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Towards string order melting of spin-1 particle chains in superconducting
transmons using optimal control
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Utilizing optimal control to simulate a model Hamiltonian is an emerging strategy that leverages the intrinsic
physics of a device with digital quantum simulation methods. Here we evaluate optimal control for probing
the nonequilibrium properties of symmetry-protected topological (SPT) states simulated with superconducting
hardware. Assuming a tunable transmon architecture, we cast the evolution of these SPT states as a series of
one- and two-site pulse optimization problems that are solved in the presence of leakage constraints. From the
generated pulses, we classically simulate the time-dependent melting of the perturbed SPT string order across
a six-site model with an average state infidelity of 10−3. The feasibility of these pulses as well as their efficient
application indicate that high-fidelity simulations of string order melting are within reach of current quantum
computing systems.
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I. INTRODUCTION

Understanding the static and dynamical properties of quan-
tum states is of paramount interest in the field of physical
sciences. One route to enable these studies uses quantum
devices and quantum-information processing in protocols
known as quantum simulation [1]. There are several unique
approaches to quantum simulation, from purely digital ap-
proaches on universal quantum computers to purely analog
approaches using tailor-made quantum devices. There are also
a number of intermediate paradigms that interpolate between
purely digital and purely analog quantum simulation that may
provide more flexibility for near-term or application-specific
realizations [2–11].

One of these emerging paradigms realizes quantum simula-
tion based on quantum optimal control (QOC) and permits one
to take advantage of the natural device dynamics and Hilbert
space while also enabling the use of digital decomposition
methods [11]. In principle, this permits efficient use of co-
herent resources within quantum hardware. One of the most
common applications of QOC is to identify the device controls
that realize a desired unitary evolution [12]. Unitary evolution
can then be used to perform state preparation, dynamical
evolution, or even mitigate errors to improve information ex-
traction [12].
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As a leading case study for quantum simulation, topologi-
cal physics provides a route for both scientific discovery and
engineering as well as the validation of quantum devices and
simulation protocols. One of the primary drivers of interest
in these exotic phases of matter is their potential use within
quantum-information processing as robust quantum memories
[13,14]. Some of these topological phases are well understood
via both analytical and numerical methods that may be used
for validating quantum simulation, while others represent key
open problems for the field [14].

Consider the example of one-dimensional symmetry-
protected topological (SPT) phases, which exhibit interesting
static and dynamical properties that are still under much study
[15]. One of these phases, known as the Haldane phase, is
realized in chains of interacting spin-1 particles that can be
characterized by phenomena such as edge modes, degenerate
entanglement spectra, and dilute (or hidden) antiferromag-
netic order [16–19]. A number of studies have shown that the
latter phenomena, also called string order, can undergo a dy-
namic process called melting that leads to infinitesimally fast
vanishing of string order under symmetry-breaking quantum
quenches [19].

Here we test the feasibility of studying string order melting
using quantum simulation based on QOC. Our approach con-
siders the simulation performed on superconducting quantum
devices composed of coupled transmons operated as three-
level (qutrit) systems. Transmon technology has matured
significantly over the past decade, and quantum processors
with well over 100 transmons are currently deployed with
plans to scale to larger systems [20]. Notably, these hardware
systems are driven by analog control pulses that make them
well suited for quantum simulation [21–23].

In modeling the physics of these superconducting trans-
mon devices, we demonstrate that control optimization
can determine the local unitary evolutions that generate a
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symmetry-breaking quantum quench. These results are vali-
dated using exact numerical simulation, which confirms the
feasibility of simulating string order melting in superconduct-
ing quantum devices.

The main contributions of this work within the field of
quantum science and technology are threefold. First, this work
further validates the approach of performing quantum sim-
ulation with optimal control, building on Refs. [11,24,25].
Second, we demonstrate how problem-specific symmetry con-
straints can be realized naturally through the use of emerging
control modalities, such as those analyzed in Refs. [26–28].
Third, we identify parameter regimes for quantum simula-
tion of string order melting, including an estimate for an
experimentally relevant Trotter decomposition, building on
Ref. [19].

The remainder of the paper is outlined as follows: In
Sec. II, the phenomena of string order melting is defined, and
strategies to observe the phenomena are discussed, based on
Ref. [19]. In Sec. III, we outline our quantum simulation pro-
tocol of the quench dynamics and string order measurement.
In Sec. IV, the device architecture is introduced, and aspects
of controlling this architecture are discussed. We report a set
of optimal controls for this device architecture in Sec. V, and
we validate that these controls enable the study of string order
melting in Sec. VI. Finally, we conclude and discuss avenues
for future experimental demonstrations in Sec. VII.

II. STRING ORDER MELTING

Studying dynamical many-body quantum systems is a clas-
sically challenging task because it requires integration of the
Schrödinger equation on a Hilbert space which grows ex-
ponentially with increasing particle number. This difficulty
motivates quantum simulation protocols to be used when
studying such phenomena [1]. In this work, we propose a
quantum simulation protocol to study string order melting
analogous to the classical simulations performed by Cal-
vanese et al. in Ref. [19] via classical numerical methods.

The simulation of string order melting requires evolving
a quantum state with string order under symmetry-breaking
time evolutions and observing the dynamics of string order
as a function of string length, time, and direction. One of the
best known models with string order is given by the AKLT
model, named for Affleck, Kennedy, Lieb, and Tasaki. The
AKLT Hamiltonian is defined as [16]

ĤAKLT =
N∑

i=1

P(si + si+1 = 2) =
N∑

i=1

Pi,i+1, (1)

where N is the number of spin-1 particles, si is the total spin
of the particle on site i, and P(si + si+1 = 2) = Pi,i+1 is the
projector onto the subspace between two particles i and i + 1
with total spin equal to 2: si + si+1 = 2.

It was shown in their original work that this Hamiltonian
has a unique set of ground states corresponding to the mutual
eigenvectors with eigenvalue 0 for all the projectors Pi,i+1

[16]. These states are known as valence bond solids and are
naturally defined by projecting pairs of spin-1/2 particles in a
singlet state into the spin-1 triplet subspace formed between
singlets [16,29]. The ground states of the AKLT Hamiltonian

are contained within a phase called the Haldane phase, which
is a symmetry-protected topological phase with string order
preserved by certain symmetries [16,17,19].

