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Control of collective human behavior: Social dynamics beyond modeling
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The motion of pedestrians is a paradigmatic phenomenon to study collective human behavior. We propose a
model-free approach to analyze the movement of pedestrians in experiments and get a quantitative understanding
of crowd dynamics. Using concepts from control and analysis of dynamical systems, we set up a scheme which
allows us to identify dynamical unstable signatures in pedestrian flows. These signatures are the building blocks
for crowd control and soft management of people and thus result in a fundamental understanding of collective
human behavior. Our approach is entirely data driven, and we provide a proof of concept using field and
laboratory experiments. In addition, this methodology provides, based on experimental observations, quantitative
benchmarks to judge the quality of mathematical models for pedestrian motion.
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I. INTRODUCTION AND CONTEXT

Modeling and control of collective human behavior con-
stitute one of the central themes of the 21st century, as, for
instance, illustrated by crowd control issues at concerts or
sporting events or evacuation procedures for buildings. Most
vividly, these aspects are emphasized by extreme events such
as the Hillsborough disaster [1], the Duisburg Love Parade
disaster [2], or the King’s Cross Station fire [3]. Studying and
understanding pedestrian dynamics in a qualitative way may
have a huge impact on crowd safety (see, e.g., Refs. [4–6]),
individual comfort [7], infrastructure design [8], and imple-
menting social distancing to prevent the spreading of diseases
such as COVID-19 [9–11].

There exist a large number of simulation programs [12–16]
both based on computational fluid dynamics and based on
discrete particle simulations impacting on governmental reg-
ulations and fire safety codes in many countries [17,18]. In all
these contexts, theoretical modeling is in fact quite advanced
and often in good agreement with actual data providing suit-
able input for a number of different standards for the design
of critical infrastructure [19,20]. However, these simulation
programs miss systematic experimental verification despite
the work of a few experts (e.g., Refs. [21–27]), since setting
up experiments in a sociotechnological context is a challenge.

Actual experiments in social systems pose a couple of
substantial challenges. If we briefly adopt the notation pre-
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dominantly used in statistics, social sciences, or medical
clinical trials, experiments can be broadly grouped in three
different categories, namely, statistical surveys where accurate
average information about the behavior of individuals can be
obtained, observational studies which give detailed informa-
tion about the dynamics of groups of people, and experimental
studies where one impacts on a group of individuals and
monitors the dynamical response. Such a classification is
not sharp, the borders between the different categories are
certainly blurred, and the classification may not fit perfectly
in the physics context. Nevertheless, it helps to group the
available experimental studies and to clarify our aim. For in-
stance, Refs. [28,29] provide nice and very detailed overviews
of properties of pedestrian motion obtained at an aggregate
level. Experiments where one records the behavior of groups
of pedestrians subjected to static constraints and where one
draws fundamental conclusions about the pedestrian flow
are described, for instance, in Refs. [30–32], which give,
among other things, detailed insight into the structure of
the fundamental diagram; in Refs. [33–35], which provide a
comparison of actual experiments with models and discuss
the identification of parameter choices; in Ref. [26], which
nicely illustrates state-of-the-art technology to extract single-
trajectory information from experimental observations; and in
Ref. [36], which discusses in detail experimental observations
to uncover the impact of diversity on the behavior of crowds.
Our approach follows the third paradigm, where we aim to
investigate the impact of small time-dependent external inputs
on the dynamics of a crowd. Thus we broadly follow the
concepts of response theory or spectroscopy developed, e.g.,
in the context of condensed matter physics (see also Ref. [23]).
In more detail, we apply, in an experimental setup, control
techniques to study and track instabilities and bifurcations,
a concept which is a powerful tool for the numerical inves-
tigation of nonlinear model equations. A direct analysis of
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pedestrian experiments which uncovers changes in the qual-
itative dynamical behavior, i.e., an experimental bifurcation
analysis, is lacking so far.

For our pedestrian experiments a sufficiently large num-
ber of individuals is crucial. Initial experimental trials with
periodic boundary conditions where pedestrians entered a cor-
ridor repeatedly failed due to individuals memorizing their
previous actions, adjusting their behavior, and substantially
changing the dynamics of the crowd. As a result, humans
in our control experiments were allowed to participate in the
experiment only once. Mass events such as football matches
or concerts provide many pedestrians when arriving at the
location. However, accompanying habits such as predrink-
ing alcohol create difficult nonreproducible circumstances
for experiments. Several trials failed as people deliberately
disturbed the measurement processes. Reasonable conditions
without hiring a large crowd can be found, for example, at
public transport hubs during rush hour. We were unable to
obtain permission to conduct experiments at bigger stations in
Germany (Berlin and Hamburg) or in the UK (London); see,
e.g., Ref. [37] for the challenges one faces when one performs
large-scale pedestrian experiments in the public transport
sector. We finally chose to perform experiments at the Ul-
mencampus of the University of Rostock, with first-semester
students just starting their studies, and field experiments at the
pier at Warnemünde port, where passengers are disembarking
cruise ships.

