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Prestressed elasticity of amorphous solids
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Prestress in amorphous solids bears the memory of their formation and plays a profound role in their
mechanical properties. Here we develop a set of mathematical tools to investigate mechanical response of
prestressed systems, using stress rather than strain as the fundamental variable. This theory allows microscopic
prestress to vary for the same bond or contact configuration and is particularly convenient for nonconservative
systems, such as granular packings and jammed suspensions, where there is no well-defined reference state,
invalidating conventional elasticity. Using prestressed nonconservative triangular lattices and a computational
model of amorphous solids, we show that drastically different mechanical responses can show up in amorphous
materials at the same density, due to nonconservative interactions which evolve over time, or different preparation
protocols. In both cases, the information is encoded in the prestress of the network and not visible at all from the
configurations of the network in the case of nonconservative interactions.
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I. INTRODUCTION

Almost all solid materials are stressed. Amorphous solids
exhibit quenched residual stress from their preparation
process, crystalline solids are stressed by defects and grain-
boundaries, and living matter experiences active stress from
biological processes. The ubiquity of stressed solids is en-
capsulated in the fact that the stress tensor σ , as a d × d
symmetrical matrix in d dimensions, has d (d + 1)/2 indepen-
dent degrees of freedom, but the force balance equation,

∂ jσi j = 0, (1)

only poses d constraints, leaving d (d − 1)/2 unconstrained
components in the stress field. In absence of external load, all
components have to vanish if the material, and the stress field,
have to be homogeneous, but they can be nonzero at length-
scales over which heterogeneities or excess constraints are
present (“geometric frustration”), giving rise to prestress (also
known as “residual stress”, “initial stress” or “eigenstress” in
different contexts) [1,2].

In structural engineering, prestress is proactively used
to modify both stability and load bearing capability of
structures, from prestressed reinforced concrete to tenseg-
rity architectures [Figs. 1(a), 1(h) and 1(j)]. In materials,
instead, prestresses can emerge spontaneously, as the direct

*Present address: Google Cloud AI, Pittsburgh, PA, 15206, USA
†maox@umich.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

consequence of out-of-equilibrium processes through which
they solidify, or of the external load applied during pro-
cessing. Prominent examples include isotropic compressive
prestress in jammed packings [3] or tensile prestress in gels
[4], shear prestress in shear jammed granular matter [5] and
shear thickened dense suspensions [6], isotropic prestresses
in glasses [7], and rich varieties of anisotropic prestress fields
in prestressed/tensegrity metamaterials [8–13], and biologi-
cal systems [14–16] [Figs. 1(b)–1(g) and 1(i)]. Remarkably,
very much in the same way as for buildings and large scale
structures, microscopic residual stresses in amorphous solids
may strongly affect their strength—stiffen or soften them, and
direct their dynamical response [1,3,17–39].

A deep understanding of the consequences of prestress is
therefore key to predict elasticity and material properties in
general, but prestresses can be very elusive, since it is difficult
to directly access them in experiments and in most cases only
their indirect consequences can be detected. Current studies of
amorphous solids, such as glasses and jamming of frictionless
particles, typically treat prestress as a field solely determined
by the distance from the ideal jamming transition as interac-
tions between particles are modeled as conservative springs
(e.g., p ∼ δz where p is compressional prestess and δz is the
excess coordination close to the jamming threshold), and thus
all scaling relations obtained are controlled by this variable
[3,43–50].

However, in a broad range of amorphous materials, the
characteristics of prestress exhibit far more complexity. First,
prestress can strongly depend on the preparation history of
the material, and this is especially prominent in denser sam-
ples, relatively far from the jamming threshold [19,20,51].
The nonequilibrium process during which the system solid-
ify encodes complex local spatial organization or order, and
interestingly, the effects of this local order on mechanical
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FIG. 1. A series of examples of stressed materials including structures under tension [a tensile net architecture in (a) and a model colloidal
gel [4]) in (b)], structures under compression [contact network of a jammed packing of repulsive disks [40] (c) and pile of sand (d)], structures
under shear [shear jamming of photoelastic discs (e) and an acoustically tunable shear thickening fluid (image taken by Neil Lin) (f)], structures
under competing tensile and compressive forces [a Prince Rupert’s drop [41] in (g) and a bridge made from prestressed concrete in (h)], as
well as systems with more complex modes of stress [a pea pod which uses stress to open [14] in (i) and a tensegrity metamaterial [42] in (j)].

response are reflected through prestress. Second, colloidal
and macroscale amorphous solids (e.g., jammed suspensions
and granular packings) are often characterized by nonconser-
vative, frictional and history-dependent interactions between
particles, in contrast to simple conservative and two-body

interactions typically used to describe atomistic and molec-
ular degrees of freedom in supercooled liquids and related
glasses. The more complex and history-dependent interac-
tions make the microscopic prestress underdetermined from a
macroscopic configuration, allowing dramatic change in stress

043181-2



PRESTRESSED ELASTICITY OF AMORPHOUS SOLIDS PHYSICAL REVIEW RESEARCH 4, 043181 (2022)

FIG. 2. Mechanical response of a nonconservative prestressed triangular lattice. (a) A triangular lattice with regular geometry and random,
force-balanced, prestress (generated using the method described in Sec. III with c̃ = 0.12). Red and blue colors represent precompression and
pretension on bonds and the thickness of the bond denote the magnitude of the prestress. (b) Response of the lattice in (a) under a shear load
and periodic boundary conditions. The color scheme showing the increment of stress on each bond is defined in Fig. 4. (c) The same lattice
as in (a) with the prestress on the most stressed site removed (corresponding to the particle on that site being damaged, releasing the stress,
indicated by the yellow arrows), while keeping the lattice in force-balance. (d) Response of the lattice in (c) under the same shear load as in
(b), displaying a more homogeneous response. (e) The same lattice as in (a) with the prestress on the most stressed sites carrying 15% more
prestress (corresponding to the particle on the site actively respond to stress, growing when compressed, and shrinking when stretched), while
keeping the lattice in force-balance. (f) Response of the lattice in (e) under the same shear load as in (b), displaying amplified heterogeneity.

distributions without detectable change in the geometry of
the contact network [52,53], leading to drastically different,
prestress-dependent, mechanical responses.

The fact that multiple microscopic stress distributions are
compatible with the same macroscopic state of a particle
or grains assembly, and that the same value of boundary
stress corresponds to the so-called “force network ensemble”
[52,54–56], is related to the broader concept of the “Ed-
wards ensemble” [57] where both microscopic configuration
and stress are allowed to vary for a given boundary stress.
Statistical properties of prestress distributions in this type of
ensembles have been recently discussed, and force-balance
constraints [Eq. (1)] have been shown to produce intriguing
long-range correlations [58–64]. Nevertheless, unraveling the
role of disordered configurations and heterogeneous prestress
in the mechanical response of these broad classes of amor-
phous solids has remained difficult both conceptually and
computationally.

Here we present a systematic method to investigate how
prestress affects the mechanical response of amorphous solids
where the bond or contact configuration and the microscopic
prestress are allowed to change independently, without as-
suming interactions are conservative. As we discuss below,
prestress is a linear combination of the states of self stress
(SSSs) of the stress-free version of the mechanical network,
and leads to a new set of prestressed SSSs, capturing the
unique, prestress-controlled, mechanical response of the sys-
tem. By applying this method to a prestressed triangular lattice
model with nonconservative bonds, we show how the change
of prestress dramatically affects the mechanical response of

the system under load (Fig. 2). We also apply this method
to a computational model of amorphous solids, showing how
different preparation protocols lead to different patterns of
prestress in the system, giving rise to significantly difference
in their mechanical response, while the configuration shows
little change (Fig. 3). The general method we introduce here
is applicable to a wide range of systems, conservative or non-
conservative, ordered and disordered, where prestress affects
elasticity. It provides an efficient computational algorithm for
finding the stress distribution when the system is under any
load, as well as offering a platform to develop a field-theoretic
treatment of prestressed elasticity of amorphous solids. Be-
cause this method allows the microstructure and the prestress
field to vary separately in a nonconservative way, it offers a
pathway to investigate how amorphous solids evolve as well
as develop memory under stress without changing their bond
or contact configuration, and potentially shed new light on
the dynamical interplay between stress and geometry in these
complex materials.

The paper is organized as follows. In Sec. II, we introduce a
new formulation of equilibrium and compatibility matrices in
prestressed networks, and discuss how they control both zero
modes and stress response. In Sec. III, we use a prestressed
triangular lattice model to illustrate how prestress controls the
vibrational modes and the stress response and demonstrate
how nonconservative interactions change the mechanical re-
sponse of the system without any change in the geometry. In
Sec. IV, we apply these methods to analyze the stress response
of a computational model of prestressed amorphous solids,
and Sec. V contains a summary and outlook.
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FIG. 3. Preparation protocol affects mechanics of
three-dimensional prestressed amorphous solids at the same
density (volume fraction φ ≈ 70%). Details of the system and
methods are discussed in Sec. IV. (a) Shear modulus drops by about
20% as the cooling rate increases, captured by our method including
prestress (prestressed G). Dropping prestress in the computation
(stress-free G) completely misses this effect. Destabilizing effect
of the slight increase of pressure at higher cooling rate is far from
enough (macroscopic pressure-destabilized G) in explaining this
trend. (b) Real space configuration of the system, represented by
the average coordination number 〈z〉 (which varied <3%), remains
almost the same, in accordance with the flat “stress-free” G curve.

II. PRESTRESSED MECHANICAL NETWORKS

In this section, we discuss fundamental principles of me-
chanics of prestressed networks in general conservative or
nonconservative systems and how prestress affects their rigid-
ity. We introduce a new Q,C (equilibrium and compatibility)
matrices decomposition for the mechanics of these prestressed
systems. We then use this formulation to discuss unique
phenomena of zero modes (ZMs) and SSSs in prestressed
systems, and analyze how they carry external load.