To define string order, one first defines an operator

Ôα
k,l := Ŝα

k

[ l−1∏
n=k+1

eiπ Ŝα
n

]
Ŝα

l , (2)

where indices k, n, l are lattice sites, and Ŝα
i is the spin-1

operator acting on lattice site i, which generates rotations
around the α = x, y, z axes. The expectation value of Ôα

k,l can
be used to define an order parameter known as a string order
parameter:

Oα
string(ψ ) = lim

|l−k|→∞
〈ψ∣∣Ôα

k,l

∣∣ψ〉. (3)

When Oα
string(ψ ) �= 0, the system is said to have string order,

and this order parameter is used to quantify string order melt-
ing. As defined in Ref. [19], string order melting refers to the
decay of string order in the long-range limit of |l − k| → ∞
at infinitesimal times. This phenomenon is in stark contrast to
typical Landau theory order parameters which cannot vanish
instantly because of the continuity of time evolution [19].

The phenomena of string order melting is closely related
to the concept of thermalization and requires the study of
dynamics at varying lengthscales and timescales [19]. The fast
destruction of string order which motivated the term “melting”
was studied extensively in Ref. [19], but its relationship to
thermalization in the large symmetry-breaking perturbation
scenario could not be effectively probed due to the growth
of entanglement within the matrix product state simulations
performed therein.

It is precisely these limitations that make a quantum sim-
ulation appealing because strong perturbations can be applied
and entanglement growth does not affect the accuracy of the
simulation.

Following Ref. [19], we consider a scenario under which
the AKLT state is quenched under the evolution of the follow-
ing spin-1 Hamiltonian:

Ĥ (λ, b) =
N∑

i=1

[
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + λŜz

i Ŝz
i+1

] + b
N∑

i=1

Ŝx
i , (4)

where λ, b are two competing energy scales to be
parametrized. It is known that for b = 0 and λ � λc ≈ 1.186
the ground state of the Hamiltonian is within the Haldane
phase, the same phase as the AKLT ground states [30]. The
string order found within the Haldane phase is known to
be preserved under perturbations invariant to the action of a
symmetry group [17],

G = {1̂, eiπ
∑

i Ŝx
i , eiπ

∑
i Ŝy

i , eiπ
∑

i Ŝz
i }. (5)

This symmetry group is a specific representation of the dihe-
dral group D2, and any evolution that is invariant under the
action of all elements of G will preserve string order. The
transverse field term b

∑N
i=1 Ŝx

i in Eq. (4) is not invariant under
the action of all elements of G and therefore will lead to the
loss of string order. However, in this case, the perturbation
is invariant under the action of subsets of G, which therefore
preserves string order in the x direction [19]. The perturbation
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thus leads to melting of string order in the z and y directions
only. We consider the implementation of quantum evolution
under Eq. (4).

The simulation proceeds by initially preparing a ground
state of the AKLT model on an open chain, evolving the state
under Eq. (4) with λ = 0.2 for a maximum time T = 2.5 (here
h̄ = 1). At discrete time steps spaced by δt = 0.1, the string
order observables Ôα

k,l are calculated, and the dependence
on the length of the operator l − k, the direction α, and the
transverse field perturbation b is probed. These parameters are
precisely the ones we will use to demonstrate that string order
melting can be observed by quantum simulation enabled with
optimal control; however, other types of symmetry-breaking
quenches could be explored in the future [17,19].

We compare the observed simulation results against a
numerical simulation using exact diagonalization for N = 6
spin-1 sites. From a physical point of view, this small size
does not allow one to observe the large-N effects which define
string order melting. However, it does provide validation that
the optimal controls found in this work enable quantitative
simulation of the phenomena associated with string order
melting.

III. QUANTUM SIMULATION OF STRING
ORDER MELTING

We consider generating dynamics of the Hamiltonian in
Eq. (4) with the transverse field strength parameter given as
b = �bnx, where �b is the interval of b on which we wish to
explore quench dynamics, and nx is an integer that determines
the total magnitude of b. This reparametrization allows us to
decompose the global time evolution of the quantum quench
into a product of local evolutions via Trotterization [11]. In
this work, the time evolution operator can be defined as

U (λ, b, Ts) = exp

(
− iTs

h̄
H (λ, b)

)

= lim
q→∞

[ N∏
i=1

U i,i+1
XY Z

(
Ts

q

)
UX

(
Ts

q

)nx
]q

, (6)

where the XY Z unitary determined by λ is given by

U i,i+1
XY Z

(
Ts

q

)
= exp

(
− iTs

qh̄

[
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + λŜz

i Ŝz
i+1

])
(7)

and the X field unitary is given by

UX

(
Ts

q

)
= exp

(
− iTs�b

qh̄

N∑
i=0

Ŝx
i

)
(8)

=
N∏

i=0

exp

(
− iTs�b

qh̄
Ŝx

i

)
. (9)

For the numerical demonstrations below, we consider �b =
0.2 and λ = 0.2.

By truncating the limit in Eq. (6), one obtains a qth-order
approximation to the global evolution operator. Alternatively,
we choose to use another common definition of the Trotter
decomposition order given by a step size τ = Ts/q. In this
work, we use optimal control methods to determine a set of

device controls which generate the individual, local, Trotter
evolutions. Then, by composing the local optimal controls
in sequence, one is able to approximate the desired global
quantum dynamics.

