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Mixed bubbles in a one-dimensional Bose-Bose mixture
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We investigate a Bose-Bose mixture across the miscible-immiscible phase transition governed by quantum
fluctuations in one dimension. We find the recently predicted so-called mixed bubbles as ground states close to
the mean-field miscible-immiscible threshold. These bubbles form a pocket of miscibility, separated by one of
the components. The collective excitations reflect the symmetry breaking resulting from the bubble formation.
The partial miscibility of the system allows for persistent currents in an annular confinement. Intriguingly, the
mixed bubble acts like an intrinsic weak link, connecting the rotational behavior of the mixed bubble state to
current efforts in atomtronic applications.
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I. INTRODUCTION

In the mean-field (MF) approximation the phase of a two-
component Bose-Bose mixture is dominated by its interaction
coupling strengths gσσ ′ between the components 1 and 2 with
particle densities n1 and n2. The system is determined by
δg = g12 − √

g11g22 and may be in a miscible phase if δg < 0
and in an immiscible phase if δg > 0 [1,2]. Experiments on
Bose-Bose mixtures have shown the phase transition of repul-
sive mixtures from miscible to immiscible [3,4], in agreement
with theoretical predictions [5,6]. This interplay of interac-
tions can also lead to such exotic states as dark/bright solitons
[7–9], magnetic solitons [10–12], or even dark/dark/bright
and dark/bright/bright solitons in three-component mixtures
[13] and the number of members in this family of states
is ever increasing. The inclusion of corrections beyond the
mean field has added a novel class of phases, where quantum
fluctuations [14,15] may stabilize the system against collapse,
as predicted for a two-component Bose-Bose mixture [16]
and first observed in a mixture of a one-component dipolar
gas [17,18]. The original proposal for a self-bound state in a
binary mixture was subsequently also realized experimentally
[19,20]. The observed liquefaction into self-bound droplets
has led to vivid research into their dimensional properties
[21], dynamics [22], and behavior under rotation [23–25].
Additionally, the anisotropic dipolar interaction was found to
allow for realization of the long-sought state of supersolidity
[26–29], exhibiting a phase and amplitude mode due to its
spontaneous symmetry breaking [30]. Current efforts focus
on, e.g., nonzero-temperature behavior [31], rotational prop-
erties [32,33], and dipolar-contact [34] and dipolar-dipolar
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[35] mixtures. While the aforementioned works focused on
the effect of quantum fluctuations on the stabilization against
collapse, Ref. [36] suggests that for repulsive two-component
Bose-Bose mixtures quantum fluctuations likewise may lead
to a new phase of matter in between the miscible-immiscible
phase transition, a so-called mixed bubble phase. The proposal
of this new phase is based on a transformation of the densities
n1,2 to n± [16,36] as

n± = α−1/2n1 ± α1/2n2√
α + α−1

, (1)

where α = √
g22/g11. Along n+ the system’s behavior is dom-

inated by the MF contribution, while along n− the system is
sensitive to the usually much weaker quantum fluctuations.
This separation of scales allows the grand potential density to
predict the onset of new phases along n−, for which it is a
convex function if the system is miscible and a concave func-
tion if the system is immiscible. However, close to the phase
transition, where quantum fluctuations become comparable in
size to the MF contribution, the grand potential density may
be a concave-convex function for α < 1 or a convex-concave
function for α > 1, allowing for a new phase to emerge. As
mentioned above, this new phase has been dubbed a mixed
bubble in a Bose-Bose mixture [36] and can be seen as a
pocket of one component trapped within the gaseous medium
of the other component. Little is known about its properties.
In this work we investigate the formation of these novel mixed
bubbles in a one-dimensional annular confinement close to
the miscible-immiscible threshold. The annular confinement
leaves the subtle balance between quantum fluctuations and
the mean field undisturbed, a requirement for the formation
of mixed bubbles [36]. We start by exploring the shape of
mixed bubbles for a set of population imbalances between
the components, probing the predictions made in Ref. [36]
for a uniform infinite system by varying the criticality pa-
rameter

√
n+δg/g3/2. We show that for a binary mixture in

a ring, a localized pocket of one component coexists with
a nonvanishing part of the second component, resulting in a
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pocket of miscibility within an immiscible mixture. The an-
nular confinement introduces finite-size effects that persist in
the thermodynamic limit, which can be obtained as a correct-
ing factor depending on the interaction and particle-number
imbalances of the originally proposed critical value. Classi-
fying the miscible-bubble-immiscible phase transition via its
collective excitations, a phase (Goldstone) and an amplitude
(Higgs) mode can be identified. Further, the mixed bubble
can support persistent currents in an annular confinement,
however exhibiting an avoided level crossing of rotational
states due to a repulsive intercomponent interaction, leading to
the analogy of an intrinsic weak link [37–39]. From here on,
we follow the notation in Ref. [36] and signify the miscible
phase as 1 + 2, the immiscible phase as 1|2, and the mixed
bubble as (1 + 2)|2 if α < 1 and (1 + 2)|1 if α > 1. Note that,
according to Ref. [36], this phase cannot occur for α = 1.