As for the actual investigation, we analyze the route choice
of individuals belonging to a crowd of people with the same
target. This, for instance, could be a situation where people
need to quickly move from one train platform to another or
where people have to choose a route to the exit of a building.
To model such situations in a well-defined setup, we design
experiments where individuals aim to reach an exit at the end
of a corridor (see Fig. 1). A few meters in front of the exit
a triangular obstacle blocks the pedestrians’ direct way to the
exit and gives them the option to maneuver around the right or
left side of it. The pedestrian flux difference between passing
left or right of the obstacle is the key quantity to be studied,
since this basic quantity gives us information about the route
choice of the pedestrians and the crowding in the corridor. Of
particular interest will be the effect of the obstacle’s position
on the flux difference.

The noteworthiness of the current study comes in three
parts. Firstly, by varying the position of the obstacle, we
succeeded in observing bistable states of the flow of human
crowds. As a consequence, our findings indicate that in ad-
dition to stable flow patterns observed in experiments there
are also unobservable, which means unstable, states which
are crucial for understanding the overall global dynamics.
Secondly, we successfully applied an adaptive feedback con-
troller to stabilize and reveal such unstable states. Finally,
we demonstrate how the features of pedestrian flows can be
exploited to implement soft management strategies [38], to
achieve crowd control and to minimize crowding. By this, we
mean measures which are indicative and provide guidance,
such as signage [39].

The impact of our approach is twofold. On the one hand,
we are able to propose suitable management and design strate-
gies which minimize crowding and optimize social distancing.

FIG. 1. Left: Route choice experiment of a pedestrian flow pass-
ing an obstacle. Right: Schematic setup of the experiment with
corridor, obstacle, and pedestrian flows indicated. The crucial pa-
rameter is the position of the obstacle, and the relevant observable
is given by the flux difference ϕ = �1 − �2 of pedestrians passing
on the left and on the right of the obstacle.

On the other hand, our approach can be used as an analytic
tool to gain a better understanding of the dynamics of pedes-
trians. While our setup is quite basic, it turns out that the
experiment we propose shares many features with real-life
pedestrian flows. We think our demonstration of successful
soft management control strategies has considerable implica-
tions for real-life human behavior.

II. HYSTERESIS IN PEDESTRIAN FLOWS

We performed our study at two events with different focus.
In the first set of experiments we aimed at a well-defined
and reproducible setup using a crowd with lower density,
with fewer interpersonal relationships between pedestrians,
and with a well-defined pedestrian inflow. Hence we were em-
ulating situations which are found in laboratory experiments
in physics or chemistry with a well-defined and reproducible
environment. This series of experiments was conducted with
first-year students at the beginning of the autumn term at the
University of Rostock. The key dynamical findings in this
setup, i.e., bistability and hysteresis of the pedestrian flow,
were then tested in a real-world setup to ensure that our
findings were not triggered by artifacts of laboratory setups.
The second type of study was performed on a pier in the
Warnemünde port where a crowd of people had just disem-
barked from a cruise ship.

In both experiments, people had to enter and exit a rect-
angular corridor designated by queue barriers. There was a
single entrance and a single exit, which all participants were
aiming for; see Fig. 1. A triangular obstacle was placed in the
pedestrians’ way to this single exit. The pedestrians passing
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FIG. 2. Route choice experiment at Ulmencampus, University of
Rostock. Top: measured mean flux difference as a function of the
obstacle position, for upsweep (blue) and downsweep (red) of the
system parameter, showing hysteresis. Bottom [(a)–(l)]: snapshots
of the actual pedestrian configurations for different values of the
obstacle position (see labels).

the obstacle on either side were counted, where, in this paper,
the left and right sides are described from the pedestrians’
point of view. The obstacle had the shape of an isosceles
triangle, with two sides being 2.2 m long and the third one
being 1.8 m long. The height of the obstacle was 2.4 m.

In the experiment conducted at Ulmencampus (see Fig. 2
and the blurred video in the Supplemental Material [40]), our
designated corridor was placed in front of the entrance of a
lecture theater. The dimensions of the corridor were 14 m
long and 6 m wide. The width of the entrance and the exit was
1.2 m. There was an obstacle in the pedestrians’ way, 6 m after
the entrance (see Fig. 1). Students wanted to enter the lecture
theater and were asked to wait briefly at the entrance of the
corridor, so that a constant inflow rate of about 0.6 persons/s
could be realized. In total, about 600 students participated. In
the Warnemünde port experiment the corridor was 16 m long
and 6 m wide, while the width of the entrance and the exit
was 5 m. The obstacle was placed 8 m after the entrance. Over

1000 pedestrians participated, with an average inflow rate of
around 1.5 persons/s. Participants were people of different
ages and with no knowledge of the infrastructure but with
the desire to reach their target destination quickly. During
the experiments, we systematically moved the obstacle to dif-
ferent positions and recorded the corresponding value of the
flux difference ϕt . The process of moving the obstacle slowly
was barely noticeable by the pedestrians, meaning that in both
cases, we performed a quasistationary parameter change, i.e.,
after each small increment we allowed the system to relax to
a stationary state before we measured the current.