We now show how to measure the string observables.
We first introduce our notation for a system of N spin-1
particles, and we demonstrate how measurements of the ex-
pectation value of the string order operator can be evaluated.
Consider the spin-1 operators Ŝα with directional compo-
nent α = x, y, z. These operators obey the angular momentum
commutation relations [Ŝα, Ŝβ ] = ih̄εαβγ Ŝγ , where εαβγ is the
Levi-Civita symbol. The eigenvectors of each local operator
are given by Ŝα|sα〉 = s|sα〉, where s = 0, or ± labels the
vectors with eigenvalues 0 and ±1, respectively. One can
convert from eigenstates of Ŝβ to eigenstates of Ŝα via the
unitary operator ûα,β defined as

ûα,β = |−α〉〈−β | + |0α〉〈0β | + |+α〉〈+β |. (10)

A tensor product of eigenstates with the same component α

can be labeled via a string s as |sα〉 = ⊗N
i=1|sα

i 〉, where sα
i is the

ith element of the string sα . Here |sα〉 is a state in the compos-
ite Hilbert space of N spin-1 particles, and the set of all states
formed by all possible strings s form a complete orthonormal
basis for the composite Hilbert space, i.e., Î = ∑

s |sα〉〈sα|.
Moreover, one can transform between tensor product basis
states using Û α,β = ⊗N

i=1 ûα,β :

|sα〉 = Û α,β |sβ〉 =
N⊗

i=1

ûα,β |sβ〉. (11)

We will now consider the expansion of an expectation value
of a string order operator upon a particular direction α for an
arbitrary state |ψ〉 (see Appendix A for full derivation),

〈ψ |Ôα
k,l |ψ〉 = 〈ψ |

(
Ŝα

k

[ l−1∏
n=k+1

eiπ Ŝα
n

]
Ŝα

l

)
|ψ〉 (12)

=
∑

s

(
sk

[ l−1∏
n=k+1

eiπsn

]
sl

)∣∣∣∣〈sz|Û αz|ψ〉
∣∣∣∣
2

, (13)

where we have Û z,α to convert from the Ŝα basis to the
Ŝz basis. This decomposition shows that applying Û z,α after
preparing the state |ψ〉 enables measurements in the standard
Ŝz basis that are the same as measuring in the Ŝα basis. Then,
when we observe a measurement outcome string s, we can cal-
culate the weights in the sums of Eq. (13). Once we have the
weights and the probabilities of measuring a particular string,
we can easily estimate 〈ψ |Ôα

k,l |ψ〉 on a classical computer.
Therefore, estimating the string order operator expectation
value on a device requires implementing Û xz and Û yz. We
define Û xz and Û yz in the standard Ŝz basis in Eqs. (A5) and
(A6), respectively.

IV. DEVICE ARCHITECTURE AND PROBLEM MAPPING

There are a variety of routes to realize quantum simulation
of spin-1 systems. One route is to construct tailored quan-
tum devices with spin-1 degrees of freedom, such as cold
atoms, trapped ions, or strongly correlated superconducting
circuits [31–38]. However, such devices have either not been
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constructed or their construction and control may be infea-
sible with current technology. Development and engineering
of such novel quantum devices would require significant, and
potentially unknown, time and cost.

An alternative route is to adapt currently developed quan-
tum hardware to perform the desired simulation, leveraging
a tremendous body of work in the understanding and en-
gineering of such devices. There are a number of existing
device paradigms that can enable quantum simulation of
spin-1 systems via qubit-based digital quantum computing.
Unfortunately, there is a distinct overhead in using qubits to
model spin-1 systems that will be particularly inconvenient for
near- and midterm realizations. This overhead arises because
the local Hilbert space of each spin-1 particle is of dimension
3, requiring at least two qubits to represent each spin-1 parti-
cle.

To eliminate this overhead, it is therefore natural to con-
sider quantum devices in which the basic physical element
has local Hilbert space dimension of at least 3. One of the
leading device paradigms that can satisfy this requirement
are superconducting devices based on transmons [39]. Each
transmon is a nonlinear oscillator, and computations can be
performed in the low-energy subspace of these systems, al-
lowing one to create, in principle, systems of qudits [39,40].
Recently, systems of multiple interacting transmons operated
as qutrits have been demonstrated, suggesting a feasible route
for enabling quantum simulations of interacting spin-1 sys-
tems [22].

We choose a mapping of the device-model Hilbert spaces
that identifies the eigenstates of the local spin-1 z operator
Ŝz (|−〉, |0〉, |+〉) with the eigenstates of the local excitation
number operator n̂ (|0〉, |1〉, |2〉) of each transmon:

|−〉 → |0〉,
|0〉 → |1〉,
|+〉 → |2〉. (14)

This composite Hilbert space formed by a system of N spin-1
particles can be realized by a system of N transmons. For all
discussions that follow, this mapping will be used.

Having selected the basic quantum-information element,
we now state our assumptions about the device architecture.
A variety of superconducting device architectures based on
transmons have been developed [39], including multiple types
of transmons and modalities of transmon interactions. We
consider an architecture of tunable-frequency transmons me-
diated by tunable couplers, as explored previously [26–28].
Similar architectures have been generalized to large devices
with more than 50 transmons operating at high fidelity [21].

Within this architecture, transmons are modeled as coupled
anharmonic (Duffing) oscillators with interactions between
transmons mediated by a tunable coupler [26–28,39]. The
effective device Hamiltonian then becomes

H =
N∑

i=1

[
ωin̂i + δi

2
n̂i(n̂i − 1) + δωi(t )n̂i + εi(t )(â†

i + âi )

]

+
∑
〈i, j〉

gi, j (t )(â†
i â j + âiâ

†
j ), (15)

where the operators â†
i , âi are bosonic creation and annihi-

lation operators, respectively, and n̂i = â†
i âi is the bosonic

number operator. The parameters ωi, δi are the idling fre-
quency and anharmonicity of transmon i. The time-dependent
functions in Eq. (15) are the frequency detunings δωi(t ) of
each transmon, the local microwave controls are given by
εi(t ), and the tunable coupling is given by gi, j (t ).

The density and layout of the transmons in a real sys-
tem depend on a number of practical limitations, such as
calibration complexity and noise [21]. Since we are only
considering a one-dimensional chain of spin-1 particles, it
suffices to assume that each transmon is connected to at
most two neighboring transmons in order to form the needed
one-dimensional topology. This ensures that the unitaries im-
plemented via optimal controls are local within the device.
Additional connections to ancilla transmons may be useful for
state preparation or observable measurements, but we do not
consider these possibilities here.

Before going on, we would like to remark on the con-
trollability of a single-transmon Hamiltonian with microwave
controls. It has been shown that microwave controls are suffi-
cient to generate any unitary in SU(3). This has been shown to
be true notably in Ref. [22], which has a clear explanation in
Appendix C, Sec. 1 therein. Their proof relies on showing that
the system can generate evolution given by a basis of su(3),
specifically the Gell-Mann matrices. This is entirely equiva-
lent to proving controllability using the standard technique in
the quantum optimal control literature, i.e., showing that the
dynamical Lie algebra has the same rank as su(3).