A. Prestressed mechanical networks

We consider a discrete network of point-like particles
connected by pairwise interactions (bonds) which can be con-
servative or nonconservative. We start from a reference state
where the position of particle particle � is denoted by �R�,0, and

consider a displacement field

�R� = �R�,0 + �u�. (2)

The work done on a bond b connecting particles �, �′ as-
sociated with this displacement field, δWb, can be written as

δWb = tb,p(| �Rb| − | �Rb,0|) + kb

2
(| �Rb| − | �Rb,0|)2, (3)

where tb,p, kb are the pretension and the spring constant of
bond b, �Rb ≡ �R� − �R�′ , and �Rb,0 is this vector in the refer-
ence state (which is not assumed to be stress-free). Defining
�eb ≡ �u� − �u�′ we can expand this form to quadratic order in �u
as

δWb = kb

2

∣∣e‖
b

∣∣2 + tb,p

2| �Rb,0|
∣∣e⊥

b

∣∣2
, (4)

where

e‖
b ≡ R̂b,0R̂b,0 · �eb, e⊥

b ≡ (I − R̂b,0R̂b,0) · �eb (5)

are components of �eb parallel and perpendicular to the origi-
nal bond direction R̂b,0 ≡ �Rb,0/| �Rb,0|, respectively. A detailed
derivation of this type for conservative systems can be found
in Ref. [65].

It is worth noting that we don’t require the system to be
conservative. Here δWb represents the work needed for the
system to follow the displacement field �u. The spring constant
kb is allowed to change as a function of time and state, and
the pretension tb,p does not need to be proportional to bond
stretch from a certain “rest length.” In other words, δWb is
the infinitesimal work associated with the displacement field
on a given initial state. This work is not necessarily stored
in the system in the form as of elastic energy. A similar
formalism has been utilized in Ref. [33] on active networks
of cell sheets. We broadened this formulation to nonconser-
vative interactions so it can be applied to problems such as
dense suspensions and granular matter which involve complex
frictional contacts.

When a network is prestressed, tb,p �= 0, both terms in
Eq. (4) contribute to the work, increasing the number of mi-
croscopic constraints, as we discuss in detail in later parts of
this section. Interestingly, in general the sign of tb,p can be
either positive (tension) or negative (compression). In the case
of tb,p > 0, the prestress term contributes a complete square
term to the work, clearly stabilizing the system. In the case
of tb,p < 0, naively, the prestress term appears to be unstable.
However, because e⊥

b are not variables independent of e‖
b (of

other bonds), the stability of the network needs to be analyzed
in terms of the collective modes.

In addition, we assume that the network in the reference
state is in force balance, i.e., the total force on each particle
vanishes. As a result, there is no O(e) term in the expansion
of the work. Note that the force-balance condition and the
stress-free condition are two distinct conditions, where the
later means tb,p = 0 on all bonds, and is a much more stringent
requirement than the force-balance condition.
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B. States of self-stress in stress-free systems

In the rest of the section, we introduce the new Q,C
decomposition for general conservative or nonconservative
prestressed systems. We start by reviewing the Q,C decom-
position in conservative stress-free systems already described
in the literature [48,66,67] in this subsection. The elastic
energy of a stress-free network of N pointlike particles con-
nected by Nb central-force springs in d dimensions can be
written to quadratic order in u using the dynamical matrix D‖
as

E =
Nb∑

b=1

δVb =
Nb∑

b=1

kb

2
(e‖

b)2 = 1

2
〈u|D‖|u〉, (6)

where the inner product is taken in the Nd dimensional space
for particle displacements u, and the superscript “‖” on the dy-
namical matrix signifies that this dynamical matrix describes a
stress-free system where only e‖ enters the elastic energy. The
more general form for prestressed systems will be discussed
in Sec. II C. This quadratic form can be decomposed into
two steps using the equilibrium and compatibility matrices,
defined as

C‖|u〉 = |e‖〉, (7)

Q‖|t‖〉 = −| f 〉. (8)

Here |e‖〉 and |t‖〉 represent the extension and tension of every
bond, which are both Nb dimensional vectors, and the super-
script “‖” indicated that they are along the bond direction. |u〉
and | f 〉 represent the displacement and total force on every
site, which are both Nd dimensional vectors. As a result, the
equilibrium matrix Q has the dimension Nd × Nb, and the
compatibility matrix C has the dimension Nb × Nd . The two
matrices are in fact transpose of one another, Q = CT . Note
we take the convention that t‖ > 0 denotes tension and t‖ < 0
denotes compression. This is consistent with the minus sign of
Eq. (8), as f is the force exerted by the bonds in the networkon
the sites.

Using these relations in Eq. (6), it is straightforward to see
that

D‖ = Q‖ · K‖ · C‖, (9)

where K‖ is a diagonal matrix that contains all the spring
constants kb. In the sign convention we use here, Hookian’s
law on the springs takes the form t‖ = K‖e‖, as extension
causes tension on the springs.

The null space of Q‖ is the set of tensions, called SSSs,
that produce no forces at any site,

0 = Q‖∣∣t‖
SSS

〉
. (10)

The null space of C‖ is the set of site displacements, called
ZMs, that produce no changes in bond lengths,

0 = C‖|uZM〉. (11)

Floppy modes are a subset of ZMs excluding trivial rigid body
motions of the whole system, and have been extensively stud-
ied in soft matter systems, due to their obvious significance as
capturing deformations with no cost of elastic energy. SSSs
have only recently been explored in soft matter but also show

great potential in characterizing stress-bearing structures in
mechanical networks [68,69].

Applying rank-nullity theorem on Q,C matrices leads to
the Maxwell-Calladine index theorem [67,70]

N0 − NS = Nd − Nb, (12)

where N0 and NS are the numbers of ZMs and SSSs,
respectively.

These concepts have found wide applications recently in
the new field of topological mechanics, as t‖

SSS and uZM can
become topologically protected modes in Maxwell lattices
and networks [68,71–79].

C. States of self-stress in prestressed systems

Now we discuss the decomposition in prestressed systems
which are not necessarily conservative. Firstly, the prestress
itself can be viewed as “exciting” an existing SSS in the
“stress-free version” of the same network (which is generated
by turning off stress in the prestressed network but keeping
exactly the same geometry),

Q‖|tp〉 = 0, (13)

where Q‖ is the equilibrium matrix of the stress-free version
of the network, and the prestress is a SSS of this network.
From this equation, it is clear that if Q‖ has multiple SSSs,
there are multiple ways to prestress the network. In a conser-
vative system, the prestress tp is uniquely determined by the
configuration and the potential. In a nonconservative system,
however, tp can change as a result of micro and meso- scale
processes, and a different SSS of the same Q‖ can show
up as the prestress. This may lead to interesting dynamical
responses, which we discuss briefly in Sec. III using a lattice
model.

Secondly, the work now includes both e‖
b and e⊥

b terms as
analyzed in Eq. (4), and can be written in terms of a dynamical
matrix as

W =
Nb∑

b=1

δWb =
Nb∑

b=1

[
kb

2
(e‖

b)2 + tb,p

2| �Rb,0|
∣∣e⊥

b

∣∣2
]

=1

2
〈u|(D‖ + D⊥)|u〉. (14)

Similar to the stress-free case, using the fact that this work
consists only of complete square terms, this dynamical matrix
can also be decomposed into Q,C matrices,

D = Q · K · C, (15)

where

C|u〉 =
(

e||

e⊥

)
≡ |e〉, (16)

defines the new C matrix and Q = CT . Here we have defined
the new Nbd dimensional e vector which contains one com-
ponent from ‖ and d − 1 from ⊥ for each of the Nb bonds.
It is worth noting here that the compatibility matrix C is
now Nbd × Nd dimensional instead of Nb × Nd dimensional,
because this C matrix maps the Nd dimensional displacement
vector of the network into e‖

b and e⊥
b for each bond b. At the
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same time, the equilibrium matrix Q is Nd × Nbd dimen-
sional. The spring constant matrix is a Nbd × Nbd diagonal
matrix with spring constant kb for the ‖ terms and pre-stress
tb,p for the ⊥ terms,

K =
(

kb 0
0 tb,p

| �Rb,0|

)
, (17)

where there are d blocks of Nb dimensional diagonal matrices
(one longitudinal and d − 1 transverse).

These new Q,C matrices describe the mapping between
the (Nd dimensional) degrees of freedom space and the (now
Nbd dimensional) constraint space. In parallel with Eq. (16),
we have

Q

(
t ||

t⊥

)
≡ Q|t〉 = −| f 〉 (18)

Correspondingly, t‖ and t⊥ are the parallel and perpendicular
components of t .

It might appear confusing how tension t on a central-force
spring can have a component perpendicular to the spring. This
can be understood by realizing that the ‖ and ⊥ components
are defined with respect to the reference configuration, and t
denotes an increment of stress in addition to the prestress tp.
In the prestressed reference state, tb,p is along bond b in the
reference configuration �Rb,0. In the state after the (infinites-
imal) deformation, the total tension is along bond b in the
deformed configuration �Rb. These two bond directions, �Rb,0

and �Rb, are not parallel in general. The t field in Eq. (18)
represents the increment from the pretension to the tension
after the deformation, and thus has components parallel and
perpendicular to the original bond direction. In other words,
under an (infinitesimal) deformation, both bond (parallel) ex-
tension e‖ and bond rotation e⊥ cause increment of stress
[Eq. (14)], and the two components are t‖ and t⊥ respectively.

SSSs in a prestressed system are thus defined as any vectors
that satisfy

Q|tSSS〉 = Q

(
t ||
SSS

t⊥
SSS

)
= −| f 〉 = 0, (19)

which represent respectively parallel and perpendicular
change of bond tensions that leave all particles in force bal-
ance, for a prestressed network. In Fig. 4, we show two
examples of mechanical networks where prestress introduces
extra SSSs that involve t⊥ components. This formulation char-
acterizes the tensegrity phenomena [70,80] where prestress
generates new SSSs for the system to carry other types of load.

