. When working around the peak of the Fano
mirror reflectivity, the left mirror can give a higher external
quantum efficiency [Fig. 5(b)].

[1] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S.
Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S.
Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M.
Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram
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