The variable of interest is a time-dependent flux difference
ϕt , which means the choice people make of passing to the left
or right of the obstacle. To measure this, we define ϕt to be the
mean of the last eight pedestrians’ choices, with +1 for each
one choosing the left side and −1 for the right side. We use
the convention of assigning positive values to people choosing
the left side of the obstacle, pt = 1, and negative values to
the other side, pt = −1, where t labels the time. Since the
counter pt is a strongly fluctuating quantity, in particular in
cases with low-density pedestrian flows, we take an average of
the last eight pedestrians’ crossings, ϕt = 1/8 · (pt + pt−1 +
· · · + pt−7), to measure the route choice difference. The win-
dow size of 8 results in a discrete measure ϕt which can take
nine different values with resolution ±0.25. This quantity pro-
vides enough information for our data-based and model-free
approach. Most importantly, no advanced tools for measuring
the speed or the distances between pedestrians were needed.

The results from the experiment at the Ulmencampus are
presented in Fig. 2. With μ = 0 denoting the center of the
corridor, the obstacle was moved from negative to positive
positions by small increments of 0.075 m and then back
toward its initial positions. For each obstacle position, we
allowed the flow to attain a new stationary state before we
moved the obstacle again. During this procedure, we observed
a sudden change in people’s choice for two different positions
of the obstacle. This phenomenon is reflected by the mean
flux difference jumping from positive to negative values at
around μ = 0.15 m and then from negative to positive at about
μ = −0.225 m; see Fig. 2. The bottom part of Fig. 2 shows the
pedestrians’ walking choices throughout the obstacle sweep.
From the obstacle sweep, we observed that for any position
μ ∈ [−0.225 m, 0.15 m] there are two different states of the
system which seem to be stable. When the obstacle position is
changed, the choice of the pedestrians depends on the previous
state, which leads to a hysteresis phenomenon.

The results of the second series of experiments are shown
in Fig. 3. In these experiments, passengers wanted to leave
the pier at Warnemünde port. We had a quite diverse crowd
at our disposal with individuals of a large range of ages and
different nationalities, where pedestrians had no knowledge of
the infrastructure they were about to cross. Passengers wanted
not only to leave the pier as quickly as possible but also to
stay close to their friends and families. Unlike the first type
of experiments, the second setup contained elements which
broke the left-right symmetry. The dependence of the flux
difference on the obstacle position is summarized in the top
panel of Fig. 3.

From the obstacle sweep, for any position μ ∈
[0.3 m, 0.75 m] there are two different states of the system
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FIG. 3. Route choice experiment at the Warnemünde port. Top:
measured mean flux difference as a function of the obstacle position,
for upsweep (blue) and downsweep (red), showing hysteresis. Bot-
tom [(a)–(l)]: snapshots of the actual pedestrian configurations for
different values of the obstacle position (see labels).

which seem to be stable. The hysteresis is, however, not
symmetric, as the interval of offsets μ for which we observe
bistability is not centered around μ = 0. There is a clear
bias towards one side. Indeed, that was expected since the
Cruise Center was to the left and parallel to our designated
corridor. Hence pedestrians favored passing on the left side
of the obstacle. Nevertheless, we still observed the previously
recorded hysteresis phenomenon. In particular, our findings
are robust under real-world conditions, where, e.g., we do not
monitor the inflow of pedestrians. Furthermore, hysteresis still
persists under other inhomogeneities which occur frequently
in social groups. For instance, we observed small groups
of passengers, such as families or friends, walking together
or slowing down to wait for each other. We also observed

moments where the density of pedestrians was higher or
lower or even moments when there was a small gap in the
flow. Neither of these imperfections had an impact on the
occurrence of the hysteresis phenomenon, which can hence
be considered as a fairly robust property of a pedestrian flow.
Additionally, the phenomenon observed does not seem to be
a cultural characteristic since the participants in the second
series of experiments were tourists of different nationalities.

The results from both series of experiments indicate that
for a range of positions of the obstacle, two different states
of the system coexist. The bistability observed in this sys-
tem does not require a special type of geometric symmetry.
It is robust against a bias, as illustrated in the results from
the experiment at Warnemünde port. The hysteresis phe-
nomenon also appears in a setup where the discrete nature of
the measured flux difference is noticeable. We conclude that
the dynamical signature, the hysteresis caused by the route
choice, is a stable phenomenon which does not just occur
under laboratory conditions, but reflects real-life situations of
pedestrian flows.