D. Two types of zero modes in prestressed systems

Prestressed systems have two types of ZMs, type A, which
leave e|| = e⊥ = 0 on all bonds, and type B, which violate this
relation but are still zero modes (defined as requiring no work
in nonconservative systems). In this section we discuss both
types of ZMs.

Type A ZMs in prestressed networks can be defined as
modes that lie in the null space of C,

C|u(A)
ZM〉 =

(
e||

e⊥

)
= |e〉 = 0. (20)

FIG. 4. Examples of SSSs in prestressed systems. (a) A stress-
free mechanical network with one SSS. When the network is
prestressed with this SSS, 5 new SSSs arise [(b)–(f)]. Bonds with
t‖, t⊥ in these SSSs are denoted by the color scheme shown on the
top, where t‖ is denoted by red-white-blue as it goes from negative
(compression) to positive (tension), and the relative strength of t⊥

over the total t ≡
√

(t‖)2 + (t⊥)2 is denoted by green. The thickness
of the bond is proportional to t , and the black (gray) arrows denote
the component of t‖, (t⊥) on the nodes. (g) The tensegrity T3-prism
has one SSS when it is stress-free. When it is prestressed with this
SSS, 20 new SSSs arise, and one example of these SSSs is shown
in (h). This example is chosen such that it carries the load of torsion
between the top and bottom triangles (see Sec. II E for the projection
of load onto SSSs).

The number of this type of ZMs satisfy the Maxwell-Calladine
index theorem for a stressed network, which can be proven by
applying the rank-nullity theorem on the new Q,C matrices,

N (A)
0 − NS = Nd − Nbd. (21)

Note that the last term is now Nbd for the prestressed network
instead of Nb in the stress-free case. More rigorously, if we
also consider the possibility that not all bonds are stressed,
this index theorem should be written as

N (A)
0 − NS = Nd − Nunstressed

b − N stressed
b d, (22)

where each unstressed bonds only provide one constraint.
Type B ZMs in prestressed systems are not included in

Eq. (20). Instead, they are ZMs due to the fact that some
spring constants in K are negative (from compressively pre-
stressed bonds), and their contribution can cancel out the
positive terms. They are “fine-tuning” ZMs which are only
zero energy when the prestress satisfies certain conditions
so that the positive and negative terms exactly cancel. One
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FIG. 5. Type B ZMs in prestressed systems. (a) Eigenvalues λ of the dynamical matrix of a mechanical network (right). When prestress on
the network increase beyond a threshold, one normal mode becomes unstable (mode number 6 as shown by the red arrow), demonstrating an
example of type B ZMs discussed in Sec. II D [black dashed arrows in (b)].

example of such mode is shown in Fig. 5. Interestingly, be-
cause C|u(B)

ZM〉 �= 0 and QKC|u(B)
ZM〉 = 0, type B ZMs lead to

a set of SSSs |tSSS〉 = KC|u(B)
ZM〉. One trivial example of this

type of ZMs is the rigid rotation of the network if the system
is under open boundary conditions: the rotation causes e⊥ and
thus does not satisfy Eq. (20), but it is indeed a ZM of the
dynamical matrix (this ZM does not require fine tuning of
stress but all other type B ZMs do). A nontrivial example of
such fine-tuning ZMs is shown in Fig. 5(e) where the sum
of e‖ and e⊥ terms in the elastic energy vanish. Type B ZMs
are not included in the Maxwell-Calladine index theorem for
prestressed systems [Eq. (21)].

Remarkably, although ZMs in prestressed systems are
more complicated as we discussed above, the definition of
SSSs in Eq. (19) is robust as it relies only on force balance,
and is not affected by the positive definiteness of D. In our
discussions below, we mainly focus on these SSSs and show
how they form a linear space that efficiently characterizes how
load is carried by a prestressed system.

E. Stress response to homogeneous load

One important property of SSSs is that they form a linear
space containing all possible ways a network can carry stress
while keeping all particles in force balance. Thus, when the
network is under load, actual stress distributions must come
from linear combinations of SSSs, and the linear space of
SSSs characterizes the capability of a system to carry any
external load. It is worth pointing out here that we refer to
external loads that do not “introduce new constraints” to the
system, and the meaning of this condition will become clear
at the end of Sec. II F.

Here we first illustrate this formulation using a simple
shear on a stress-free network with all spring constants being
1. The bond tension in response to this shear can be decom-
posed in the SSSs linear space because this space form a
complete basis for all force-balanced stress distributions, as
we discussed above. The decomposition can be written as

|t‖〉 =
NSSS∑
i=1

∣∣t‖
SSS,i

〉〈
t‖
SSS,i

∣∣e‖
affine

〉
, (23)

where e‖
affine is the bond extension if the strain were affine

(i.e., homogeneous shear strain). The sum runs in the NSSS

dimensional linear space of all SSSs, |t‖
SSS,i〉. This relation is

straightforward to prove as follows: when a strain is imposed
on the system (e.g., via Lees-Edwards boundary conditions in
a computational model, or in the bulk of a mechanical network
strained from the boundary), in addition to affine bond exten-
sions e‖

affine, the system responds by particle displacements u
(e.g., nonaffine deformations) to minimize the elastic energy
while maintaining this macroscopic strain, so the resulting
bond extensions are

|e‖〉 = ∣∣e‖
affine

〉 + C‖|u〉. (24)

If all spring constants are 1, we have |t‖〉 = |e‖〉. As we men-
tioned above, |t‖〉 must belong to the SSSs linear space, and
the linear combination coefficients are

ci = 〈
t‖
SSS,i

∣∣t‖〉 = 〈
t‖
SSS,i

∣∣e‖
affine

〉 + 〈
t‖
SSS,i

∣∣C‖∣∣u〉
. (25)

The second term has to vanish because 〈t‖
SSS,i|C‖ =

(Q‖|t‖
SSS,i〉)T = 0. This proves the decomposition in Eq. (23).

Three comments can be made from this result. First, if
the shear strain has no overlap with any SSSs in the system,
〈t‖

SSS,i|e‖
affine〉 = 0 for all i, the system can not carry the load.

What would happen physically is that the system yields until
a new SSS, able to carry that load, emerges. Second, the same
approach can also be applied to other types of load, such as
a hydrostatic pressure. It is important to note here that any
component in the imposed strain that can be written in terms
of C‖|u〉 will not cause stress—it corresponds to strain that
will be relaxed by degrees of freedom available to the system.
Third, a similar formulation can also be developed with loads
applied via specifically controlled boundary displacements,
where SSSs are defined as bond tensions leaving internal sites
in force balance, and the strain e can be applied from bonds
connected to boundaries [73].

The relation is slightly more complicated when the spring
constants are different for each spring,

|t‖〉 =
NSSS∑
i, j

∣∣t‖
SSS,i

〉
[((K‖)−1)ss]

−1
i j

〈
t‖
SSS, j |e‖

affine

〉
, (26)
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where ((K‖)−1)ss is the inverse of the spring constant matrix
projected to the SSS linear space (see detailed definition in
Appendix A).

Equation (26) only assumes a linear relation between in-
finitesimal bond extensions and tensions, and does not require
the interactions to be conservative, so it can readily be gener-
alized to the prestressed and nonconservative case, where

|t〉 =
NSSS∑
i, j

|tSSS,i〉[(K−1)ss]
−1〈tSSS, j |eaffine〉. (27)

A detailed proof of this relation is included in Appendix A.
It is worth noting that the response |t〉 calculated here is the
addition to the prestress in response to the load, so the total
stress in the system is |tp〉 + |t〉 where tp only has longitudinal
components and t has both longitudinal and transverse com-
ponents (with respect to the bond direction in the prestressed
reference state).

F. Stress response to force dipoles

Similar projections can also be applied to compute the
stress response of a prestressed system to local forces, such
as a force dipole acting on a bond.

The main difference between this case of a force dipole and
the external strain case discussed in Sec. II E is that the force-
balance condition here needs to include the external forces,

Q|trsp〉 = −| frsp〉 = | fexternal〉 (28)

where fexternal is the externally imposed force and trsp is the
tension response of the system, which causes frsp. frsp cancels
with fexternal, leaving the system in force balance.

When the external forces take the form of a force dipole on
a bond b, they can be written as

| fexternal〉 = | fdipole〉 = −Q|tdipole〉 = −QK|b〉 (29)

where |b〉 is a vector in the bond space with 1 on the bond
where the dipole is imposed, and 0 on all other bonds. This
sets the magnitude of the dipole force to be kb · 1, the value of
which is irrelevant for the linear theory. The sign convention
of this equation follows from Eq. (18) where tdipole causes
fdipole. Combining Eqs. (28) and (29), we have

Q(|tdipole〉 + |trsp〉) = 0, (30)

indicating that the total tension field tdipole + trsp (sum of the
external dipole and the network response) is a SSSs of the
network. The response can then be derived using a similar
method as discussed in Sec. II E, and we have (as detailed in
Appendix B)

|trsp〉 = −|tdipole〉 +
NSSS∑
i, j

|tSSS,i〉[(K−1)ss]
−1
i j 〈tSSS, j |b〉. (31)

In the simple case of K = kI (all springs having the same
spring constant which only applies to stress-free networks),
the second term on the right hand side of the equation reduces
to the “quasi-localized SSSs” defined in the stress-free case,
characterizing dipole responses [69,81]. Here we extend this
concept to prestressed networks, and our formulation can be
used to not only compute dipoles with force along the bond,

FIG. 6. Stress response to dipole forces. (a) Bond stress response
of a mechanical network to a force dipole fdipole (black arrows) acting
on a bond in the network. Blue and red marks the tension trsp > 0 and
compression trsp < 0 on the bonds in response to the force dipole,
with the thickness of the bond proportional to the magnitude of the
tension/compression. (b) The sum of the external dipole and the
network response, tdipole + trsp, is a SSS of the network. (c) Bond
stress response of a mechanical network to a force dipole acting on
a pair of particles not connected by a bond. This force dipole can be
viewed as an additional bond in the network, such that tdipole + trsp is
a SSS of the network with the added bond (d). The original structure
in (c) does not have any SSS.

but also “transverse” or “tilted” dipoles where the force pair is
perpendicular or in an arbitrary angle to the bond (see example
in Fig. 6).