II. MODEL

A uniform Bose-Bose mixture in one dimension with equal
masses of atoms but potentially unequal short-range interac-
tions, including beyond-mean-field effects in the Bogoliubov
approximation, has energy

E =
∑

σ

Ekin,σ +
∑
σ,σ ′

gσσ ′

2
nσ nσ ′ + EB, (2)

where EB is the Bogoliubov vacuum energy. In one dimension
and for homonuclear components, EB can be written as

− 2

3π

m2

h̄

∑
±

c3
±, (3)

where the squared Bogoliubov sound velocities are [21]

c2
± =

g11n1 + g22n2 ±
√

(g11n1 − g22n2)2 + 4g2
12n1n2

2m
. (4)

The Bogoliubov vacuum energy in Eq. (3) is only valid pro-
vided the weak-interaction parameter η1D ≈ √

mg/n/h̄ � 1.
Further, assuming δg ≈ η1D, we set δg = 0 in the sound ve-
locities c± in Eq. (4). The chemical potentials μσ of the
components are then given by μσ = ∂E/∂nσ and give rise to
the respective stationary extended Gross-Pitaevskii equations

μσψσ =
[
− h̄2

2m
∂θθ + gσσ nσ + gσσ ′nσ ′

− m1/2gσσ

π h̄

(∑
σ

gσσ nσ

)1/2]
ψσ . (5)

We impose periodic boundary conditions ψσ (θ ) = ψσ (θ +
2πR), thus enforcing an annular confinement of circumfer-
ence 2πR. We set g = √

g11g22 and use dimensionless units
m = h̄ = R = 1. The order parameter is normalized to the
number of particles Nσ in each component according to∫ π

−π
dθ |ψσ (θ )|2 = Nσ . The ground state of Eq. (5) is obtained

by imaginary-time propagation using a split-step Fourier
method. Later in this paper we analyze the system under rota-
tion, which requires adding a −
L̂ψσ on the right-hand side
of Eq. (5), with L̂ = −i∂θ . We also enforce a fixed value of
angular momentum L = L1 + L2, where Lσ = ∫ π

−π
dθ ψ∗

σ L̂ψσ

(a)

(b)

(c)

FIG. 1. (a) Density distributions for four different parameters of√
n+δg/g3/2 as indicated in the figures, with the orange and black

components corresponding to the first and second components, re-
spectively. The first distribution shows the system in a miscible state,
while the remaining distributions show the system in a mixed bubble
state. Also shown are the density distributions in the ring for ν = 4.0
along the criticality parameter

√
n+δg/g3/2 for (b) the first and (c) the

second component. By increasing
√

n+δg/g3/2 the components start
to localize on opposite sides of the ring, resulting in the coexistence
of a mixed and separated phase until it reaches full phase separation.

as described in [23,40]. Introducing N = N1 + N2 and ν =
N1/N2, we illustrate our findings for a repulsive homonu-
clear two-component system and α = 2.7, g = 5.0, and N =
10 000. The chosen parameters are proposed to be experimen-
tally reachable configurations to observe the mixed bubble
phase in three dimensions for a system of 41K-39K, both in
hyperfine states F = 1, mF = 0 [36,41,42]. In order to sample
the phase transition, we vary g12 by changing

√
n+δg/g3/2,

using the uniform values for nσ in Eq. (1).

III. DENSITY DISTRIBUTIONS

We first investigate the existence of the mixed bubble phase
and the corresponding density distributions for the above
choice of parameters. The predicted range in Eqs. (16) and
(17) of Ref. [36] for an infinite uniform system lies within

δgmin

g3/2

√
n+ = − 1

4π

(α − 1)2

√
α(α2 + 1)1/4

,

δgmax = 4(
√

α + 2)

3(
√

α + 1)2
δgmin. (6)

Inserting α = 2.7 then gives the range of [−0.082,−0.057].
We continue by choosing ν = 4.0. Figure 1(a) shows exam-
ples of density distributions for four values of the criticality
parameter, with the first component |ψ1|2 in orange and
the second component |ψ2|2 in black. Figures 1(b) and 1(c)
show the full phase transition across the criticality parame-
ter

