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Negative differential thermal resistance of fluids induced by heat baths
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It has recently been shown that in one-dimensional hard-point gases, there is a mechanism that induces
negative differential thermal resistance (NDTR) between heat baths. We examine this mechanism in more
general higher-dimensional fluids described by multiparticle collision dynamics. We consider fluids in a finite
cuboid region of three-dimensional space with each end in contact with a heat bath. Based on analytical results
and numerical models, we find that the mechanism underlying NDTR also works for high-dimensional fluidic
systems with weak interactions and is very robust to mixed fluids. Our results significantly advance knowledge of
NDTR induced by heat baths and illuminate different directions to explore in fabricating fluid thermal transistors
in micro- and nanosystems.
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I. INTRODUCTION

Negative differential thermal resistance (NDTR) is an im-
portant heat transport phenomenon [1–3]. NDTR is observed
in a system when the heat current counterintuitively decreases
as the temperature difference between heat baths increases;
it is analogous to electronic negative differential resistance.
Our ultimate intention is to fabricate real thermal devices
with the NDTR effect that enable us to control and manage
heat current, thus leading to some interesting and exciting
applications [4].

The study of NDTR at the nanoscale is of fundamental
theoretical interest in identifying the basic properties of heat
transport for solid systems. NDTR was originally observed in
nonlinear phononic lattices in 2004 by Li and co-workers [5].
It was then exploited in the design of various thermal func-
tional devices such as thermal transistors [1], thermal logic
gates [2], and thermal memory [3], among others [6]. NDTR
has since been observed in various low-dimensional lattice
models and its properties have been found to depend on the
various parameters of different systems [7–14]. At present, the
NDTR phenomenon in a lattice has been understood in terms
of phonon-phonon interactions and nonlinear dynamic local-
ization of phonon modes [1,15]. The necessary conditions
for the occurrence of NDTR have already been analytically
identified [14,16]. This significant progress has created new
knowledge for an important class of lattice systems. In addi-
tion, inspired by the above pioneering works, NDTR has also
been extensively investigated in various quantum systems in
order to design quantum thermal devices, typically quantum
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thermal transistors [17–22]. Also, studies along this line have
turned out very successful and fruitful.

Fluid flow regulation at the micro- and nanoscales is es-
sential in integrated fluidic devices, which have widespread
applications in biology, medicine, chemistry, and engineer-
ing [23–26]. Various fluidic thermal control devices (TCDs),
such as fluidic thermal switches, thermal diodes, and thermal
regulators, have been incorporated into applications at differ-
ent size scales and temperature ranges; see Ref. [27] for a
review and references. However, despite these achievements,
an effective fluidic thermal transistor has yet to be developed.
The principal reason for this situation, apart from the engi-
neering and material challenges, stems from a long-term lack
of understanding of NDTR for the fluid systems.

An original step towards such an understanding was made
in 2019 by Luo, who showed that in one-dimensional (1D)
hard-point gas systems, representing 1D fluids, NDTR can be
induced by heat baths at different temperatures [28]. NDTR
in such a system depends on the motion of particles being
weakened by decreasing the temperature of the cold bath so
that collisions between the colder particles and the hot bath
become very infrequent. As a result, there is little thermal
current even when the temperature difference between the
heat baths is large. This observed result provides a different
perspective on the NDTR phenomenon and can inform the
design of a fluidic thermal transistor and other more complex
fluidic TCDs. However, although the mechanism is general,
only a basic model (a 1D chain of hard-point elastically
colliding particles) has been investigated. In order to obtain
an in-depth and comprehensive understanding of NDTR, the
relevant questions now are as follows: How general is this
mechanism? Will this mechanism work for more general
higher-dimensional fluids, and how robust is it? We need the
answers to these questions in order to promote wider practical
applications of TCDs based on NDTR.