Within the more general context of controllability of trans-
mon systems, it was found in Ref. [41] that the controllability
within a subspace of the Duffing oscillator is dependent on
the driving amplitude. However, we are not aware of any
exhaustive study of the controllability of transmon systems
subject to constrained, nonunitary, and nonideal phenomena,
and such a study is beyond the scope of this work.

We consider a general task of embedding a spin-s parti-
cle into the first 2s + 1 levels of an oscillator. This can be
done compactly by defining a map between the eigenvalues
n of the excitation number operator n̂ and the eigenvalues of
the spin-s z operator Ŝz: Ŝz|n〉 = (n + s)|n〉 for n � (2s + 1),
where n̂|n〉 = n|n〉 are the eigenvectors of the local excitation
number operator.

We define the z component of the total-spin operator for M
spins as Ĵz = ∑M

i=1 S(i)
z , which satisfies the eigenvalue equa-

tion Ĵz|m〉 = m|m〉. Now, we consider the action of Ĵz on
a state with a fixed excitation number |ψ〉 = ⊗M

i=1|ni〉 with
ni � (2s + 1):

Ĵz|ψ〉 = ⊗M
i=1Ŝz|ni〉 (16)

= ⊗M
i=1(ni + s)|ni〉 (17)

=
[

M∏
i=1

(ni + s)

]
|ψ〉. (18)

In other words, the z component of total spin of state |ψ〉 is∏M
i=1(ni + s). Most importantly, we note that the eigenvalue

of Ĵz will be the same for every state with the same number
of excitations because the eigenvalue m = ∏M

i=1(ni + s) is
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FIG. 1. Optimal microwave controls for a single transmon that generates the single-site Trotter evolution for the quench dynamics for two
different Trotter-step sizes τ = 0.1 and 0.01. Top panels: The optimal pulse envelopes found via optimal control modulated at the transmon
0 → 1 frequency ω01. The frequency spectrum of these pulses in the laboratory frame is shown to the right of the time-domain pulses, with
key transition frequencies labeled. Bottom panels: The optimal pulse envelopes modulated at the transmon 1 → 2 transition frequency ω12.
The frequency spectrum of these pulses in the laboratory frame is shown to the right of the time-domain pulses. The solid and dashed-dotted
lines refer to the optimal pulses that generate the Trotter-step unitary Eq. (8) at τ = 0.1 and 0.01, respectively.

invariant to permutations of the number of excitations be-
tween sites.

Intuitively, this means that all states with a fixed z com-
ponent of total spin m lie within the subspace spanned by
states with a fixed particle number. This is important when
considering implementing evolutions which will preserve the
z component of total spin, which are common. For example,
typical two-local interactions of the form Ŝ(i)

+ Ŝ( j)
− + Ŝ(i)

+ Ŝ( j)
− ∝

S(i)
x S( j)

x + S(i)
y S( j)

y preserve the z component of total spin (as do
Heisenberg-type interactions), and therefore any action gener-
ated by such terms would be constrained to operate within a
fixed particle-number block of the oscillator system.

These considerations limit the dynamics for the two-site
Trotter step defined in Eq. (7) to a block-diagonal representa-
tion of the total particle number basis for the transmon system.
Therefore, analog device controls which preserve total particle
number are the most natural controls to use when attempting
to generate the unitary defined in Eq. (7).

Examining the assumed device Hamiltonian reveals that all
the terms in the Hamiltonian except for the microwave control
will preserve particle number. Thus we generate the desired
two-site Trotter step unitary, Eq. (7), using only transmon
frequency and coupling controls. This choice of device con-
trols reduces simulation complexity and potentially reduces
the complexity of pulse calibration/characterization because
the dynamics during gate operation are constrained to blocks
of total particle number.

V. OPTIMAL CONTROL RESULTS

In Sec. III, we outlined a set of four unitary operations to
simulate and observe the phenomenon of string order melting
within a superconducting transmon device. The first two sets

of unitaries, Eqs. (7) and (8), simulate the time dynamics of
string order melting. The second two, Û zx [Eq. (A5)] and Û zy

[Eq. (A6)], rotate into the correct basis so that string order
information can be extracted from the device.

In this section, we analyze a set of optimized device
controls capable of generating these unitaries. We begin by
analyzing the unitaries defined on single transmons: Eqs. (8),
(A5), and (A6), and then we proceed to discuss optimal con-
trols for a two-transmon system that generate Eq. (7). The
numerical methods used to generate these controls are detailed
in Appendix B.

The Trotter-step unitary for a single-site transverse field
perturbation is defined in Eq. (8) and can be generated by
modulating microwave-frequency controls at the transition
frequency of the transmon. In Fig. 1, we show a set of optimal
pulses at the two main transmon frequencies, ω01 and ω12.
These plots compare optimal controls for Trotter-step sizes
τ = 0.1 and 0.01 with infidelities [as defined in Eq. (B8)] of
≈5 × 10−10 and ≈1 × 10−10, respectively.

From the results shown in Fig. 1, we find that the optimal
control pulses for a 50 ns control time have high fidelity
for two key reasons: (i) the pulses are well localized in the
frequency domain, which prevents transitioning population to
higher levels, and (ii) the amplitude of the control pulses is
very low, which suppresses the off-resonant excitations.

The next results are for the basis changes needed to mea-
sure string order in the transmon system: Û zx [Eq. (A5)]
and Û zy [Eq. (A6)]. The optimal microwave controls which
generate both unitaries were defined to be 50 ns, and they are
shown in Fig. 2. In both cases, we observe similar pulse char-
acteristics such as amplitude limits and shifts in the frequency
domain around the primary drive frequencies. The primary
difference between the pulses is the small phase offset of the
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FIG. 2. Optimal microwave controls for a single transmon that generates the rotation operators Û zx and Û zy, enabling measurement of the
string order parameter in the assumed device architecture. Top panels: The optimal pulse envelopes found via optimal control modulated at
the transmon 0 → 1 frequency ω01. The frequency spectrum of these pulses in the laboratory frame is shown to the right of the time-domain
pulses, with key transition frequencies labeled. Bottom panels: The optimal pulse envelopes modulated at the transmon 1 → 2 transition
frequency ω12. The frequency spectrum of these pulses in the laboratory frame is shown to the right of the time-domain pulses. The solid and
dashed-dotted lines refer to the optimal pulses that generate the unitaries Eqs. (A5) and (A6), respectively.