√
n+δg/g3/2 as surface plots of both components. As g12

043182-2



MIXED BUBBLES IN A ONE-DIMENSIONAL BOSE-BOSE … PHYSICAL REVIEW RESEARCH 4, 043182 (2022)

increases, the components begin to localize on opposite sides
of the ring, shifted by π . This leads to the predicted coex-
istence of immiscibility and miscibility induced by quantum
fluctuations. As one continues to move towards immiscibility,
the mixed part of the first component decreases linearly in
density with increasing g12, while the second component’s
pocket increases in density, reducing its width, eventually
resulting in immiscibility by further increasing g12. Without
the Bogoliubov vacuum energy EB in Eq. (2) the system would
still be in a fully miscible regime. Note that the observed
values at which the phase transition occurs differ significantly
from the one predicted in Eq. (6). Further, the exact range
of (δgmin, δgmax) depends strongly on the exact value of the
particle ratio ν. This may be due to finite-size effects, com-
pared to the prediction in Ref. [36], which assumes an infinite
system. (We will return to this question later, when we con-
sider the system’s collective excitations.) We also observe that
the bubble phase vanishes completely as ν → 1; however, this
process can be reversed for 1/ν if α → 1/α, which results in
(1 + 2)|2 → (1 + 2)|1. Similarly to dark/bright or magnetic
solitons, the mixed bubble consists of one component local-
izing and the second component filling the resulting density
vacancy. In the case of the dark/bright soliton this effect oc-
curs due to imprinting a phase difference onto one component,
resulting in a dark soliton [7–9,43]. For the magnetic soli-
ton the phase difference is imprinted onto both components
[10–12], leading to a similar density distribution. The stark
difference from the bubble, however, lies in the fact that the
solitonic systems represent excited states, while the bubble
represents a ground state to bridge the phase transition from
1 + 2 to 1|2. The soliton solutions require g − g12 > 0 in
a description without the Bogoliubov vacuum energy EB in
Eq. (2) [7].

IV. COLLECTIVE EXCITATIONS

Let us now discuss the collective excitations across the
criticality parameter. Applying the standard procedure, we
linearize the time-dependent variants of Eq. (5) to first order
around the ground state ψ0,σ , introducing quasiparticle ampli-
tudes uσ and vσ as

ψσ (θ, t ) = e−iμσ t [ψ0,σ (θ ) + uσ (θ )e−iωt + v∗
σ (θ )eiω∗t ], (7)

with
∫ π

−π
dθ [|uσ (θ )|2 − |vσ (θ )|2] = 1. The resulting

Bogoliubov–de Gennes equations can for this system be
written as a 4N × 4N linear response eigenvalue problem
Mv = ωv, where N is the dimension of each block matrix,
v = (u1(x), v1(x), u2(x), v2(x))�, and

M =

⎡
⎢⎣

X12 Y1 Z Z
−Y1 −X12 −Z −Z
Z Z X21 Y2

−Z −Z −Y2 −X12

⎤
⎥⎦, (8)

with

Xσσ ′ = −1

2
∂xx + 2gσσ nσ + gσσ ′nσ ′

− gσσ

2π

3gσσ nσ + 2gσ ′σ ′nσ ′

(g11n1 + g22n2)1/2 − μσ ,

(a) (b)

(c)

FIG. 2. Time evolution of the second component of (a) phase
(Goldstone) and (b) amplitude (Higgs) modes at

√
n+δg/g3/2 =

−0.0577. (c) Collective excitation spectrum of the ten lowest modes
for ν = 4.0 across the miscible-bubble-immiscible phase transition
from

√
n+δg/g3/2 = −0.075 to −0.02. Modes of even parity are

displayed in orange and those of odd parity in purple. The transition
from miscible to bubble occurs at around −0.0651. The gray box
indicates the position of the Goldstone and amplitude modes shown
above. Dashed gray lines indicate the real branch of the excitation
spectrum of a uniform Bose-Bose mixture as given by Eq. (12).