A “dipole stiffness” κ can then be defined to characterize
this response

κ ≡ 〈 fdipole| fdipole〉
〈 fdipole|ursp〉 , (32)

where 〈 fdipole| serves the purpose of projecting the force and
displacements to the direction of the external force dipole.
A different version of (longitudinal only) dipole stiffness has
been introduced in Ref. [82] where ursp of the whole system
is used instead of its projection to the dipole was used. In
contrast, the dipole stiffness defined here treats the whole
system as a black box, and only extracts the stiffness from
the force-distance relation between the two particles where
the dipole acts on. The simplicity of this definition allows it to
be directly implemented in experiments via methods such as
microrheology.

Using the SSSs linear space, the dipole stiffness to a
local force dipole on bond b is thus given by (details in
Appendix B):

κb = 2k2
b

kb − ∑NSSS
i, j 〈b|tSSS,i〉[(K−1)ss]−1〈tSSS, j |b〉

, (33)

where kb is the spring stiffness for bond b.
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FIG. 7. Vibrational modes of prestressed triangular lattices. (a) One site-localized SSS |t�〉 on a triangular lattice, where bonds surrounding
the hexagon carry compression, and bonds in the hexagon carry tension. The size of the blue disk on the center site represents the strength of
this SSS. (b) A prestressed triangular lattice with the prestress tp generated using a linear combination of site-localized SSSs with independent
coefficients on each site, drawing from a Gaussian distribution with mean 0 and standard deviation c̃ = 0.12. (c) Lowest 300 eigenvalues λ of
the dynamical matrix of prestressed triangular lattices of size 32 × 32, at c̃ = 0 (blue), 0.1 (orange), and 0.2 (green), from top to bottom. (d) The
lowest eigenvalue λmin as a function of c̃. (e) A triangular lattice with positional disorder where the random displacements of the nodes have
standard deviation ũ = 0.12. (f) Lowest 300 eigenvalues λ of the dynamical matrix of a 32 × 32 triangular lattices with positional disorder, at
ũ = 0 (blue), 0.1 (orange), and 0.2 (green), from top to bottom. (g) Phonon disperson relation of the lowest band of triangular lattices with no
prestress (yellow, top) and critical compressive prestress (blue, bottom) where modes along 	M approach instability. (h) Phonon dispersion
relation of the lowest band of honeycomb lattices with no prestress (yellow, bottom) and positive tension (blue, top).

Another interesting case of force dipole is when the dipole
acts on a pair of particles that are not connected in the network
(which can be called “nonlocal dipoles”). The analysis of
force-balance in this case can be done by considering the
external force dipole as introducing an additional constraint
into the network. Thus, the stress distribution is a SSS of the
network with this additional “auxiliary bond,” instead of the
original network. In Appendix B, we also derive the dipole
stiffness of this case. Examples of both types of dipoles are
shown in Fig. 6.

III. PRESTRESSED ELASTICITY OF TRIANGULAR
LATTICES

In this section, we use prestressed triangular lattices to
illustrate the mathematical tools for prestressed elasticity we
discussed in Secs. II. Models of prestressed triangular lat-
tices have been introduced in the literature of force network
ensembles, as an example system where multiple internal
stress distributions are compatible with given boundary stress
[52,54,55]. Here we discuss how our SSSs formulation can
be applied to these lattices to both systematically generate
all possible prestress distributions, and solve for vibrational
modes and stress response to external load, revealing interest-
ing prestress effects.

In the stress-free case, triangular lattices have a coordina-
tion number z = 6 > 2d and thus the number of SSSs per
site is z

2 − 2 = 1. In fact, a localized SSS |t�〉 can be defined
around each site � as shown in Fig. 7(a). These site-localized
SSSs, together with the homogeneously state of self stress
(all bonds carrying the same tension), form a complete basis
to decompose any SSSs on the triangular lattice. A similar
construction of prestress states on Delaunay triangulations has

been developed in Ref. [83] to characterize rigidity in granular
solids. In particular, we can generate an ensemble of prestress
|tp〉 on triangular lattices by taking an arbitrary coefficient c�

for each site-localized SSS |t�〉 and sum them up. In Fig. 7(b),
we show an example of such a prestressed state.

One way to physically construct these prestressed triangu-
lar lattices is to choose the rest length of each bond b such that
when they are at the length in the regular triangular lattice,
the tension/compression they carry is exactly the value tb,p

in the prescribed SSSs. Because the total force is balanced
at each site for any SSS, all bonds will stay at the length in
the regular lattice, and thus we obtain a triangular lattice with
regular geometry and a prescribed SSS. On the other hand,
when the interactions are nonconservative, one is allowed to
choose any value for the pretension on each bond. As long as
the total force on all sites vanish, the system is still in force
balance.

What are the mechanical properties of such prestressed
triangular lattices? Here we study them from two perspec-
tives: vibrational modes and load-bearing capabilities. The
vibrational modes can be calculated based on the quadratic
expansion in Eq. (4) for each bond, which leads to the dynam-
ical matrix defined in Eq. (15).

In Fig. 7(c), we show eigenvalues of the dynamical ma-
trix of the triangular lattice at three levels of prestress (by
assigning c� from a Gaussian distribution with mean at 0
and standard deviation at c̃). Prestress significantly affects the
vibrational modes especially at low frequencies. In particular,
negative eigenvalues start to appear when the fluctuations
of the SSSs goes beyond a critical level, c̃ > c̃∗ [Figs. 7(c)
and 7(d)]. This indicates that by increasing the fluctuation
of prestress (where the mean remains 0), unstable modes ap-
pear, although the system remains in force balance. This is in
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FIG. 8. Prestressed triangular lattices under load. [(a)–(c)] An example of a prestressed triangular lattice [the one shown in Fig. 7(b)] under
shear load εxy (a), a longitudinal dipole (b), and a transverse dipole (c), where the force dipoles are shown as black arrows. The color scheme
of bond tensions (t‖ and t⊥) is the same as in Fig. 4. (d) Probability distributions of pretensions on bonds of the lattices we tested for load
bearing, with different mean t0 and standard deviation t̃ of pretension on bonds [legend shown as inset of (e)]. (e) Shear modulus G of these
lattices as a function of mean pretension t0. [(f)–(g)] Probability distributions of the parallel (f) and transverse (g) local dipole stiffness of these
lattices. 20 × 20 lattices are used in the computations in (d)–(g), and we average over 100 realizations of disorder for each set of parameters.

alignment with our discussion on prestressed rigidity and type
B ZMs of prestressed systems in Sec. II.

To contrast this result, we also consider triangular lattices
with positional disorder but no prestress [Fig. 7(e)]. In this
case, we move site � by a random displacement �u�, the x, y
components of which being generated from a Gaussian dis-
tribution with mean at 0 and standard deviation at ũ. We also
plot the eigenvalues of the dynamical matrix of this case in
Fig. 7(f). Although positional disorder also affects the eigen-
values, it mostly smooths out the regular lattice eigenmodes,
and does not lead to qualitative change at low frequencies
and does not generate unstable modes. Note that to make
a fair comparison we chose the same values for c̃ and ũ,
which represents the same level of disorder, under the simple
convention we took where the bond length and spring constant
on the triangular lattice both being unity.

The load-bearing capabilities of prestressed triangular lat-
tices can be analyzed by the SSSs formalism discussed in
Sec. II. At any given realization of disordered prestress, we
can compute the linear space of SSSs, and use Eqs. (27)
and (31) to find the stress response of the system to exter-
nal load [Figs. 8(a)–8(c)]. In particular, to characterize the
homogeneous component of prestress (hydrostatic pressure),
we also introduce a constant pretension t0 on all bonds, in
addition to the fluctuations from |t�〉. As a result, the tension
on each bond obeys a normal distribution with mean at t0 and
standard deviation at t̃ = 2c̃ (as each bond appears in four
site-localized SSSs around it), as shown in Fig. 8(d). We apply
two types of load, simple shear and dipole forces, on these
prestressed triangular lattices, and the results are shown in

Fig. 8. This analysis shows that for both shear modulus and
stiffness against dipole forces, their mean is mainly controlled
by t0 (where compression decreases stiffness and tension
increases stiffness, in qualitative agreement with Ref. [84]
where effects of prestress is characterized in a mean-field
approximation) whereas t̃ slightly decreases these stiffness,
as well as broadens them. In addition, the stress response
demonstrates interesting heterogeneities due to the disordered
prestress, an effect we will discuss more in Sec. IV.

Effects of prestress on mechanics can also be seen from the
perspective of phonon structures of regular lattices [Figs. 7(g)
and 7(h)]. It is straightforward to see that negative prestress
(compression) destabilizes the originally stable triangular lat-
tice [Fig. 7(g)] and positive prestress (tension) stabilizes the
honeycomb lattice [Fig. 7(h)], which was originally unstable
against shear. Interestingly, the modes that first become unsta-
ble in the triangular lattice as negative prestress increase are
the modes along the 	M direction in the first Brillouin zone,
indicating that the type of modes that first become unstable
are the modes that zigzag between the straight lines of bonds,
agreeing with recent studies of strain localization in lattice
models [85].

When nonconservative dynamics is introduced to the sys-
tem, the lattice displays dramatically different mechanical
response even when the configuration is kept the same. In
Fig. 2 we show two cases as examples: (i) when the most
stressed particle “crush” and release its stress, and (ii) when
the most stressed particle experiences some active increases
of its stress, mimicking, e.g., positive feedback in biome-
chanical systems. These effects provide interesting new topics
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FIG. 9. Prestress in amorphous solids of repulsive particles. (a) Pretension on bonds tb,p ≡ dU (ri j )
dri j

where b is the bond connecting particles

i, j. The system size is N = 10 976 with preparation cooling rate 	 = 5 × 10−6 ε/(kBτ0). [(b) and (c)] Distributions of tb,p (b), and spring

constants k‖ ≡ kb and k⊥ ≡ tb,p

| �Rb,0|
(c), for the configuration shown in (a).

for future studies of dynamical nonconservative mechanics in
amorphous solids.