ω01 drive and the large phase offset of the ω12 drive. The phase
of the pulses that generate Û zy is offset from those that gen-
erate Û zx because the phase of the microwave control pulses
selects the axis of rotation in the x-y plane. Another slight
difference is the infidelity of the pulses, which is ≈3 × 10−6

and ≈2 × 10−5 for Û zx and Û zy, respectively.
The difference in infidelity is due to different amounts of

residual leakage outside of the computational subspace. It can
be seen in the power spectrum of the optimal ω12 drive that
Û zy has about an order of magnitude more amplitude on the
ω23 transition frequency, contributing more to leakage. Why
the optimizer was unable to find a better solution is most likely
due to the presence of a local minimum in the optimization
landscape induced by our pulse constraints [42], and it would
probably be resolved by more exhaustive numerical searches.
However, we do not perform such an exhaustive search be-
cause these pulses need only be applied once after the state
evolution, and therefore achieving significantly higher fidelity
has only a negligible effect on the overall simulation accuracy.

For the two-transmon optimal controls, in Fig. 3 we show a
set of optimal controls for Trotter-step sizes τ = 0.1 and 0.01
with infidelities of ≈4 × 10−6 and ≈4 × 10−8, respectively.
The similarity between the optimal pulses is primarily in
the transmon detuning (lower two rows) because the optimal
controls for τ = 0.1 were used as the starting point for the
optimization of τ = 0.01. However, there is a striking dif-
ference between the optimal coupling controls in the average
amplitude of the coupling, which corresponds to 0 GHz in the
frequency domain. This decrease can be empirically under-
stood as leading to less generated rotation around the desired
axis during the control time.

Overall, the optimal controls we identified meet a number
of criteria necessary for implementation in real devices. All of

the pulses we found are well within experimental bandwidth
limitations, and the control amplitudes are also within feasible
limits [26,28,39]. Moreover, each control pulse requires about
60 parameters to describe via the control ansatz we used
(defined in Appendix B), and perhaps fewer if a more optimal
basis is chosen. This suggests that implementing and calibrat-
ing these pulses should be feasible in modern superconducting
devices [21,26,28,43].

Because calibration cost can be significant, we would like
to take this opportunity to emphasize our results within the
context of the work by Werninghaus et al. in Ref. [44] and
remark on the ability to further reduce the control complexity.

First, the work in Ref. [44] utilizes a piecewise-constant
definition of the pulses. This indicates that the calibration
cost grows with increasing pulse duration because the number
of parameters is linearly proportional to the pulse duration.
In particular, their longest pulse, which had 55 parameters,
implemented an evolution of ≈10.8 ns.

In this work, we utilize an analytic pulse definition with
a sinusoidal representation to identify longer pulses (50 ns
single-qubit pulses and 100 ns two-qubit pulses) with a similar
number of parameters. Thus our results show that calibra-
tion complexity does not need to grow with increasing pulse
length and further emphasizes the advantages of going be-
yond piecewise-constant pulse definitions for qubit control
electronics.

Additionally, in Ref. [44] the authors specify that “creating
the pulse sequences and initializing the control electronics at
each iteration consumes the most time.” This indicates that it
is likely that the calibration cost can be further reduced by
specialized control electronics.

Finally, we wish to remark briefly on the ability to further
reduce the control complexity. Previous work by Kirchoff
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FIG. 3. Optimal controls for a two-transmon system that generates the two-site Trotter evolution for the quench dynamics [Eq. (7)] for
two different Trotter-step sizes τ = 0.1 and 0.01. Top panels: The optimal coupling controls. The frequency spectrum of these pulses in the
laboratory frame is shown to the right of the time-domain pulses. Middle panels: The optimal detuning controls for transmon 1. The frequency
spectrum of these pulses in the laboratory frame is shown to the right of the time-domain pulses. Bottom panels: The optimal detuning controls
for transmon 2. The frequency spectrum of these pulses in the laboratory frame is shown to the right of the time-domain pulses. The solid and
dashed-dotted lines refer to the optimal pulses that generate the Trotter-step unitary Eq. (7) at τ = 0.1 and 0.01, respectively.

et al. in Ref. [45] has shown that one can iteratively reduce
the number of control parameters by successively eliminating
the least contributing component of the pulse basis (e.g., the
sinusoidal component with lowest amplitude) and reoptimiz-
ing. The pulses identified here are likely amenable to that
approach, but we do not implement it in our work.

VI. VALIDATION OF MELTING DYNAMICS WITH
OPTIMAL CONTROL

We now present results from numerical simulations to
validate that the optimal controls identified enable the sim-
ulation of string order melting. We first extract the unitaries
generated by the optimal controls in the previous section. For
computational convenience, we choose to make a Markovian
assumption about the device dynamics, where we neglect pop-
ulation generated outside of the computational subspace. This
leads to a nonunitary simulation, but we find that the errors
introduced by our optimal controls are less than those induced
by Trotter error.

First, in Fig. 4 we plot the time dynamics of the string
observables for each spatial direction as a function of time and
string length for a weak transverse field perturbation b = 0.2.
We observe that there is an initial decrease in the string order
parameter in every direction between t = 0 and 1, which is
in agreement with Ref. [19] for short strings. Importantly, we

observe that the Trotter step of τ = 0.1 is capable of tracking
the qualitative dynamics for each observable with only limited
quantitative error.

Next, in Fig. 5, we plot the dynamics of the l = 6 string
order operator in each spatial direction. We observe that the
increasing strength of the perturbation increases the rate of
string order destruction for 〈Ôy(t )〉 and 〈Ôz(t )〉 but leads to
less destruction of string order for 〈Ôx(t )〉. This is understood
because the perturbation being applied only partially breaks
the protecting symmetry, and no string order melting occurs
in the x direction. This is again in qualitative agreement with
the observations made in Ref. [19] for small string lengths.