In this paper, we provide a positive answer to both pre-
ceding questions. It might be initially convenient to consider
a 3D system of fluids described by multiparticle collision
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FIG. 1. Schematic illustration of the 3D fluid of interacting par-
ticles in a cuboid volume described by the multiparticle collision
dynamics. The system is coupled at its left and right ends to one
of two heat baths at fixed temperature Th and Tc (see text for more
details).

dynamics (MPC) [29]. An important feature of MPC is that
the velocities of conventional deterministic molecular dy-
namics are replaced by a set of stochastically determined
velocities which satisfy the general properties of the hydro-
dynamic equations in numerical modeling [30]. Using this
technique, researchers gained a considerable understanding of
various aspects of particle transport [31]. More recently, this
technique has been used to study coupled particle and heat
transport [32,33] and has been instrumental in testing theoret-
ical conjectures of heat conduction in momentum-conserving
systems [34–36]. In this paper, by analyzing the more general
3D MPC fluids, we show that the mechanism for NDTR
induced by heat baths is also in effect for higher-dimensional
fluids and is suitable for describing systems with weak interac-
tions. The universality of the mechanism is further supported
by confirmation of its robustness in mixed fluids.

II. THE 3D FLUID MODEL

The 3D fluid model we use in this study is shown in Fig. 1.
The system consists of N interacting point particles with equal
mass m, where all particles are confined in a cuboid volume
of length L, width W , and height H in the x, y, and z coordi-
nate system shown. At x = 0 and x = L in the longitudinal
direction, the particles exchange heat with a heat bath of
temperature Th or Tc; the heat baths are modeled as thermal
walls [37]. When a particle arrives at the x = 0 (or x = L)
boundary (of area W H), it is reflected back with a newly
assigned velocity (vx, vy, and vz in the x, y, and z directions)
determined by sampling from a given distribution [37],

f (vx ) = m|vx|
kBTα

exp

(
− mv2

x

2kBTα

)
,

f (vy,z ) =
√

m

2πkBTα

exp

(
− mv2

y,z

2kBTα

)
, (1)

where Tα (α = h, c) is the temperature of the heat bath in
dimensionless units and kB is the Boltzmann constant. The
particles are subject to periodic boundary conditions in the
y and z directions. We point out that the numerical results

also apply to fixed boundary conditions since, in both cases,
vy,z > 0 and vy,z < 0 with equal probability p = 0.5.

The dynamics of the system are described by
MPC [29–31], which simplifies the numerical modeling
of particle interactions by coarse graining the time and
space at which interactions occur. In MPC, the system
changes in discrete time steps, each step consisting of
noninteractive propagation during a time interval τ , followed
by an instantaneous collision event. During propagation, the
velocity vi of a particle is unchanged, and its position is
updated as

ri → ri + τvi. (2)

To model collisions, the system volume is partitioned into
cubic cells of side a and, for all particles in a cell, their
velocities are rotated around a randomly chosen axis, with
respect to their center-of-mass velocity Vc.m. by an angle, θ

or −θ , randomly chosen with equal probability p = 0.5. The
velocity of a particle in a cell is thus updated as

vi → Vc.m. + R̂±θ (vi − Vc.m.), (3)

where R̂±θ is the rotation operator through the angle ±θ .
The movements described maintain the total momentum and
energy of the fluid system. Note that the angle θ = π/2 cor-
responds to the most efficient mixing of the particle momenta.
Note also that the probability of collision between particles
increases as τ decreases, and thus the time interval τ be-
tween successive collisions can be used to tune the strength
of the interactions and consequently affect the transport of the
particles.

In our modeling, we set Th = 1 and Tc = 1 − �T , where
�T is the temperature differential of the system. Then the
main parameters are set as follows: m = kB = W = H = 1,
a = 0.1, θ = π/2, and the averaged particle number density
ρ = N/(LW H ) = 88. To guarantee Galilean invariance of the
stochastic rotation dynamics, the collision grid is shifted ran-
domly before each collision step [38]. Numerically, after the
system reaches the steady state, we compute the thermal cur-
rent J that crosses the system according to its definition (i.e.,
the average energy exchanged in the unit time and unit area
between particles and heat bath). The distributions of tem-
perature T (x) and particle density ρ(x), where x is the space
variable, are similarly measured, as described in Ref. [28]. For
all data points shown in the figures in this paper, the errors are
�1%; as the error bars are smaller than the symbols, they are
omitted.