IV. PRESTRESSED ELASTICITY OF AMORPHOUS
SOLIDS OF SOFT REPULSIVE PARTICLES

The new Q,C matrix approach described in Sec. II pro-
vides a set of tools to analyze stress-bearing capabilities and
mode structures of prestressed systemswell beyond the trian-
gular lattices just described. Here we apply this method to a
computational model for amorphous solids composed of soft
repulsive particles, where, akin to real materials, prestresses
are naturally introduced by the preparation (solidification)
protocol. Given the preparation protocol chosen for this study,
the prestress is the result of both compression and frozen-in
structural disorder.

A. 3D numerical simulations of amorphous solids of soft
repulsive particles

The numerical model describes a suspension of particles
with soft repulsive interactions given by a truncated and
shifted Lennard-Jones potential [86]. The potential energy,
for a pair of two particles � and �′ separated by a center-
to-center distance Rb ≡ | �R� − �R′

�|, is V (Rb) = 4ε[(ab/Rb)12 −
(ab/Rb)6] + ε for particle pairs closer than the cutoff distance
Rb � rc ≡ 21/6ab, otherwise V (Rb) = 0, following the nota-
tion we defined in Sec. II. Here ab = (a� + a�′ )/2 with a� and
a� being the diameters. The size polydispersity is introduced
by drawing the diameter of each particle ai from a Gaussian
distribution with mean a and variance of 10%. The parameter
ε is the unit energy and a is the unit length in the simulations.
Particles closer than the cutoff distance (beyond which the
inter-particle force vanishes), Rb � rc, are considered in con-
tact. All simulations used here have volume fraction φ ≈ 70%
and consist of 104(10 976) particles in a cubic box of linear
size L = 20.36, unless otherwise specified. The initial sam-
ples are prepared by first melting face-centered-cubic (FCC)
crystals of particle at volume fraction 0.7 at T = 5.0ε/kB.
We then cool the particle assemblies down to a temperature
0.001ε/kB through an NVT molecular dynamics (MD) proto-
col as described in Ref. [87]. The cooling rate 	 varies from
5 × 10−2 to 5 × 10−6 ε/(kBτ0), where τ0 = a

√
m/ε is the MD

time unit with m the particle mass. Subsequently, each sample
is brought to the closest local energy minimum using a con-
jugate gradient (CG) algorithm. The configurations prepared
in this way are amorphous solids, as we verify by measuring
their viscoelastic response [87], whose properties depend on
the cooling rate utilized. These solids feature prestress that
comes both from the homogeneous compression and from the
structural disorder due to the size polydispersity.

In Fig. 9, we show a typical configuration where prestress
on the bonds are visualized. These tb,p terms are negative as
the system is compressed. For each cooling rate, we prepare
5 statistically independent samples. All quantities investigated
here have been averaged over this set of samples and we obtain
error bars from sample to sample fluctuations.

We examine these samples as they are sheared using Lees-
Edwards boundary conditions and a shear rate γ̇ , by solving
Newton equations of motions with a drag force that guarantees
minimal inertia effects as discussed in Ref. [87]. All simula-
tions are performed with LAMMPS [88], suitably modified
to include the particle size polydispersity and the interactions
discussed above, and using a shear rate γ̇ = 10−4τ−1

0 . We
also perform quasistatic shear deformations to characterize
the mechanical response of the system, and confirm that the
results at the lowest strain rate and the quasistatic test are
consistent.

With the bond network and particle coordinates, we build
the compatibility and equilibrium matrices Q and C, to study
the prestressed elasticity using the general formalism de-
scribed in the previous sections. In this 3D network, each bond
has one longitudinal t || and two transverse directions t⊥ for
tension increments. We take the convention that the first trans-
verse direction R̂⊥,1

b,0 ≡ R̂b,0 × ẑ/|R̂b,0 × ẑ| is the unit vector
of the cross product between the bond unit vector R̂b,0 and
the z axis (0,0,1), and the second transverse direction R̂⊥,2

b,0 ≡
R̂b,0 × R̂⊥,1

b,0 is the unit vector of the cross product between the
bond vector and the first transverse direction [the subscript 0
signifies the reference (undeformed but prestressed) state].

Once the Q and C matrices are constructed, we solve their
null space and obtain ZMs and SSSs of the computational
model. The samples we studied are in general deep in the
solid phase and exhibit no ZMs besides the three trivial trans-
lations. When solving for SSSs in large and dense systems
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as the samples we generated, the null space for the equilib-
rium matrix Q may have very high dimensions. We used the
SPQR_RANK package [89] from SUITESPARSE [90], which is a
high performance sparse QR decomposition package and can
provide a reliable determination of null space basis vectors
for large sparse matrices, to solve for SSSs efficiently and
reliably, especially when there are lots of degeneracies for
diagonalizing Q. Similarly, SPQR_RANK is also suitable when
solving for the null space of QT to get ZMs in large systems.

Compared to computational methods currently being used
to study prestressed mechanical networks, where singular
value decomposition (SVD) is applied to the dynamical ma-
trix, leading to expensive computations, our new method
based on the equilibrium matrix greatly improves the effi-
ciency. By decomposing the dynamical matrix, D = QC, we
exploit the intrinsic sparsity of the problem, which allows
the more efficient high performance sparse QR decomposition
methods.

B. Calculating stress response to shear using prestressed states
of self-stress

We begin by demonstrating the power of the SSSs as
“stress-eigenstates” that characterize the stress-bearing capa-
bilities of a prestressed system. To this end, we compute all
SSSs as described above, and use Eq. (27) to calculate the
change of tension, t‖ and t⊥, as the system is under macro-
scopic shear, which we call “prestressed response” here, as
this is the difference between the stress under load and the
prestress.

To contrast this result, we also calculated the tension in-
crement treating the system as a stress-free network, i.e., as
characterized by equilibrium matrix Q‖ instead of Q (where
the geometry of the contact network is kept the same). The
resulting stress increment (which only has the t‖ component)
is then calculated using Eq. (26), and we will call this the
“stress-free response.” At the same time, we also measure the
change of the stress in the system in a numerical experiment
where the system is under a small shear deformation imposed
quasistatic or at finite rate (as specified in captions of Figs. 10
and 11), and we call this the “actual response.”

In the next two sections, we compare these different results
on tension increment in terms of both spatial heterogeneity
and shear modulus.

C. Spatial heterogeneity of stress response

One significant effect of prestress on the mechanical re-
sponse of amorphous solids is the spatial heterogeneity of
the stress increment, in contrast to the stress-free response
(where the geometry is kept the same). Figure 10 shows a
visualization of the tension increment in the model amorphous
solids we study here.

Remarkably, this heterogeneity is accurately depicted from
the SSSs calculation when prestress is included. The tension
increment is computed following Eq. (27). The resulting t
field includes both t || and t⊥, although only t || is shown.
To be precise, t⊥ manifests as rotations of the bonds in the
real response (which causes the total tension to change direc-
tion). In contrast, the calculated stress response of the system

ignoring the prestress effect, i.e., using Eq. (26), is almost
completely homogeneous. Thus, in these dense systems, the
prestress controls the spatial heterogeneity of the mechanical
response of the system. Treating the system as “stress-free”
misses important signatures of heterogeneities.

We characterize the spatial heterogeneity of the tension
increment using a clustering tendency index: the Hopkins
statistic H [91], with a value close to 1 indicating the data are
highly clustered, and a value around 0.5 from random data.
Figure 10(c) shows that the prestressed elasticity captures the
tension increment clustering tendency which exists in real
tension responses, while in stress-free elasticity this clustering
is not captured.

D. Shear modulus of prestressed amorphous solids

The shear modulus G can be obtained from the shear com-
ponent of the virial stress [87]. All components of the virial
stress can be obtained from the SSSs projection calculation
(which directly gives t‖

b , t⊥
b of all bonds b) via

�tb = (
tb,p + t‖

b

)
R̂‖

b,0 + t⊥,1
b R̂⊥,1

b,0 + t⊥,2
b R̂⊥,2

b,0 , (34)

�Rb =
(

Rb,R + |�tb|
kb

)
t̂b, (35)

where t̂b ≡ �tb/|�tb| is the direction of the bond after the
deformation.

E. Effect of cooling rate on stress response

By varying the cooling rate as described above, we prepare
particle assemblies that have different amount of disorder
and compressive prestress, and have shown elsewhere that
the higher cooling rates lead to a higher degree of disorder,
characterized through a Voronoi analysis of the local particle
packing which shows a decrease in the local icosahedral order
[19,87].

The total number of SSSs in a prestressed system NS is
directly related to the numbers of degrees of freedom and con-
straints via the Maxwell-Calladine index theorem [Eq. (21)] as
the system exhibits no ZMs except for the trivial translations.
In Fig. 12(a), we show the total number of SSSs in different
configurations of our model amorphous solid that were pre-
pared by varying the cooling rate. The number NS decreases
with the increase of cooling rate. Figures 12(b) and 12(c) show
that this effect is accompanied by a decrease in the number
of bonds and a net increase of the average compressional
prestress. These findings support the idea that varying the
preparation protocol by varying the cooling rate, as we do,
induces different amount of prestress into amorphous solid
configurations, which can be directly captured by the SSSs
analysis. The data also indicate that more aged samples, which
tend to be stiffer, feature larger amounts of SSSs.