Finally, in Fig. 6 we show the state fidelity as a function
of perturbation and for the Trotterized dynamics generated
by the optimal controls. As expected, we see that the smaller
Trotter-step size yields a lower state fidelity, and we observe
that the infidelity is much less dependent on the perturbation
strength for τ = 0.01. Importantly, we observe a nonmono-
tonic change in state fidelity for the larger Trotter step size and
a monotonic one for τ = 0.01. This indicates that choosing
an optimal Trotter step size for this problem may be dif-
ficult, depending on the timescale of dynamics one wishes
to observe. Because string order melting is a fast dynamical
phenomenon, a smaller τ may be better because the accuracy
of the simulation as determined by state fidelity seems to
change logarithmically at short times.
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FIG. 4. Time dynamics of the string observable in different directions α = x, y, z (left to right) for a six-site AKLT model as a function
of string length when b = 0.2. The solid lines are exact dynamics generated by numerical diagonalization of the global six-site quench
Hamiltonian, Eq. (4). The markers represent the approximate Trotterized dynamics generated via repeated application of the final-time unitaries
identified via optimal control for two different Trotter step sizes τ = 0.1 and 0.01.

VII. CONCLUSION

In this work, we have presented a path towards quantum
simulation of string order dynamics in a superconducting
transmon architecture. We have used quantum optimal control
to verify that the necessary quantum processes can be imple-
mented, and our numerical simulations based on these optimal
controls indicate that experimental observation of string order
melting should be feasible in the near generation of supercon-
ducting devices.

Our approach to designing these simulations uses super-
conducting transmons to simulate spin-1 particles, microwave
control lines to generate excitations, and tunable couplers
and tunable frequency transmons to drive particle-conserving
evolution that generates entanglement between transmons.

We employed numerical optimization methods to generate
device controls that are capable of driving the designed unitary
evolutions with high fidelity. The characteristics of these con-
trols indicate that optimal pulses could be implemented within
existing devices, even when accounting for known hardware

limitations. We have used these controls to simulate the time
dynamics of the AKLT state in the presence of a quantum
quench, and we have verified that these simulations predict a
number of qualitative and quantitative markers of string order
melting for SPT states.

The analyses of these simulations have further quantified
the dependence of state fidelity on evolution time, perturba-
tion strength, and Trotter decomposition order. We found that
choosing a smaller time step τ is significantly less sensitive to
the perturbation strength and generally leads to a monotonic
decrease in state fidelity. However, it is important to note
that a smaller choice of τ requires a proportionally longer
evolution time because the number of repeated applications of
the Trotter step. In this case, τ = 0.01 requires a factor of 10
more gates to realize the same simulation time of τ = 0.1. In
the presence of decoherence or control errors, the well-known
tradeoff in errors generated by Trotterization versus gate depth
is expected to limit the total time simulated [2,46].

Our results support simulating the dynamics of string order
melting in a transmon architecture as experimentally feasible,

FIG. 5. Time dynamics of the l = 6 string observable in different directions α = x, y, z (left to right) for a six-site AKLT model as a
function of perturbation strength b. The solid lines are exact dynamics generated by numerical diagonalization of the global six-site quench
Hamiltonian, Eq. (4). The markers represent the approximate Trotterized dynamics generated via repeated application of the final-time unitaries
identified via optimal control for two different Trotter step sizes τ = 0.1 and 0.01. The single-transmon optimal controls were intended to
generate a perturbation of b = 0.2, thus to realize b = 0.2n the single-transmon optimal controls are applied n times per Trotter layer.
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FIG. 6. Time dynamics of state infidelity for a six-site AKLT
state generated by the Trotterized quench dynamics found via op-
timal control for increasing strengths of the symmetry-breaking
perturbation. The two different marker types represent dynamics
approximating the true dynamics at two different Trotter step sizes,
τ = 0.1 and 0.01.

but there are still a number of challenges for implementation
that require further consideration. The most immediate route
of future work is through additional numerical simulations.

A clearer understanding of the relationships between the
duration of the controls, their infidelity, and ultimately their
robustness to noise is needed. We have fixed the pulse duration
for single- (50 ns) and two-transmon (100 ns) optimal control
simulations, but optimal controls with comparable fidelities
may exist at smaller control times [45,47]. Optimal pulses
with smaller control times would enable the observation of
longer time dynamics within the same device coherence times.
Furthermore, quantifying or improving the robustness of con-
trols against noise within the applied field will aide in their
implementations [24,43].

Another challenge is state preparation of the entangled
spin-1 states within the Haldane phase, such as the AKLT
state. There are a variety of routes to achieve this that may be
feasible for near-term devices, such as variational state prepa-
ration and adiabatic or digitized adiabatic evolution [48,49]. In
particular, because the Haldane phase is a symmetry-protected
topological phase, it can be adiabatically connected to a prod-
uct state via an evolution that breaks all of the symmetries that
protect the phase and therefore can be efficiently prepared via
adiabatic methods [17].

Another approach to state preparation that is less efficient,
but perhaps complimentary, is to prepare the AKLT state by
projecting into the ground-state subspace via a sequence of
parity measurements. This can be achieved by noting that

the AKLT Hamiltonian is a sum of Hermitian projectors that
can be converted to involutory Hermitian operators. These
projections can be implemented by controlled evolution using
an ancilla qubit to perform a type of parity measurement that
projects the state into a subspace where the AKLT state lies.
This nonunitary route to preparing the AKLT state would also
enable direct measurement of the terms within the Hamilto-
nian or even a route for dissipative state preparation [50,51].

In conclusion, we have shown how quantum simulation
using quantum optimal control offers a unique approach to
study the static and dynamical properties of a model Hamil-
tonian. Using numerical simulations, we have confirmed that
the quantum simulation of dynamical topological phenomena
such as string order melting is feasible in current supercon-
ducting devices. This affords many new opportunities for the
implementation and optimization of quantum simulations.