III. ANALYTICAL RESULTS

Here, we show that NDTR can be induced in a fluidic
system by heat baths and we infer its mechanism. Note that
our model is interacting and nonintegrable. However, if no
particles interact (i.e., each particle maintains an unchanged
velocity as it crosses the system from one heat bath to the
other), the model becomes integrable. In the integrable case,
by an analysis similar to that performed in Ref. [28], we obtain
an analytical expression for the thermal current,

J = (d + 1)

√
ρ2k3

B

2πm

√
ThTc(

√
Th − √

Tc), (4)
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FIG. 2. The thermal current J/Jmax as a function of the tempera-
ture difference �T for the 3D fluid system with different τ values.
Here and in Fig. 3, the data are obtained for L = 16. The red line
is the analytical result given by Eq. (5). Hereafter, the symbols
are modeling results and the black dotted-dashed line at a critical
temperature difference (�T )cr = 0.75 is drawn for reference.

where d is the spatial dimension (the analytical results pre-
sented here apply also to one- and two-dimensional systems.).
To illustrate, putting Th = 1 and Tc = 1 − �T into Eq. (4), we
rewrite the thermal current as

J = 4Jmax

√
1 − �T (1 − √

1 − �T ). (5)

Here, Jmax = (d+1)
4

√
ρ2k3

B
2πm is obtained at a critical temperature

difference (�T )cr, which is determined by solving the equa-
tion ∂J/∂ (�T ) = 0. This result is shown in Fig. 2 with a
red line. It is clear that for �T > (�T )cr = 0.75, J decreases
when �T increases and thus exhibits the NDTR phenomenon.

The mechanism inferred for NDTR induced in this system
can be understood from the following argument. As Tc de-
creases (or as �T is increased), the particles will be reflected
from the cold bath boundary at a reduced velocity; the propa-
gation time taken by the reflected particles to return to the hot
bath will increase, which in turn decreases the collision rate f
of particles colliding with the hot bath. To illustrate this, we
can equivalently rewrite f , given by Eq. (6) in Ref. [28], as a
function of �T ,

f = N

L

√
2kB

πm

/(
1 + 1√

1 − �T

)
. (6)

This analytical expression is also plotted with a red line in
Fig. 3 that shows that f decreases as �T increases, as ex-
pected. This decrease implies that f will become too small for
a thermal exchange between heat baths. Thus, by decreasing
Tc to increase �T , the thermal exchange will be promoted
in the conventional way through increasing �T but it will
be inhibited in a new way by decreasing f . Both actions
contribute to the thermal exchange between the baths but they
compete with each other: At first, the conventional method
dominates, so J increases as �T increases; however, when
�T > (�T )cr, the effect of f becomes dominant, so J de-
creases as �T increases, thus causing the NDTR effect. The
preceding analysis leads us to conclude that for the MPC fluid

FIG. 3. The collision rate f / fmax at which the particles collide
with the hot bath vs the temperature difference �T for the nonin-
teracting case (τ = ∞) and the interacting cases (τ = 1.00, 0.01).

Here, the red line is drawn from Eq. (6) and fmax = 2N
L

√
2kB
πm .

system, NDTR can be induced by decreasing the temperature
of the heat bath.

IV. NUMERICAL RESULTS

To check the analytical results and provide a numerical
example, we first quantify the noninteracting system (i.e.,
the integrable case). In Figs. 2 and 3, the thermal current
[Eq. (5)] and the collision rate [Eq. (6)] are compared with
our models (black circles). It can be seen that they agree very
well with each other. These models clearly strongly support
our analysis.

We now turn to the interacting systems with collisions to
investigate the dependence of the mechanism on interaction
strength. Here, the time interval τ between successive colli-
sions will be used to tune the strength of the interactions. For
the noninteracting case, τ = ∞; thus for the interacting case,
a lower value of τ produces greater interaction strength. We
can see in Fig. 2 that although for a given system dimension
(L = 16), decreasing τ decreases the thermal current and the
region of NDTR decreases in size and finally disappears,
NDTR still exists for a wide range of τ > 0.1. This obser-
vation implies that the mechanism is more effective under
relatively weak interactions. It is worth pointing out that the
mechanism of NDTR for the interacting case is the same as
for the noninteracting case because, as shown in Fig. 3, for
the interacting case (τ = 1), f decreases as �T increases, as
in the noninteracting case.