This is consistent with the finding in Ref. [19] that more
aged samples (i.e., prepared with a lower cooling rate)
contained larger amounts of (overconstrained) icosahedrally
packed domains, identified through the Voronoi analysis of
the particle packing. These domains, which tend to be stiffer,
were shown to favor the accumulation of stress and promote
dilation when the samples were driven towards yielding under
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FIG. 10. Spatial heterogeneity of tension increment of prestressed networks under shear strain. We compare the actual tension response
t measured in simulation to the tension increment calculated with and without prestress, for a quasistatic shear deformation at strain 0.01%
in (a) and a finite rate shear deformation at strain 1% in (b) (system size N = 10 976 and cooling rate 	 = 5 × 10−2 ε/(kBτ0)). (c) Clustering
tendency index H averaged over three different samples calculated using stress-free and prestressed elasticity compared to the actual H
measured at quasistatic shear strain 0.01%. The red dashed line indicates the threshold to determine whether or not the tension change is
clustered.

a shear deformation. The comparison of the results obtained
here with the analysis performed in Refs. [19,87] support the
idea that those phenomena, i.e., the increase in stiffness and
in the tendency to accumulate stress and dilate under shear,
should be due to prestress, and that sizable changes in the
number of SSSs, as a result of sizable differences in prestress,
eventually determine sizable changes in the linear, and even
nonlinear, response of amorphous solids.

We also study the effect of cooling rate on the shear mod-
ulus (Fig. 3). As we discussed above, cooling rate controls
prestress, and this in turn causes the shear modulus G to
significant decrease with increasing cooling rate. The method
we introduce here accurately captures this trend, which would
be completely missed if the system was treated as stress-
free. Interestingly, this is not just due to the destabilizing
effect of the increasing pressure p. It is known that pressure

decreases shear rigidity, since G = Kxyxy + σp,yy where K is
the stress-free elastic moduli matrix and σp,yy = −p is the
compressional prestress [1]. However this effect alone cannot
explain the decreasing trend of G with decreasing cooling rate.
Our analysis reveals that this decrease originates from local
prestresses encoded in the intricate and frustrated geometries
of the dense packing of particles, rather than from a global
hydrostatic pressure.

F. Dipole stiffness in prestressed glasses

SSSs have been also discussed in the context of the me-
chanical response of amorphous solids to local perturbations
(e.g., force dipoles), which could be connected to the localized
or quasi-localized plastic processes that are key ingredients of
the mechanical response of this class of materials [69,81]. The
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FIG. 11. Comparing tension increment calculated from SSSs
projection and numerical experiments (actual tension) of quasistatic
0.01% shear strain [system size N = 10 976 and cooling rate 	 =
5 × 10−6 ε/(kBτ0 )]. [(a) and (b)] Comparison of calculated and ac-
tual tension increment (t‖, t⊥) of each bond, where good agreement
is found in the case of prestressed formulation. (c) Shear modulus G
from stress-free response and prestressed response compared to the
actual G. The shear modulus is averaged over three different config-
urations at quasistatic 0.01% shear strain, with the same system size
and preparation protocol to the system in (a) and (b).

analysis of nonaffine and plastic microscopic displacements
under shear and of their spatial correlations has led to the
notion of “soft spot,” i.e., the presence of localized regions
that are especially susceptible to plastic rearrangements under
an external force [43,47,92–94].

The local response to force dipoles that we have discussed
in Sec. II F has been directly related to these soft spots in

FIG. 12. Statistics of SSSs at different cooling rate. (a) Number
of SSSs (NS), (b) number of bonds (Nb), and (c) averaged normal
stress (P) for different cooling rates 	. Those quantities are averaged
over five different configurations for each cooling rate, and the sys-
tem size is N = 10 976.

amorphous solids [69,81,95] and such response analysis has
pointed to quasilocalized excitations (QLEs). In general, one
needs to follow the time evolution of a system under an
external deformation to identify the QLEs, however simi-
lar characteristics have been extracted, in the case of model
glasses and amorphous solids, even from the low-frequency
limit of the vibrational spectrum, i.e., from the linear response
regime [43,47,49,94].

Here we use the newly developed methods to examine the
response of the model amorphous solids obtained in simula-
tions to dipole forces, and collect the statistics of the local
stiffness these systems display. In particular, we apply the
approach for force dipoles discussed in Sec. II F, and calculate
the stiffness as defined in Eq. (32) for each bond, to identify
regions which are soft. Measures of this kind lend themselves,
in fact, to identify soft regions with respect to various external
perturbations.

Interestingly, the relative displacement that a pair of parti-
cles undergoes during a plastic rearrangement is typically not
along the direction of the bond that initially connects them. In-
stead, this local deformation involves several sliding motions.
Therefore a particularly interesting measure of local softness,
potentially complementing recently proposed ones [27,81,96],
can be obtained by quantifying the stiffness against a dipole,
whose forces are along a different direction from the one of
the bond on which they are applied. Thus, for each bond,
in addition to computing the dipole stiffness to longitudinal
(along t‖) and transverse (along t⊥) forces, we compute the
softest dipole stiffness, κmin

b , by minimizing it with respect to
the direction of the dipole forces (details in Appendix B).

Figure 13(a) shows an example of applying longitudinal
and transverse force dipoles on a bond in our prestressed
particle configurations, showing both ‖ and ⊥ tension re-
sponses of all bonds. Remarkably, although the near field
response is mainly in the ‖ direction, the far field response
contains significant t⊥ components. This is a genuine effect
of prestress—these transverse stress response can only be
captured when prestress is included.

We collect the statistics of the minimum dipole stiffness
κmin

b on bonds in the networks obtained with two differ-
ent preparation cooling rates as shown in Fig. 13(g). These
distributions feature a power-law tail for small κmin

b , where
p(κmin

b ) ∼ (κmin
b )β and β appears to depend on the cooling

rate. The results demonstrate the impact of preparation history
to the mechanical stiffness in prestressed systems. The case
with faster cooling rate leads to a smaller exponent and thus
the distribution extends more to soft κmin

b , agreeing with the
general trend discussed in Sec. IV E, where faster cooling
rate leaves more heterogeneities regarding stress response in
the sample. Our results also provide an interesting compari-
son to (longitudinal) dipole stiffness distributions studied in
Ref. [82] for different models of computational glasses.

Furthermore, we also characterize the spatial distribution
of κmin

b and compare it to the spatial distribution of prestress
tb,p [Figs. 13(h) and 13(i)]. Remarkably, κmin

b shows inter-
esting spatial patterns whose possible correlations with the
amount of prestress in these regions are however hard to tease
out. Relating regions with clustered soft κmin

b with soft spots
will be an interesting question for future studies.
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FIG. 13. Dipole responses in amorphous solids. [(a)–(d)] Tension responses to a transverse (a) or longitudinal (c) force dipole applied on
the a bond (black arrows). The color scheme showing t‖, t⊥ is the same as the one used in Fig. 4. (b) and (d) are zoomed-in views near the bond
in (a) and (c) respectively. [(e) and (f)] Spatial decay of tension responses for the two force dipoles in (a) and (c) respectively. (g) Distribution
of minimum dipole stiffness κmin

b for systems with different preparation cooling rates. System size is N = 2916. The distribution is averaged
over 10 samples for each cooling rate. (h) Spatial distribution of κmin

b on bonds for a configuration of system size N = 2916 and preparation
cooling rate 	 = 5 × 10−6 ε/(kBτ0). Bonds with soft κmin

b are thicker and more opaque. (i) Pretension tb,p on bonds for the same configuration
in (h).

V. DISCUSSION

Through this paper, we have developed a set of mathe-
matical tools to investigate elasticity of prestressed discrete
networks, which allows prestress to vary independently from
the bond or contact configuration, which is particularly im-
portant for nonconservative systems, offering new insight
into the mechanical response of amorphous solids and other
prestressed structures such as tensegrity metamaterials and
robotics.

Our method starts from the geometry of a mechanical
network. By temporarily treating it as stress-free, we can
calculate the self stress the network can carry. The prestress
lies in the linear space formed by all states of self stress
of the stress-free network [Eq. (13)]. While the actual pre-
stress in a conservative system is uniquely determined by
the interaction potentials and the geometry, the prestress in

nonconservative systems can change—as long as it stays in
this linear space—without breaking force balance or chang-
ing the configuration of the network. We then introduce a
new equilibrium-compatibility matrix decomposition for the
network with prestress, without assuming conservative me-
chanics, which can be conveniently and efficiently used to
compute the mechanical response of the prestressed network.

In particular, we not only characterize how prestress affects
vibrational modes, both stabilizing soft modes and intro-
ducing a new class of ZMs (type B, which appear due to
competing positive and negative terms in the energy), but
also reveal its profound role on how the mechanical network
carries additional stress. By analyzing prestressed SSSs of the
network, and projecting external load to this linear space, our
methods conveniently map how external stress transmits in
prestressed lattices and bond networks obtained from model
amorphous solids. We show a number of intriguing effects
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which are unique to prestressed networks, including the spa-
tial heterogeneity in the stress-response to homogeneous loads
even far from the rigidity transition, the power-law distri-
bution of the local stiffness and the isotropic nature of the
long-range stress response to local perturbations such as force
dipoles. In particular, our formulation allows the calculation
of responses to transverse dipoles, typically associated to mi-
croscopic rearrangements in amorphous solids. Moreover, we
show how nonconservative evolution of prestress can greatly
change the mechanical response of the network in intriguing
ways.

The ability to conveniently characterize mechanical re-
sponse of nonconservative systems of our theory offers a
new perspective to analyze the dynamics of amorphous solids
under strain. In real amorphous solids, from granular mat-
ter to colloids, particle-particle interactions are not simple
harmonic springs. Instead, they evolve under stress in non-
conservative and often unpredictable ways– - microfracturing,
crushing, sintering. This evolution is further complicated by
the role of the solvent, where contacts between particles can
be lubricated or frictional. Therefore stress distributions can
significantly change with little change in the configuration.
Our methods provide a convenient set of tools to examine how
the mechanical response of these amorphous materials may
evolve as the system explores an ensemble of states where
only internal stress is changed.