III. NONINVASIVE CONTROL:
SOFT MANAGEMENT STRATEGIES

Crowd or traffic management [41–43] can be considered as
a particularly challenging engineering control problem where
one uses small control inputs for guiding people. Such soft
strategies are actions, suggestions, or guidelines that pedestri-
ans could ignore such as markings on the floor, signs, or traffic
indicators for different routes. Control with minimal invasion
has been reemphasized in science, in particular in the context
of controlling complex dynamical behavior [44]. Feedback
control exploits the dynamical features of the underlying
dynamics, making a large variety of potential target states
accessible. In addition, control can also be used to explore
the features of a system (see, e.g., Refs. [45–50]), where one
mimics within an experimental setup continuation techniques
used for bifurcation analysis. Hence control in this context
has a second facet, namely, employing the technique for the
analysis and spectroscopy of complex dynamical behavior.
Within our experimental setup we have the ideal test bed to
study noninvasive control in a sociodynamical context. The
measurements presented in the previous section and the gen-
eral theory of dynamical systems suggest that an additional,
unstable and therefore unobservable state of the system exists
in the bistability region. As we operate in the neighborhood
of a stationary state, control is possible with minimal control
forces. We aim to control an unknown unstable steady state
with asymptotically vanishing control force, while at the same
time we have limited possibilities to act on our system. We
employ here soft management strategies, i.e., using signs or
traffic lights, as opposed to hard management strategies which
are invasive such as barriers or bouncers.

Controlling unknown states is quite well known in engi-
neering and can be achieved by a state observer. As for the
actual control algorithm we follow a suggestion of Ref. [51]
which in fact is a simple realization of feedback control with
a state observer. To illustrate the basic idea, recall that the flux
difference measuring the pedestrians choice, ϕt , is the quantity
of interest. Assume for the purpose of illustration that the
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time evolution can be approximately captured by an unknown
differential equation of the type ϕ̇t = G(ϕt ) with unstable sta-
tionary state ϕ∗, which implies G(ϕ∗) = 0. Adding a control
force results in ϕ̇t = G̃(ϕt , a(yt − ϕt )) = G(ϕt ) + a(yt − ϕt )
with a being the gain of the control loop. We here consider
the simple case that the dynamics of the control device is
governed by a linear law ẏt = b(yt − ϕt ) with filter parameter
b. The dynamical state yt of the controller estimates the value
of this unknown unstable state and can be considered as the
simplest incarnation of a so-called state observer. The control
signal yt − ϕt is then fed back to our original dynamical sys-
tem resulting in the closed-loop dynamics ϕ̇t = G̃(ϕt , a(yt −
ϕt )) with a being the gain of the control loop. The fixed point
of this closed-loop dynamics is clearly given by y∗ = ϕ∗ and
G(ϕ∗) = 0, i.e., y∗ estimates the unknown fixed point which
coincides with a fixed point ϕ∗ of the original equation of
motion. Furthermore, the feasibility of the control algorithm
can be established by a simple linear stability analysis. If ϕ∗ is
an unstable fixed point with positive eigenvalue G′(ϕ∗) > 0,
then linear stability analysis easily shows that stability of the
closed-loop dynamics with the state observer is achieved if
b > 0 and a > G′(ϕ∗) + b. In particular, the actual control
signal becomes small and asymptotically tends to zero, so that
the approach works with tiny control forces. Implementation
does not require any knowledge about the stationary state or
the underlying equations of motion. This, in practice, means
that the external force induced by signs is in principle able to
drive the system to unobservable states, and it vanishes when
the system operates around an unstable fixed point.

The diagram in Fig. 2 is the result of a fairly com-
plex dynamical system with many degrees of freedom,
but it resembles a structure which can also be seen in a
low-dimensional effective equation of motion. Equation-free
analysis [52] aims at reducing the dynamics of a complex sys-
tem, normally given in terms of a high-dimensional system of
differential equations, to a low-dimensional effective equation
of motion just based on numerical simulations. Here we take
this idea a crucial step further [47,48]. We explore whether
it is possible to use measurements and control techniques
in our pedestrian flow to identify signatures of such a low-
dimensional effective equation of motion. Using the analogy
with bifurcation analysis, the result shown in Fig. 2 suggests
that there exists an additional unstable branch of states. Such
unstable flow patterns correspond to an unstable fixed point in
an effective low-dimensional description. Using the control
algorithm described above, we aim to track unstable, i.e.,
unobservable, states, in relation to the obstacle position μ.
Unlike in numerical simulations, where initial conditions are
at the disposal of the programmer, we have only very lim-
ited control, if any, over the initial state of the system. In
practice we just let pedestrians enter the corridor. We are,
however, able to change the position of the obstacle, μ, and
we can set the initial state of the observer variable, yt=0, which
estimates the unknown effective fixed point and then dynam-
ically adjusts to the true value of the originally unstable flux
difference.