Yσ = gσσ nσ − gσσ

2π

gσσ nσ

(g11n1 + g22n2)1/2 ,

Z = g12
√

n1n2 − g

2π

g
√

n1n2

(g11n1 + g22n2)1/2 . (9)

We solve the corresponding eigenvalue problem numerically
in a real Fourier collocation scheme with a locally optimal
block preconditioned four-dimensional conjugate gradient
method [44,45]. The obtained spectrum is displayed in Fig. 2,
with even and uneven modes in orange and purple, respec-
tively. Starting from the miscible phase, degenerate pairs of
uneven and even modes split up upon transitioning from the
miscible to the bubble regime. The phase transition is numer-
ically noncontinuous in the excitation spectrum due to the
external confinement up to a relative step size approximately
equal to 10−6, leading to a jump in excitation frequency. As
the bubble localizes, spontaneous breaking of U(1) symmetry
occurs, leading to a phase (Goldstone) mode in the bubble
and immiscible phase. The time evolution of the phase (Gold-
stone) mode |ψσ (θ, t )|2 is shown in Fig. 2(a), following

|ψσ (θ, t )|2 = |ψσ,0(θ )|2 + 2 fσ (θ )ψσ,0(θ ) cos(ωt ), (10)

with fσ (θ ) = uσ (θ ) + vσ (θ ) [30]. The phase (Goldstone)
mode persists through the transition into the immiscible
regime. We also identify an amplitude (Higgs) mode in the
bubble phase. Note that the densities of both components
oscillate in phase at the beginning of the amplitude mode.
As g12 increases, the amplitude of density oscillation in the
first component decreases, until it eventually oscillates out of
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phase with the second component. Furthermore, we calculate
the lowest-lying excitations in the uniform regime by expand-
ing v in plane waves due to the annular confinement as [1]

v(x) =
∞∑

p=−∞

eipx

√
2π

ṽp. (11)

Substituting this into the above linear response eigenvalue
problem yields

ω2
p,± = p2

4π

{
p2π +

∑
σ,σ ′

gσσ Nσ (1 − gσσ η)

±
[( ∑

σ,σ ′
(−1)1−σ gσσ Nσ (1 − gσσ η)

)2

+ 4N1N2(g12 − g11g22η)2

]1/2}
, (12)

with η = [2π (g11N1 + g22N2)1/2]−1 and the real branches of
ω± shown as light gray dashed lines in Fig. 2. If one of the
branches becomes imaginary, the associated phase becomes
unstable. Hence one may use ω2

1,± = 0 to estimate the critical
point for the phase transition away from the miscible regime.
Furthermore, taking the thermodynamic limit N → ∞, we
find the critical value for p = 1 as

lim
N→∞

√
n+

δg

g3/2
= − 1

4π

(α − 1)2

√
α(α2 + 1)1/4

√
α + ν

α2 + ν
. (13)

Intriguingly, this expression is equivalent to the first of
Eqs. (6) with an additional factor of

√
(α + ν)/(α2 + ν),

which signifies the miscible-bubble phase transition, such that
the observed shift of the phase transition away from Eqs. (6)
can be explained by finite-size effects emerging in the annular
confinement.

V. NONRIGID ROTATIONAL-INERTIA FRACTION

The localization during the phase transition into the mixed
bubble suggests that one investigate the phase transition by
means of the nonrigid rotational-inertia (NRRI) fraction [46]

fσ = 1 − lim

→0

Lσ

Nσ

. (14)

This quantifies the rotational behavior for small rotations by
comparing the angular momentum a system picks up under
rotation to the angular momentum it would have if it were
rigid. As such, a uniform system will have nonrigid rotational
inertia equal to unity and a rigid body equal to zero. The NRRI
fraction is calculated numerically as a function of

√
n+δg/g3/2

and shown in Fig. 3 for three different values of ν. All three
systems exhibit a qualitatively similar behavior, for which the
NRRI fraction starts at unity for the mixed phase until criti-
cality. As discussed before, the exact critical value depends on
ν, with higher ν having a lower critical value and coinciding
with the onset of localization in the density distributions. For
all systems the second component’s NRRI fraction (dashed
line) approaches zero quickly, signifying the onset of a mixed
bubble, only while the first component’s NRRI fraction (solid

FIG. 3. Nonrigid rotational inertia for systems of varying ν

across the miscible-bubble-immiscible phase transition. The second
component (dashed line) follows a sharp decline upon localization,
turning into a rigid body, while the first component’s NRRI fraction
(solid line) decreases more slowly during the bubble phase. The
system’s total NRRI fraction as given in the text is shown as a thin
solid line.

line) slowly decreases to zero, signifying the onset of phase
separation. The total NRRI fraction of a system is given by
the thin lines as fs = ( fs,1ν + fs,2)/(1 + ν).