Prestress records the preparation history in amorphous
solids and has an important role in directing the mechanical
response beyond the linear regime. The implications of pre-
stress and preparation history, in fact, have been highlighted
with respect to the development of flow inhomogeneities upon
yielding [19] and in connection with the fundamental physics
mechanisms controlling brittle or ductile yielding phenomena
[18,20,51]. Our methods, therefore, have wider relevance as
they can be applied beyond the linear response to investi-
gate, through the SSSs characteristics, the role of prestress
in plasticity and yielding. The new tools discussed here can
potentially close the feedback loop between structure and
stress, opening a new pathway to study how amorphous solids
yield and solidify under external strain.

Finally, friction plays a central role in the complex behav-
iors of exotic rigid states emerging in granular matter and
dense suspensions, leading to fascinating phenomena from
shear jamming to discontinuous shear thickening [5,97–102].
Interestingly, friction also lives in the t⊥ channel of stress,
and a linear relation with e⊥ can also be assumed, hence
it would be a natural next step to include friction into the
SSSs description. However, the Coulomb threshold imposes
an upper limit to t⊥ that is not part of the methods developed
here. How the frictional and the prestress contributions to t⊥
interplay and affect the macroscopic dynamics of the material,
will be of great interest for future studies.
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APPENDIX A: SSSs FORMULATION FOR SHEAR
RESPONSE OF PRESTRESSED NETWORKS

1. Projection of a shear load to the SSSs linear space

When a mechanical network is subject to a shear load, the
resulting bond extensions and rotations can be written as the
sum of contributions from the affine shear field eaffine and the
nonaffine displacements C|ursp〉,

|e〉 = |eaffine〉 + C|ursp〉, (A1)

which is similar to Eq. (24) in the main text, but here we
include both the parallel and the perpendicular components
of e.

When force-balance is reached, net force on each particle
vanishes,

−| f 〉 = Q|t〉 = QK(|eaffine〉 + C|ursp〉) = 0. (A2)

This means that |t〉 = K(|eaffine〉 + C|ursp〉) must be a vector
that belongs to the null space of Q. Thus it can be written as
a linear combinations of the SSSs of the system.

To facilitate the discussion of this SSSs linear combination,
we define the following notations. Let {�t (1)

s , . . . , �t (NS )
s } be an

orthonormal basis of the null space of Q, and let PQ
s denote

the Nbd × NS matrix whose columns are �t (1)
s , . . . , �t (NS )

s , i.e.,
PQ

s = [�t (1)
s , . . . , �t (NS )

s ]. One can also define the Nbd × (Nbd −
NS) dimensional matrix PQ

r whose columns are an orthonor-
mal basis of the orthogonal compliment of the null space of
Q. Similarly, one can define the Nd × N0 matrix PC

s whose
columns are an orthonormal basis of the null space of C
(ZMs), and the Nd × (Nd − N0) matrix PC

r whose columns
are an orthonormal basis of the orthogonal compliment of the
null space of C. These matrices are represented as

PQ
s = [�t (1)

s , . . . , �t (NS )
s

]
, (A3)

PQ
r = [�t (1)

r , . . . , �t (Nbd−NS )
r

]
, (A4)

PC
s = [

�u (1)
s , . . . , �u (N0 )

s

]
, (A5)

PC
r = [

�u (1)
r , . . . , �u (Nd−N0 )

r

]
, (A6)

and they satisfy the following identities:(
PQ

s

)T · PQ
s = I(NS ), (A7)

(
PQ

r

)T · PQ
r = I(Nbd−NS ), (A8)

(
PC

s

)T · PC
s = I(N0 ), (A9)

(
PC

r

)T · PC
r = I(Nd−N0 ), (A10)

PQ
s · (

PQ
s

)T + PQ
r · (

PQ
r

)T = I(Nbd ), (A11)

PC
s · (

PC
s

)T + PC
r · (

PC
r

)T = I(Nd ), (A12)

where I(NS ) is an identity matrix of dimension NS, and other
definitions follows similarly.

As we discussed above, |t〉 is a linear combination of the
SSSs,

|t〉 =
NS∑
i

αi|tSSS, i〉 = PQ
s · �α, (A13)
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where �α are coefficients of the linear combination of |t〉 as the
SSSs.

Because the basis we use are orthonormal,

�α = (
PQ

s

)T |t〉 = (
PQ

s

)T
K(|eaffine〉 + C|ursp〉), (A14)

�0 = (
PQ

r

)T |t〉 = (
PQ

r

)T
K(|eaffine〉 + C|ursp〉), (A15)

inserting identity matrix [Eq. (A11)] into Eq. (A15) and using
the fact that

Q · PQ
s = �0,

we have

�0 = (
PQ

r

)T
K · [

PQ
s · (

PQ
s

)T +PQ
r · (

PQ
r

)T ] · (|eaffine〉+C|ursp〉)

= (
PQ

r

)T
K · [

PQ
s · (

PQ
s

)T · QT + PQ
r · (

PQ
r

)T · QT
] · |ursp〉

+ (
PQ

r

)T
K · [

PQ
s · (

PQ
s

)T + PQ
r · (

PQ
r

)T ] · |eaffine〉
= (

PQ
r

)T
K · PQ

r · (
PQ

r

)T · QT · |ursp〉 + (
PQ

r

)T
K

· [
PQ

s · (
PQ

s

)T + PQ
r · (

PQ
r

)T ] · |eaffine〉
= Krr

(
PQ

r

)T
QT · |ursp〉+

[
Krs

(
PQ

s

)T +Krr
(
PQ

r

)T ] · |eaffine〉
⇒ (

PQ
r

)T
QT · |ursp〉

= −(Krr )−1
[
Krs

(
PQ

s

)T + Krr
(
PQ

r

)T ] · |eaffine〉, (A16)

where we defined the decomposition of K into the null and
orthogonal compliment space as

K →
((

PQ
s

)T · K · PQ
s

(
PQ

s

)T · K · PQ
r(

PQ
r

)T · K · PQ
s

(
PQ

r

)T · K · PQ
r

)
=

(
Kss Ksr

Krs Krr

)

(A17)

and also used the fact that Krr is invertible.
The coefficients �α in Eq. (A14) can then be solved as

�α = (
PQ

s

)T
K · [

PQ
s · (

PQ
s

)T + PQ
r · (

PQ
r

)T ]
· (QT |ursp〉 + |eaffine〉)

= (
PQ

s

)T
K · PQ

r · (
PQ

r

)T · QT · |ursp〉
+ (

PQ
s

)T
K · [PQ

s · (
PQ

s

)T + PQ
r · (

PQ
r

)T
] · |eaffine〉

= Ksr
(
PQ

r

)T
QT · |ursp〉

+ [Kss
(
PQ

s

)T + Ksr
(
PQ

r

)T
] · |eaffine〉.

Plug in Eq. (A16) to eliminate ursp,

�α = Ksr{−(Krr )−1[Krs
(
PQ

s

)T + Krr
(
PQ

r

)T
] · |eaffine〉}

+ [Kss
(
PQ

s

)T + Ksr
(
PQ

r

)T
] · |eaffine〉

= {Ksr
(
PQ

r

)T + Kss
(
PQ

s

)T − Ksr (Krr )−1

× [Krs
(
PQ

s

)T + Krr
(
PQ

r

)T
]} · |eaffine〉

= [
Kss

(
PQ

s

)T − Ksr (Krr )−1Krs
(
PQ

s

)T ] · |eaffine〉
= [

Kss − Ksr (Krr )−1Krs
] · (

PQ
s

)T · |eaffine〉. (A18)

This can be further simplified by letting A = K−1 and
decompose A into the column-space and null-space of Q as

A →
((

PQ
s

)T · A · PQ
s

(
PQ

s

)T · A · PQ
r(

PQ
r

)T · A · PQ
s

(
PQ

r

)T · A · PQ
r

)
=

(
Ass Asr

Ars Arr

)
.

(A19)

One can see that

Kss · Ass + Ksr · Ars = Iss, (A20)

Krs · Ass + Krr · Ars = �0rs. (A21)

Right multiply by (Ass)−1 on both sides of two equations:

Kss + Ksr · Ars · (Ass)−1 = (Ass)−1, (A22)

Krs = −Krr · Ars · (Ass)−1. (A23)

Then,
Kss + Ksr · Ars · (Ass)−1 = (Ass)−1, (A24)

−(Krr )−1 · Krs = Ars · (Ass)−1. (A25)

Combining these two equations, we have

((K−1)ss)−1 = (Ass)−1 (A26)

= Kss − Ksr · (Krr )−1 · Krs. (A27)

As a result, �α is simplified to

�α = ((K−1)ss)−1 · (
PQ

s

)T · |eaffine〉 (A28)

and the tension response to this external shear is

|t〉 = PQ
s · ((K−1)ss)−1 · (

PQ
s

)T · |eaffine〉. (A29)

Note that this t includes both t‖ and t⊥, and this formulation
applies to other types of homogeneous strain, such as hydro-
static compression, as well.

2. Affine bond deformation in prestressed systems

In this section, we derive the eaffine field for any external
load represented by a strain tensor ε.

We start from the (affine) deformation gradient

�i j ≡ ∂Ri

∂R0, j
, (A30)

where the strain tensor ε = (�T � − I )/2. The affinely de-
formed positions of each particle are then

�R�,affine = � · �R�,0. (A31)

We can then use the formulation discussed in Sec. II [Eq.(5)]
to calculate the affine extensions/rotations e‖

b,affine, e⊥
b,affine for

each bond, which consist |eaffine〉.

APPENDIX B: DIPOLE STIFFNESS κ IN PRESTRESSED
SYSTEMS

When a pair of dipole forces is applied on a mechanical
network between two particles that belong to the same rigid
cluster, the network will show a linear response with tension
distributed on the bonds. In this Appendix, we derive the stress
field of a prestressed network in response to the force dipole,
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and obtain a computationally efficient formula that gives the
stiffness the system has against this force dipole.

1. Local dipole stiffness

As discussed in Sec. II F, the sum of the external force
dipole and the tension response, |tdipole〉 + |trsp〉, must be a SSS
of the prestressed network,

|tdipole〉 + |trsp〉 =
NSSS∑

i

αi|tSSS, i〉.