The experiments with control were conducted at the Ul-
mencampus with the same configuration as described in the
previous section. To implement a soft management strategy,
we displayed an arrow on a monitor mounted on the obstacle,

but we did not give any further incentive to the pedestrians to
follow this sign. For the control scheme the arrow was inclined
and magnified giving the pedestrians an indication regarding
on which side to pass the obstacle. The inclination and size
of the arrow were adjusted proportionally to the control signal
yt − ϕt , with positive or negative values corresponding to an
arrow inclined towards the right or left, respectively. Success-
ful control is indicated by the system fluctuating around a
state or, equivalently, reaching a new steady state, with small
control signal yt − ϕt .

As for the protocol of the experiment with control, the fol-
lowing steps were performed. First, we made a prediction for
an unstable state. The choice of these initial values was made
based on the sweep diagram as depicted in Fig. 2. Although
the diagram is not perfectly symmetric, it appears that the
tipping points are around (μ, ϕ) = (−0.3,−1) and (μ, ϕ) =
(0.3, 1). As a result, we expected the unknown steady states
to lie in the vicinity of the line connecting these two points.
Based on the sweep diagram of Fig. 2 we initialized our
experiment with μ = 0. For the differential equation govern-
ing the state observer ẏt = b(yt − ϕt ) we chose yt=0 = 0 and
b = 0.05. The parameter a that scales the arrow accordingly
was chosen to be a = 6. In contrast to a numerical exper-
iment where a model for the system under investigation is
available, the pedestrians’ state could not be set at will. As
a result, we had no way to initialize the pedestrians at a
given state. Instead, pedestrians started entering the corridor,
walking towards the end of it, and being influenced by the
arrows displayed at the front of the obstacle. As explained
above, reaching a new steady state is equivalent to the system
fluctuating around a state with small control signal yt − ϕt .
When this happened, we recorded the value around which ϕt

fluctuates as a new steady state. At this point, we were ready
to move to the next parameter value. Pedestrians kept walking
inside the corridor as we moved the obstacle to μ = 0.075 m
and initialized the differential equation governing the state
observer with yt=0 = 0.25. As soon as the experiment for this
position of the obstacle was successful, we continued with two
more cases: the case of μ = 0.15 m, yt=0 = 0.5 and the case
of μ = 0.225 m, yt=0 = 0.75.

The results of the experiment with control are summarized
in Fig. 4. Students were asked to walk through the corridor
only once, as people’s memories of going through the corridor
several times would potentially alter the results. We conducted
the experiment for four different positions of the obstacle, and
we managed to reveal additional unstable states; see the green
circles in the top panel of Fig. 4. The middle part of Fig. 4
shows time traces of the various relevant quantities. The state
of the controller yt (red) quickly approaches the flux differ-
ence of the unstable state and thus estimates the unobservable
state successfully. The flux difference ϕt (blue) approaches the
same value but shows larger fluctuations. These fluctuations
are caused by the intrinsic discrete nature of the measured flow
ϕt , which comes in units of 0.25. Convergence is better visible
when we smooth the data by a Cesàro average defined as ct =∑t

k=1 pk/t (cyan). Finally we show as well the pedestrians’
choices pt = ±1 (magenta circles), which clearly demonstrate
that the pedestrian flow under control is channeled along both
sides of the obstacle. Above all, the control signal yt − ϕt

becomes small when successful control is achieved so that the
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FIG. 4. Control of pedestrian flows at the Ulmencampus. Top:
flux difference as a function of the obstacle position. Stabilized un-
stable states (green circles) for different positions of the obstacle; for
comparison, the flux difference without control (see Fig. 2) is shown
for the upsweep (blue) and the downsweep (red) of the parameter.
Middle: the measured control flux difference ϕt as a function of time
t (blue, actual flux difference; cyan, Cesàro average,; see text for
details), the state of the controller yt which estimates the target state
(red), and the time trace of the pedestrian count passing by the obsta-
cle, i.e., pt (magenta circles). Bottom: snapshots of actual pedestrian
configurations during control for μ = 0. Control is implemented by
the green arrow displayed on the screen.

states shown in Fig. 4 are unstable solutions of an underlying
dynamical system.

In addition to the data obtained from this experiment, the
top panel of Fig. 4 also contains the mean flux difference
observed in the experiment without control (cf. Fig. 2). Some
of the controlled states are almost outside the observed hys-
teresis region. The actual bistability region is certainly larger
than recorded since noise, imperfections, and finite-size ef-
fects render some of the observable stable states unstable,
a phenomenon which is prevalent at the boundaries of the
bistability region.