Note added. During the preparation of this manuscript,
a more complete analysis of AKLT state preparation on
quantum devices was explored by other researchers in
Refs. [52,53].
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APPENDIX A: STRING ORDER
PARAMETER MEASUREMENT

In this Appendix, we present the derivation of Eq. (13) for
the expectation value of a string order operator for an arbitrary
state |ψ〉 in the direction α:

〈ψ |Ôα
k,l |ψ〉 = 〈ψ |

⎛
⎝Ŝα

k

⎡
⎣ l−1∏

n=k+1

eiπ Ŝα
n

⎤
⎦Ŝα

l

⎞
⎠|ψ〉 =

∑
s

〈ψ |
⎛
⎝Ŝα

k

⎡
⎣ l−1∏

n=k+1

eiπ Ŝα
n

⎤
⎦Ŝα

l

⎞
⎠|sα〉〈sα||ψ〉 (A1)

=
∑

s

〈ψ |
⎛
⎝sk

⎡
⎣ l−1∏

n=k+1

eiπsn

⎤
⎦sl

⎞
⎠|sα〉〈sα||ψ〉 =

∑
s

⎛
⎝sk

⎡
⎣ l−1∏

n=k+1

eiπsn

⎤
⎦sl

⎞
⎠〈ψ ||sα〉〈sα||ψ〉 (A2)
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=
∑

s

⎛
⎝sk

⎡
⎣ l−1∏

n=k+1

eiπsn

⎤
⎦sl

⎞
⎠〈ψ |U zα†U zα|sα〉〈sα|U zα†U zα|ψ〉 (A3)

=
∑

s

⎛
⎝sk

⎡
⎣ l−1∏

n=k+1

eiπsn

⎤
⎦sl

⎞
⎠〈ψ |U αz†|sz〉〈sz|U αz|ψ〉. (A4)

Using the definitions of the spin-1 operators and the com-
mutation relations, we express the unitary operators Û z,α in
the basis of eigenvectors of Ŝz:

Û zx = 1

2
|−〉(〈+| −

√
2〈0| + 〈−|)

+ 1√
2
|0〉(−〈+| + 〈−|)

+ 1

2
|+〉(〈+| +

√
2〈0| + 〈−|) (A5)

and

Û zy = 1

2
|−〉(−〈+| + i

√
2〈0| + 〈−|)

+ 1√
2
|0〉(〈+| + 〈−|)

+ 1

2
|+〉(−〈+| − i

√
2〈0| + 〈−|). (A6)

APPENDIX B: NUMERICAL METHODS

We utilize numerical optimal control techniques to sim-
ulate the dynamics generated by Eq. (15) and iteratively
optimize the time-dependent device controls to minimize the
infidelity between the evolved system dynamics and a target
unitary operator. These methods and implementations follow
what has been discussed in previous work [11,55], and we
review the details for completeness and convenience.

We identify optimal controls that generate four unitary
operators as defined in Eqs. (6), (A5), (A6), and (7). The first
three unitaries are each defined on a single-transmon Hilbert
space and therefore we use a single-transmon Hamiltonian de-
rived from Eq. (15) that omits the frequency detuning control
and uses only microwave control parameters:

HD = ω1n̂1 + δ1

2
n̂1(n̂1 − 1) + ε1(t )(â†

1 + â1). (B1)

For the two-site Trotter step unitary, we use a two-transmon
Hamiltonian derived from Eq. (15) omitting the microwave
control lines because the target unitary, Eq. (7), is block-
diagonal in the total particle number basis, such that

HD = ω1n̂1 + δ1

2
n̂1(n̂1 − 1) + δω1(t )n̂1 (B2)

+ω2n̂2 + δ2

2
n̂2(n̂2 − 1) + δω2(t )n̂2 (B3)

+ g1,2(t )(â†
1â2 + â1â†

2). (B4)

In both cases, quantum-information processing is performed
in reference to a precalibrated rotating frame associated with

the idling frequency of each transmon. This transformation is
given by the unitary transform

R(t ) =
⊗

i

Ri(t ) (B5)

=
⊗

i

exp

[
it

h̄
ωin̂i

]
, (B6)

which yields an effective Hamiltonian in this rotating frame,
HR = ih̄(∂t R(t ))R†(t ) + R(t )HDR†(t ), and the corresponding
time-ordered evolution operator for control time Tc of a trans-
mon system is

UD(Tc) = T exp

[
− i

h̄

∫ Tc

0
dτHR(τ )

]
. (B7)

We then use the gradient optimization of analytic controls
(GOAT) algorithm to evaluate gradients of the objective func-
tion with respect to control parameters [56]. Our primary
objective function to be minimized is the unitary infidelity of a
quantum process using a projective SU measure derived from
the Hilbert-Schmidt inner product [57]:

g(�α) = 1 − 1

d2
|Tr(U †

T PcUD(�α, Tc)Pc)|2, (B8)

where UT is the target unitary operator we wish to prepare,
UD(�α, Tc) is the unitary evolution operator for the device with
control parameters �α and control time Tc, Pc is a projection
onto the desired computational subspace, and d is the dimen-
sion of the computational subspace.

Within the GOAT algorithm, each control field f (t ) [e.g.,
δωi(t ), εi(t ), gi, j (t )] is decomposed into a (not necessarily
orthonormal) function basis that is parametrized by a set
of real numbers—enabling traditional numerical optimization
techniques to be used to optimize the device controls.