The coefficients αi are determined in the same way as dis-
cussed in Appendix A, just by replacing |eaff〉 with |b〉. As a
result

|tdipole〉 + |trsp〉 = PQ
s · ((K−1)ss)−1 · (

PQ
s

)T · |b〉.
We can thus use this in the expression for the dipole stiff-

ness [Eq. (32)], where the denominator is now

〈 fdipole|ursp〉 = −〈b|KC|ursp〉 = −〈b|trsp〉

= kb −
NSSS∑
i, j

〈b|tSSS,i〉[(K−1)ss]
−1〈tSSS, j |b〉, (B1)

where we used Eq. (29) and the fact that |trsp〉 = KC|ursp〉
(bond extension causes tension).

Therefore the dipole stiffness is

κb = 〈 fdipole| fdipole〉
〈 fdipole|ursp〉

= 〈b|KCQK|b〉

〈b|K|b〉 − 〈b|
NSSS∑
i, j

|tSSS,i〉[(K−1)ss]
−1〈tSSS, j |b〉

(B2)

= 2k2
b

kb −
NSSS∑
i, j

〈b|tSSS,i〉[(K−1)ss]
−1〈tSSS, j |b〉

,

where the factor of 2 in the last line comes from the fact that
fdipole involves two particles.

2. Nonlocal dipole stiffness

Besides applying the force dipole on an arbitrary existing
bond b in the system, one could also apply a force dipole
between two particles which are not connected. As we discuss
below, this pair of dipole introduces a new constraint into the
system.

Force balance with imposed force dipole | fdipole〉 can be
written as

0 = | fdipole〉 + | frsp〉 = | fdipole〉 − QKC|ursp〉, (B3)

where |ursp〉 indicates the particle displacements in response to
the force dipole as the system reaches force balance. Unlike
the local dipole case discussed above, here fdipole can not be
written as Q|tdipole〉 on an existing bond, as the two sites are
not connected. Instead, we can introduce an auxiliary bond
between the two sites that carry | fdipole〉. In this sense, a new
constraint and thus a new SSS is added to the system by the
auxiliary bond.

Here we introduce the new Q,C matrices after introducing
the auxiliary bond (which has zero spring constant so that it
will not induce tension responses) as

C̃ =
(
C
Ca

)
, Q̃ = (Q Qa), K̃ =

(
K

0

)
,

C̃ · |u〉 =
(|e〉

ea

)
, Q̃ ·

(|t〉
ta

)
= −| f 〉.

The dimension of the bond space is extended with one addi-
tional component from the auxiliary bond indexed as a.

Now the force-balanced total tension can be written as

|t̃〉 =
( |trsp〉

tdipole

)
=

(
KC|ursp〉

tdipole

)
= K̃C̃|ursp〉 + |t̃dipole〉, (B4)

where tdipole lives on the auxillary bond. This |t̃〉 satisfies force
balance and must be a SSS of the network with the auxillary
bond.

Similar to Appendix A, one can define PQ̃
s , PQ̃

r , PC̃
s , PQ̃

r to
the new matrices. We can then decompose the total tension
onto SSSs,

|t̃〉 =
NSSS∑

i

αi|tSSS, i〉 = PQ̃
s · �α,

where �α’s are coefficients of the linear combination of the
SSSs.

We can compute the tension in a similar way,(
PQ̃

s

)T |t̃〉 = �α,(
PQ̃

r

)T |t̃〉 = �0.

Thus

�0 = (
PQ̃

r

)T (
K̃C̃|ursp〉 + |t̃dipole〉

)
(B5)

= (
PQ̃

r

)T
K̃

(
PQ̃

r

(
PQ̃

r

)T + PQ̃
s

(
PQ̃

s

)T )
Q̃T |ursp〉 + (

PQ̃
r

)T |t̃dipole〉
(B6)

= (
PQ̃

r

)T
K̃PQ̃

r

(
PQ̃

r

)T
Q̃T |ursp〉 + (

PQ̃
r

)T |t̃dipole〉 (B7)

= K̃rr
(
PQ̃

r

)T
Q̃T |ursp〉 + (

PQ̃
r

)T |t̃dipole〉. (B8)

As a result,(
PQ̃

r

)T
Q̃T |ursp〉 = −(

K̃rr
)−1(

PQ̃
r

)T |t̃dipole〉. (B9)

Note that although the spring constant of the auxiliary bond
is 0, the matrix K̃rr is still invertible. This is because the
auxiliary bond is a redundant bond (otherwise the network
would yield, resulting in no stress in linear response), which
increases the dimension of the SSSs space and does not intro-
duce new vectors in the orthogonal compliment space. As a
result, K̃rr = Krr and is invertible.

This can be used to find the coefficients for the SSSs

�α = (
PQ̃

s

)T |t̃〉
= (

PQ̃
s

)T (
K̃C̃|ursp〉 + |t̃dipole〉

)
= K̃sr

(
PQ̃

r

)T
Q̃T |ursp〉 + (

PQ̃
s

)T |t̃dipole〉
= ((

PQ̃
s

)T − K̃sr
(
K̃rr

)−1(
PQ̃

r

)T )|t̃dipole〉, (B10)
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where in the last line we used Eq. (B9). These coefficients
gives the tension field in response to a nonlocal dipole.

We can then proceed to calculate the dipole stiffness. Ap-
plying PQ̃

r on both sides of Eq. (B9), we have the left-hand
side,

PQ̃
r

(
PQ̃

r

)T
Q̃T |u〉 = (

I − PQ̃
s

(
PQ̃

s

)T )
Q̃T |u〉 (B11)

= Q̃T |u〉 − PQ̃
s

(
Q̃ · PQ̃

s

)T |u〉 (B12)

= Q̃T |u〉. (B13)

Equaling it to the right-hand side, we have

Q̃T |u〉 = −PQ̃
r

(
K̃rr

)−1(
PQ̃

r

)T |t̃dipole〉, (B14)

expressing the displacement field as a function of the imposed
dipole.

One can then compute the nonlocal dipole stiffness κa as
(the force dipole | fdipole〉 = −Q̃|t̃dipole〉 ≡ −Q̃|a〉, where |a〉 is
the vector in the labeling space of bonds which has zeros in all
bonds and unity on the a-th component (the auxiliary bond),
and a spring constant of unity is added (which is only used

to represent the external force dipole, where the actual spring
constant of the auxillary bond regarding its contribution to the
network response is still 0 as discussed above),

κa = 〈 fdipole| fdipole〉
〈 fdipole|u〉 (B15)

= 〈t̃dipole|Q̃T Q̃|t̃dipole〉
−〈t̃dipole|Q̃T |u〉 (B16)

= 〈t̃dipole|Q̃T Q̃|t̃dipole〉
〈t̃dipole|PQ̃

r
(
K̃rr

)−1(
PQ̃

r
)T |t̃dipole〉

(B17)

= 〈a|Q̃T Q̃|a〉
〈a|PQ̃

r
(
K̃rr

)−1(
PQ̃

r
)T |a〉

(B18)

= 2

〈a|PQ̃
r

(
K̃rr

)−1(
PQ̃

r
)T |a〉

. (B19)

The local force dipole response is a special case of nonlocal
force dipole response. When considering local force dipoles,
the auxiliary bond a overlaps with bond b. One can show that
in this case, the nonlocal force dipole stiffness reduces to local
force dipole stiffness.

3. Minimum local dipole stiffness κb,min in prestressed systems

In this section, we derive the minimum dipole stiffness on any given bond b, which is the lowest with respect to the
combination of ‖ and ⊥ directions. To do this, we use (θ, φ) to denote the direction of the dipole forces, and the resulting
tdipole can be written as

|tdipole〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

cos θ

sin θ cos φ

sin θ sin φ
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ |b〉, (B20)

where we defined the new |b〉 vector for this case allowing arbitrary force directions. We can plug this |b〉 in Eq. (B2) to find the
dipole stiffness for any given (θ, φ) and represent the nontrivial term in κb as

ηb = 〈b| ·
NSSS∑
i, j

|tSSS,i〉[(K−1)ss]
−1〈tSSS, j | · |b〉 ≡ 〈b|P |b〉 (B21)

= (0 · · · cos θ sin θ cos φ sin θ sin φ · · · 0) · P ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

cos θ

sin θ cos φ

sin θ sin φ
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B22)

= (cos θ sin θ cos φ sin θ sin φ) · Pb ·
⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠, (B23)

where P represents the matrix in between |b〉 vectors in Eq. (B21) and Pb is the 3 × 3 part of P associated with bond b.
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Similarly,

〈b|KCQK|b〉 = (cos θ sin θ cos φ sin θ sin φ) · [KCQK]b ·
⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠,

〈b|K|b〉 = (cos θ sin θ cos φ sin θ sin φ) · [K]b ·
⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠,

where [KCQK]b and [K]b are the 3 × 3 parts of KCQK and K associated with bond b, respectively.
As a result,

κb = 〈b|KCQK|b〉

〈b|K|b〉 − 〈b|
NSSS∑
i, j

|tSSS,i〉[(K−1)ss]
−1〈tSSS, j |b〉

=
(cos θ sin θ cos φ sin θ sin φ) · [KCQK]b ·

⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠

(cos θ sin θ cos φ sin θ sin φ) · {[K]b − Pb} ·
⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠

.

Minimizing κb for a single bond b,

κb,min = min
θ,φ

⎡
⎢⎢⎢⎢⎢⎢⎣

(cos θ sin θ cos φ sin θ sin φ) · [KCQK]b ·
⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠

(cos θ sin θ cos φ sin θ sin φ) · {[K]b − Pb} ·
⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

(B24)

is an optimization problem with respect to the two variables θ and φ. To solve for such optimization problems in our system, we
used the Nelder-Mead simplex algorithm as described in Ref. [103]. By doing this minimization, we obtain (θ, φ) as the softest
dipole stiffness direction for any bond b, which is typically transverse.
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