Unlike the uncontrolled pedestrian flow, the flow subjected
to the control shows less crowding. A close inspection of the
controlled states reveals that the actual pedestrian flow is split
into two parts with pedestrians passing by the obstacle on
the left side and on the right side (see, e.g., magenta circles
in the middle part of Fig. 4 and the photos in the bottom
part). Effectively, the pedestrian flow becomes less crowded,
and social distancing between pedestrians is enhanced. We
achieved this by a minimally invasive control force which
eventually becomes small. In addition, the optimal obstacle
position for splitting the flow in the current symmetric setup is
certainly the position without offset, μ = 0, as the controlled
flow difference becomes minimal in this setup. While this fea-
ture is a consequence of the symmetries shared by our setup,
the optimal obstacle position is less obvious in asymmetric
situations (cf. Fig. 3).

In summary, we have implemented a soft management
strategy where the control input becomes small when the
target state is reached. We have achieved that success by
exploiting the system dynamics. Our showcase proves that
soft management strategies can give a better level of service if
suitable unstable states in pedestrian flows can be identified,
leading finally to more efficient crowd management.

IV. MICROSCOPIC MODELS VERSUS
THE MODEL-FREE APPROACH

The phenomena observed and described through the con-
ducted experiments provide a good test for the various models
of crowd behavior; see, e.g., Refs. [5,53–55] for a review. One
popular model which has been extensively used for pedestrian
simulations is the social force model [56]. According to this
model, pedestrians are described as particles, and their motion
is the result of social forces acting on them. These forces
reflect the impact of their psychology and surroundings. The
motion for pedestrian i is given by its acceleration

ẍi = Fi +
∑

j

fi j + fB
i , (1)

where Fi is the target force that drives an individual towards a
specific target with a desired velocity, fi j are the interaction
forces between pedestrians i and j, and fB

i is the external
repulsive force taking the effect of the walls and the obstacles
into account. The target force is given by

Fi = 1

τ
(viei − ẋ), (2)

where τ denotes the reaction time, vi is the desired speed of
pedestrian i, and ei is their normalized target direction. The

043190-6



CONTROL OF COLLECTIVE HUMAN BEHAVIOR: SOCIAL … PHYSICAL REVIEW RESEARCH 4, 043190 (2022)

latter was adjusted to include the tendency to follow people
around (see Ref. [57]). Specifically, the target direction of
each pedestrian is a linear combination of the direction to
the exit, e‖, and a weighted mean of the velocities 〈ẋ j〉i over
pedestrians j in the neighborhood of pedestrian i

ei = (1 − λ)e‖ + λ〈ẋ j〉i

‖(1 − λ)e‖ + λ〈ẋ j〉i‖ , (3)

where λ denotes the lemming parameter which measures the
psychological impact by pedestrians in the neighborhood. See
Refs. [57,58] for details.

Control by signage, traffic lights, or arrows is an inherently
complex process involving perception and psychology. Here
we just map this complex process to an adjustment of the
target direction. To implement the soft control strategy of our
experiment (see Fig. 4), i.e., to feed the control input to the
model, we update the target direction ei of pedestrian i. This
results in a target direction with control

ec
i = ei + a(y − ϕ)n⊥

‖ei + a(y − ϕ)n⊥‖ , (4)

where n⊥ denotes a vector perpendicular to the walls of the
corridor. To take the local character of our experimental setup
into account, which just relies on displaying arrows on the
monitor in front of the obstacle, we update the control term
ec

i only for pedestrians inside a small rectangular area in front
of the obstacle visualized as a red box in the bottom part of
Fig. 5. In order to verify this model we have performed a series
of particle simulations similar to the experiments. The entire
geometric configuration, e.g., corridor, obstacle, and entrance,
was the same as in the experiment at Ulmencampus. We also
ensured that there were always eight pedestrians inside the
corridor.

For the numerical integration of the model, we take a
lemming parameter λ = 0.45, a pedestrian-obstacle length
scale of 1.5 m, a pedestrian-pedestrian repulsion parameter
of 10 m/s2 and a pedestrian-pedestrian interaction range of
2 m. The control area was a rectangular area of width 0.7 m
and length 1.5 m placed (its closer side) 1.3 m in front of
the obstacle. The control area was shifted together with the
obstacle so that its center was always the tip of the triangular
obstacle. The rest of the parameters of the simulation can be
found in Refs. [57,58].

While a microscopic numerical simulation allows for the
application of the most subtle control algorithm, we delib-
erately stayed with the protocol used in our experimental
setup. We first emulated a parameter up- and downsweep to
record the flux difference without control. In the second part
of the numerical simulations we applied the control scheme
described above. Figure 5 summarizes our findings. In the top
panel the blue and red lines correspond to the mean value
of the measure ϕ without control for different positions of
the obstacle. Clearly, the experimental hysteresis phenomenon
is reproduced even at a quantitative level (see Fig. 2). The
green symbols show the states subjected to control. Again
a remarkable quantitative agreement between the simulation
results (circles) and experimental data (crosses) is found. The
middle part of the figure shows the time series of the mea-
sure ϕ (blue line) and the controller variable y (red line) for
four states of the system. The magenta circles indicate the