Here we describe each control field via a functional form,
which includes both the control parameters to be optimized
as well as additional functions that constrain the optimization
to a class of practical pulses. For all of our optimizations, we
describe each control field f (t ) [e.g., δωi(t ), εi(t ), gi, j (t )] as

f (�α, t ) = �(t ) cos(ωt )S(h(�α, t )), (B9)

where we have defined a carrier frequency ω, a window func-
tion �(t ) to ensure that the pulse turns on and off smoothly, a
saturation function S(x) to ensure that the optimal pulses stay
within a prespecified amplitude range, and the parametrized
function h(�α, t ). The window function is a flat-top cosine
defined as

�(t ) =
⎧⎨
⎩

1−cos(πt/τr )
2 �m, 0 � t � τr,

�m, τr � t � (τc − τr ),
1−cos(π (τc−t )/τr )

2 �m, (τc − τr ) � t � τc,

(B10)
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where τc = Tc is the total control time, �m scales the mag-
nitude of the control pulse, and τr is the ramp time, which
was chosen to be 0.3τc to reduce spectral leakage [58]. The
saturation function is a generalized logistic function defined
as

S(x) = −B − 2B

1 − 3 exp(− 4x
B )

, (B11)

where B = 0.08 GHz/2π for microwave controls, B =
0.5 GHz/2π for frequency detuning controls, and B =
0.01 GHz/2π for coupling controls. These parameters were
chosen to agree roughly with control limitations currently
observed in superconducting transmon devices of the assumed
architecture [26,28]. Finally, we expand each control field as a
linear combination of N analytic functions, which we choose
to be sinusoidal functions with varying amplitude, frequency,
and phase:

h(�α, t ) =
[

N∑
n

αn,1 sin(αn,2t + αn,3)

]
. (B12)

For the microwave controls operating on a single transmon,
we optimize two drive channels as in Eq. (B9) each at a
different carrier frequency ω = ω01, ω12, which are the tran-
sition frequencies between the transmon levels |0〉 → |1〉 and
|1〉 → |2〉, respectively. We also assume that the control time
for a single qutrit operation is Tc = 50 ns. For each channel
we set N = 10 in Eq. (B12). This means that each of the
single-transmon control pulses requires optimization of 60
parameters.

For the coupling control and frequency detuning controls,
we choose a carrier frequency of ω = 0, which places the
dynamics within those typically used to generate resonant
two-qubit gates on superconducting hardware [28,39]. We
assume a control time of 100 ns for the two-transmon evo-
lution because this coincides with experimental timescales
realizable in current devices [26,28]. Moreover, we set N = 7
in Eq. (B12) for each control channel, which gives a total of
63 total parameters for optimization.

For the microwave controls, we penalize controls with
intermediate-time leakage to higher subspaces by computing
a functional and adding it to the infidelity in Eq. (B8):

L(�α) = 1

Tc

∫ Tc

0
dτTr(PcU

†(�α, τ )PdU (�α, τ )Pc), (B13)

where we have defined Pc as the projector onto the com-
putational subspace of the transmon. [In our simulations of
spin-1 particles, this means span({|0〉, |1〉, |2〉}) and the oper-
ator Pd assigns weights to specific leakage levels depending on
the importance that little intermediate populations lie in that
state.] In our simulations, we set Pd = 0.1|3〉〈3| + 1|4〉〈4| to
weakly penalize leakage to |3〉 and strongly on |4〉.

The precise choice of weights for the leakage subspaces
was not significant as we constrained the optimizer to look
for pulses well localized within the frequency domain at the
allowed transition frequencies. However, the leakage penalty
does help ensure that the optimal pulses identified will gener-
alize to a true anharmonic quantum oscillator with an infinite
number of energy levels.

To perform gradient based optimization, we require the
gradient of this function with respect to a parameter α. We
derive the gradient of the leakage penalty as

∂αL = ∂α

1

Tc

∫ Tc

0
dτTr(PcU

†(�α, τ )PdU (�α, τ )Pc) (B14)

= 1

Tc

∫ Tc

0
dτ∂αTr(PcU

†(�α, τ )PdU (�α, τ )Pc) (B15)

= 1

Tc

∫ Tc

0
dτTr(Pc∂αU †(�α, τ )PdU (�α, τ )Pc (B16)

+ PcU
†(�α, τ )Pd∂αU (�α, τ )Pc) (B17)

and we see that calculating this gradient requires only knowl-
edge of ∂αU (�α, t ), which is obtained through the GOAT
method [56]. A leakage penalty was not added to the two-site
operator optimization because noncomputational states are
actively being used for quantum-information processing in
that case [11].

In all simulations, we do not implement the rotating wave
approximation to ensure a more accurate estimate of gate
fidelity. Moreover, we model each transmon as a five-level
system to fully account for leakage in the two-transmon
evolutions and to accurately quantify leakage in the single-
transmon simulations.

We perform optimizations to identify controls that generate
the Trotter-step operators [Eqs. (7) and (8)] at two Trotter step
sizes: τ = 0.1 and 0.01. We seed the optimization for Trotter
step size τ = 0.1 with a random initial guess and τ = 0.01
with the optimal controls obtained for τ = 0.1.

We use experimental hardware parameters for the
frequency and anharmonicity of each transmon derived
from Ref. [22] in which a system of transmons are used
as qutrits. Specifically, we define ω1 = 5.634 GHz/2π ,
δ1 = −0.266 GHz/2π , ω2 = 5.447 GHz/2π , and δ2 =
−0.270 GHz/2π .

We implement the GOAT algorithm using the program-
ming language JULIA and various open-source packages [59].
Our implementation uses the JULIA package DifferentialEqua-
tions.jl to numerically solve the coupled GOAT equations of
motion using an order 5/4 Runge-Kutta method with adaptive
time-stepping [60]. For the gradient-based control optimiza-
tion of �α, we use a limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm with a backtracking
line-search method, which are implemented in the Optim.jl
package and the LineSearches.jl package, respectively [61].
We limit each optimization to 2000 iterations of L-BFGS, and
we define a stopping criterion when the infinity-norm of the
gradient falls below 1 × 10−9 or the relative change in the
objective function is below 1 × 10−8. For further details on
the derivations of gradients via the GOAT algorithm, we refer
the reader to our previous work [11].

Finally, to validate that our resulting optimal controls
should enable the observation of string order melting in real
superconducting hardware, we perform a numerical simu-
lation to observe the dynamics of string order under the
optimized controls. Specifically, we compute the dynamics of
a six-site spin-1 system using the resulting optimal controls,
and we compare the results obtained via exact numerical
integration of the model. We initialize the system in the
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AKLT state obtained via diagonalization of the AKLT Hamil-
tonian Eq. (1). Then, we evolve the state under the exact
quench dynamics given by Eq. (4) and compare these with
the dynamics generated by two sets of Trotterized dynamics

generated via optimal controls for two different Trotter step
sizes: τ = 0.1 and 0.01. We then compute the string order
operator expectation value and state fidelity to draw our final
conclusions.
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