VI. ROTATIONAL PROPERTIES

In the following we will now enforce a certain angular
momentum per particle l into systems of variable

√
n+δg/g3/2

and measure its ground-state energy per particle in the nonro-
tating frame as [E (l ) − E (0)]/N . In the case of a rigid body
this leads to a parabola of shape l2/2, while for a uniform
system one obtains a concave periodic structure on top of
the parabola with minima when a vortex fully nucleated at
the center [47]. We plot this quantity in Fig. 4 for the given
values of

√
n+δg/g3/2 and find that it follows the trajectory of

dampened intersecting parabolas. Evaluating E (l ) dependent
on a sytem’s NRRI fraction [48], we show the resulting inter-
secting parabolas as gray dashed lines in Fig. 4 for ν = 4.0,√

n+δg/g3/2 = −0.064, and a NRRI fraction of 0.7172. Here
the dampening effect occurs due to an increased difficulty of
the current in component 1 traversing through the mixed re-
gion, leading to a mixing of rotational states [49]. Despite the
dampening effect, the system is still able to support persistent
currents for some parameters. A similar dampening effect is
known to occur in atomtronic applications in one-component
systems of repulsive bosons where the rotational symmetry
is broken by the addition of a so-called weak link to stir the
condensate [50]. The mixed bubble can here be regarded as
an intrinsic weak link with an avoided level crossing between
the rotational states signified by the dampening effect. We
calculate the spatially averaged current relative to the rotating
ring I (
) = (2π )−1

∫ π

−π
dθ j(θ ), where j(θ ) = n(θ )v(θ ) is

the current density. The velocity v(θ ) in the rotating frame
is obtained by inserting ψσ (θ ) = φσ (θ )eiα(θ ) into Eq. (5) and
separating the real and imaginary parts. The resulting expres-
sion for the gradient of the phase α′(θ ) equals the velocity
v(θ ) = (L − N
)/2πn(θ ) [48]. The space-averaged current
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(a)

(b)

FIG. 4. (a) Rotational energy per particle in the nonrotating
frame at a fixed number of angular momentum per particle l . Values
of

√
n+δg/g3/2 are given in the plot. Closer to immiscibility, the

energy approaches the rigid-body limit, while close to miscibility
the bubble may support persistent currents for nonzero l . (b) Current
I (
)/N through the weak link formed by the bubble. Values of√

n+δg/g3/2 are given in the plot. Starting with a discontinuity, the
current starts bending due to the constriction the bubble provides
until the two branches connect at I (0.5)/N = 0, from which point
the current moves from a smeared sawtooth function to a sinusoidal
modulation with increasing intercomponent interaction.

through the weak link in the rotating frame can then be calcu-
lated as

I (
) = 1

2π

∫ π

−π

dθ j(θ ) = L − N


2π
. (15)

The current I (
) is shown in Fig. 4 and our descrip-
tion is equivalent to the relation derived in Ref. [51] and
used in Ref. [50]. Close to the miscible regime, the usual

sawtooth behavior of the current obtains a small curvature,
but retains its symmetric discontinuity at 
 → 0.5. The mixed
bubble grows in size with increasing intercomponent interac-
tion strength and provides a stronger obstacle to overcome
for the flow in component one. Thus, the currents’ branches
start bending towards zero as 
 → 0.5 until they eventu-
ally connect and become continuous with I (0.5) = 0. The
current then resembles the behavior of a one-component
system with a strong weak link [50]. Initially this is dis-
played by a dampened sawtooth function, which moves
towards a sinusoidal oscillation as the system approaches
immiscibility.

VII. CONCLUSION AND OUTLOOK

Similarly to self-bound droplets, quantum fluctuations
originating from the Bogoliubov vacuum energy in Eq. (3)
introduce a new phase of Bose-Bose mixtures in between
the miscible-immiscible phase transition confirming the re-
cent prediction made in Ref. [36]. We found that intriguingly
the mixed bubbles act like a single component trapped in a
gaseous medium as a pocket of miscibility exhibiting nontriv-
ial nonrigid rotational inertia. The annular confinement used
here leads to finite-size effects, which introduce a correcting
factor for the critical value in the miscible-bubble phase tran-
sition to the prediction made in Ref. [36]. When enforcing
a certain amount of angular momentum on the system, the
mixed bubble mimics a weak link, with an avoided level
crossing between the consecutive rotational states due to the
repulsive interspecies interactions. However, the system is still
able to support persistent currents around the ring for some
parameters, as the reduction of the cusp leads to a plateau.
Our work, here restricted to an investigation of the newly
discovered mixed bubble phase, opens many new questions. It
would be interesting to explore bubble dynamics and to extend
the analysis also to the two- and three-dimensional cases, in
a nonannular trap and for a heavily-mass-imbalanced system
such as a 174Yb-7Li mixture. Further, it may be interesting
if the mixed bubble can also be found in a one-dimensional
strongly interacting few-body system. Particularly interest-
ing perspectives emerge for atomtronics applications (see the
recent review [52]), where the weak link dynamics plays a
crucial role.
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