FIG. 5. Numerical simulations of control of pedestrian flows.
Top: the flux difference ϕ is plotted over the obstacle position.
Stabilized target states (green circles) for different positions of the
obstacle reveal the unstable branch. For comparison, experimental
results are shown by black crosses (see Fig. 4). The flux difference
without control is shown for the upsweep (blue) and downsweep
(red) of the parameter (compare with Fig. 2). Middle: the measured
control flux difference ϕt as a function of time (blue, actual flux
difference), the state of the controller yt which estimates the target
state (red), and the time trace of the pedestrian count passing by
the obstacle, pt (magenta circles). Bottom: density plots of pedes-
trians for different positions of the obstacle (gray triangle) without
control—parameter upsweep [(a)–(c)] and parameter downsweep
[(d)–(f)]—and density plots with control (u−2, u0, and u2). The red
rectangle in front of the obstacle indicates the control area; only
pedestrians in this area are affected by the control input.

choice of each pedestrian. Even these microscopic features
of the simulations coincide remarkably well with the actual
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experimental time traces of Fig. 4. Similar to the results from
the experiment, we can see some fluctuation around a steady
state. The bottom part of the figure consists of density plots of
trajectories of pedestrians during the control-free simulations
for the parameter upsweep [Figs. 5(a)–5(c)] and downsweep
[Figs. 5(d)–5(f)] and density plots during the control proce-
dure (u−2, u0, and u2). Comparing the density plots subjected
to control (panels corresponding to u−2, u0, and u2) with
those without control [Figs. 5(a)–5(f)], we clearly see that
the control strategy manages to disentangle the pedestrian
flow efficiently. Furthermore, if we switch off the control,
the system returns to the stable branches, thus giving again
evidence that the stabilized patterns are unstable states of the
system.

We thus have compelling evidence that the model outlined
in this section is able to capture details of the experimental
pedestrian flow even at a quantitative level. It is, however,
important to stress that such an accurate model is by no means
needed to analyze pedestrian flows within our model-free
approach. The detection of suitable unstable states which can
be used for a soft management strategy can be accomplished
solely by a simple control tool. The outcome of the proce-
dure is a bifurcation analysis at a macroscopic level which is
sufficient to uncover the relevant dynamical features of our
flow experiment. Nevertheless, accurate microscopic models
have their virtue as they allow for prediction and for the
implementation of sophisticated management strategies. The
accuracy of such models can then still be benchmarked by a
model-free analysis.

V. DISCUSSION

We have proposed an experimental test bed which is
appropriate for implementing and testing soft management
strategies for pedestrian flows. In particular, we succeeded
in extracting the dynamic features of the walking behavior
of pedestrians without the need for a mathematical model.
Above all, bifurcation scenarios were detected which can be
exploited to manage crowds in a real-world scenario. Since
the outlined approach does not rely on any model, the findings
are robust and stable with regard to imperfections and noise.
In addition, the protocol employed here allows one to validate
mathematical models of social behavior in a quantitative way.
In particular, our method confirms the validity of social force
and related models as long as crucial ingredients such as the
lemming effect are properly accounted for. The latter provides
an efficient way to take into account the psychology of indi-
viduals and its impact on the overall pedestrian flow. Under
such conditions we obtain a quite remarkable quantitative
agreement between experiment and model, which a posteriori
confirms the advanced stage of modeling of social behavior.

The density constitutes a crucial quantity for the dynamics
of pedestrian flows (cf., e.g., as well Ref. [59]). While a value
for the density can be enforced in simulations and to some
extent in laboratory experiments as well, the value of the den-
sity in real-world pedestrian flows is often the consequence of
the dynamics of the crowd, where individuals may even evap-
orate from the system, if not prevented by hard constraints
which may result in crowd disasters. To use an analogy from
equilibrium statistical mechanics, the density behaves like in

a grand canonical ensemble where the chemical potential is
given.

Within our particular setup the density plays a crucial
role in the occurrence of the bifurcation scenario. At high
densities the pedestrians jam in front of the obstacle, the
dynamics changes considerably, pedestrians pass on each side
of the obstacle, and the bistable dynamical behavior ceases
to exist. Such phenomena occur if the interpersonal distance
drops below 1 m, i.e., below the comfortable distance people
prefer, or at an inflow rate to the channel which is higher
than two individuals per second. We have tested these num-
bers extensively in simulations and in laboratory experiments
with small groups of individuals. In fact, we have observed
these problems when we run laboratory experiments without a
controlled inflow since all participants may enter the corridor
at the same time. In our laboratory setups we regulated the
inflow to 0.6 persons/s.

At very low densities, in particular if the pedestrians do not
notice each other any longer, no lemming effect dominates
the motion, and the hysteresis disappears as well. Such fea-
tures which also come with interruptions of the flow appear
at interpersonal distances above 10 m. We have confirmed
those values by extensive simulations of the setup used in our
experiments and with preliminary experimental studies with
small groups of people. In our laboratory experiments we have
avoided these flow interruptions by a controlled inflow to the
corridor.