Next, we explain why the mechanism does not work for
systems with strong interactions. To this end, we plot the
particle density ρ(x) and temperature profile T (x) of the sys-
tem with different τ values. It can be seen in Fig. 4(a) that
ρ(x) at the right (cold bath) side of the system increases as
τ decreases. This implies that when the interaction strength
increases, a particle with low velocity that is reflected from
the cold bath will become less and less likely to transit from
the cold bath to the hot bath without interacting with other
particles. As a result, momentum exchange between parti-
cles will increase and low-velocity particles will increase in
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(a)

(b)

FIG. 4. (a) The particle density ρ(x)/ρ and (b) temperature T (x)
as a function of x/L for different values of τ . Here, we set L = 16
and �T = 0.75.

velocity, resulting in an increase in f for τ = 0.01 over a small
range of approximately �T > 0.9, as shown in Fig. 3. It also
can be seen in Fig. 4(b) that for lower values of τ , T (x) will
be close to a linear response described by Fourier’s law, which
indicates that for τ = 0.01, the contribution of increasing �T
to the thermal current again becomes dominant (see the data
in Fig. 2 for reference). This analysis supports the inference
that the mechanism will fail in the case of strong interactions.

To further support the universality of this mechanism, we
show that it is also applicable to mixed fluids. MPC dynamics
make it convenient to numerically analyze the behavior of
mixed fluids by modeling it using the method described in
Ref. [31]. As an illustration, we consider the simple binary
fluids as follows. The particles are set to two different masses,
m and M, with equal probability p = 0.5. For convenience,
we set m = 1 so that M is the mass ratio M/m of the different
binary fluids. The model results for different values of M are
shown in Fig. 5. It can be seen that the mechanism works
both in a pure fluid (M = 1) and in different mixed binary
fluids. More importantly, our data show that for a given inter-
action strength (τ = 1), the NDTR region remains unchanged
when M is increased from 1 to 1000, which implies that this
mechanism is robust for many binary fluids. In the inset of
Fig. 5, we emphasize that for M = 1000, the interaction when
τ = 1 is not too weak because the thermal current for τ = 1,
when compared to the integrable case (τ = ∞), obviously
changes; once again, we see that the mechanism will break
down if τ decreases further, as shown in Fig. 2. In addition,
we have numerically checked that for various binary fluids,
using different values of p, the mechanism works for sys-
tems with weak interactions. These results may be helpful for
understanding and controlling the thermal transport of mixed
fluids under specific conditions [39–41].

V. SUMMARY AND DISCUSSION

In studying a 3D fluid described by MPC dynamics, we
have shown that NDTR can be induced by heat baths in

FIG. 5. The thermal current J/Jmax as a function of the tempera-
ture difference �T for the 3D binary fluid system with different mass
ratios M. Here, we set L = 20, τ = 1.0, and p = 0.5. Inset: J/Jmax as
a function of �T for M = 1000 with different τ values. The red line
in the inset is the analytical result for the integrable case (τ = ∞)
obtained by generalizing Eq. (4).

classical fluids with weak interactions. The induced mech-
anism depends on the simple fact that decreasing the
temperature of the cold bath weakens the motion of particles
and decreases the collision rate between particles and the hot
bath, thus impeding thermal exchange between cold and hot
baths. We demonstrated the universality of the mechanism
by showing that it is operable and very robust for various
mixed fluids. The results we obtained significantly advance
knowledge of NDTR induced by heat baths and clearly answer
the two questions raised in the Introduction.

We note that in nonequilibrium two-qubit systems, nega-
tive differential thermal conductance can also be induced by
strong system-bath coupling [22]. This observation, together
with our results, provides strong evidence that heat baths
are important in inducing NDTR in both quantum systems
and classical fluid systems. Although reports of NDTR being
used to design fluidic TCDs are lacking, a theoretical thermal
transistor using a gas-liquid transition has been proposed [42].
Thus we expect that the mechanism for NDTR we present
here will be exploited to design a fluidic thermal transistor and
other more complex fluidic TCDs, as was done for the lattice
system [1–3]. As well as being of fundamental theoretical
interest, our results may find applications in the context of ul-
tracold atoms, where a thermoelectric heat engine for weakly
interacting particles has already been demonstrated [43]. Fi-
nally, we point out that the MPC fluids we used in this study
are a very popular model in mesoscopic physics [31] and we
therefore conjecture that the mechanism can be experimen-
tally verified in mesoscopic fluid systems. We foresee a range
of interesting applications based on this work.
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