The hysteresis occurs for a fairly broad range of densities
with mean interpersonal distance between 1 and 10 m. While
in simulations and laboratory experiments such a value can
be achieved by controlling the inflow, most surprisingly the
hysteresis also shows up in the field experiment where the
inflow has not been monitored at all. Here the density itself
fluctuates, and the interpersonal distance people prefer results
in moderate densities which support the bistability. None of
the aspects which come with real crowds of people such
as fluctuation of the inflow, people deliberately ignoring the
signs, families forming small groups within the stream of
pedestrians, or asymmetries in the geometry of the corridor
have resulted in a breakdown of the hysteresis phenomenon.
In particular, unlike laboratory experiments, which are nor-
mally done by recruiting or even paying individuals, the
people in our field experiment were not aware of what to
expect, and that seems to be as well a crucial factor for the
hysteresis phenomenon to occur. The bistability is therefore
a representative scenario for people leaving or entering a
domain freely, i.e., it is a characteristic feature for a crowd
of pedestrians in an environment where they are able to en-
sure a comfortable distance between people, resulting in an
effective average density which supports the occurrence of
hysteresis.

Because of the discrete nature of counting people and
given the moderate densities employed in our experiments,
the signal processing had to cope with substantial finite-size
effects, so that our setup cannot be captured by a continuum
limit for the pedestrian flow. Such a challenge has an impact
on the setup of the control loop, as the signal used to adjust
the sign is initially discrete. Smoothing the signal by a simple
low-pass filter turned out to be sufficient so that standard time
continuous linear control theory could be applied.

043190-8



CONTROL OF COLLECTIVE HUMAN BEHAVIOR: SOCIAL … PHYSICAL REVIEW RESEARCH 4, 043190 (2022)

Careful consideration is required to set up controlled exper-
iments successfully. Artificial boundary conditions have the
potential to destroy the dynamical features of realistic pedes-
trian flows. In that respect, any kind of periodic boundary
conditions or repeated use of individuals have to be taken
with a pinch of salt as the memory of individuals may in-
duce novel dynamical properties which are otherwise absent.
Hence the two types of experiments we have conducted were
important: the laboratory-type experiment at the Ulmencam-
pus (see Fig. 2) and the real-world application at the port
of Warnemünde (see Fig. 3). In the former case, clear sig-
nage and instructions to the participants and a constant inflow
avoiding disruption of the flow were crucial. Nevertheless, the
qualitative dynamics of the flow is robust as proven by the
comparison with the crowd in the Warnemünde port, where
no particular instructions were given. However, in both cases
it turned out to be necessary to prevent a disruption of the flow
as otherwise the dynamical structures would have been erased
from the system. Our Ulmencampus experiment succeeded as
a test bed for emulating the behavior of real-world cohorts
using a laboratory setup with fewer than 1000 participants.
Within our setup we used a low-technology approach with
regard to data recording and processing. Of course, more
sophisticated data recording and data processing tools such as
movement detection via video tracking could be used as well.
However, our studies demonstrate that such advanced tools
may not be required in general.

The approach we have used can be viewed as a partic-
ular installment of control-based continuation for complex
systems, where one tracks unstable, unobservable states in
relation to system parameters. Such features are crucial to
understand the dynamical properties. Therefore our approach
can be viewed as a particular variant of a spectroscopic tool.
The unobservable dynamical features are the major lever for
control with minimal impact, crowd management, and soft
management strategies. In return, whenever a soft strategy
is successfully applied, as, for instance, in dynamical speed
limits [41,42], it is worth uncovering the underlying dy-
namical signature using a model-free approach. Furthermore,

unstable states provide an important skeleton for any dynam-
ical system, and any mathematical model has to reproduce
such features. In that respect, our model-free and data-based
approach can be used as well for benchmarking the accuracy
of a dynamical model.

Crowd management is one of the key issues with huge im-
pact on people’s security and well-being as vividly illustrated
by the recent need to implement effective social distancing
measures to prevent diseases from spreading [9–11]. Under-
standing the dynamical aspects of large groups of pedestrians
is at the heart of implementing control measures and designing
related policies successfully. Our model-free approach can
help to provide data and structures for soft management of
people, e.g., understanding the effectiveness of signing sys-
tems and underpinning the results with dynamical features of
the actual pedestrian flow. For instance, it is tempting to ex-
tend our approach to evacuation scenarios. While the lemming
effect has a negative impact on the time needed to evacuate a
room, it looks promising to use a combination of the existing
knowledge based on mathematical models and a data-based
model-free approach to find minimal invasive strategies for
improving critical evacuation times of rooms and general in-
frastructure. We think our showcase may serve as a paradigm
for future research in quantitative social science.
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