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Magnon-mediated spin entanglement in the strong-coupling regime
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We present that two spin defects (SDs) can be entangled through a magnon polariton mode, within the strong-
coupling regime. The magnon polariton modes are provided by an antiferromagnetic (AFM) MnF2 layer, where
the dispersion of the modes is characterized by the layer’s thickness. The macroscopic quantum electrodynamics
theory is used to describe the light-matter interactions, where the Green’s functions are its core elements. The
individual SD relaxes by exciting the magnon polariton modes, exhibiting high enhancement values of the Purcell
factor. When two SDs are considered, an oscillatory exchange of population probability is observed between
them, a sign of strong-coupling light-matter interactions, where the concurrence value is used to quantify the
level of entanglement. The thinner AF layers can potentially be used to promote interactions between multiple
spins through long-range coupling. This is a desired feature to fabricate high-demand applications in the fields
of quantum measurement and computation.
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I. INTRODUCTION

Light-matter interactions are weak, thus the need to store
light in a cavity to increase their interaction strength and
time. Antiferromagnetic (AFM) materials support magnon
polariton modes [1,2] at the gigahertz regime and provide
an attractive platform for developing quantum applications.
The magnon polariton modes are hybrid modes of the elec-
tromagnetic field and the spins of the AFM material; they
are confined perpendicularly to the magnet/insulator inter-
face and propagate along it. Nitrogen vacancy spin defects
(SDs) in diamond have been used to detect and interact
with magnon polariton modes. These modes are launched in
magnetic materials in different ways, such as by electrical
excitation, microwave excitation, through a scattering center,
or by changing the temperature gradient of the magnetic layer
[3–6]. The excited state population probability of the SDs
undergoes Rabi oscillations due to the excitation from the
magnon modes, controlled by the applied signal.

Yttrium iron garnet (YIG) structures, which support
magnon polariton modes, are placed in cavities, and when the
magnon-cavity resonances are matched, there is an avoided
crossing in the scattering (or transmission) spectrum attributed
to the light-magnon coupling [7]; although, the scattering (or
transmission) spectrum is not a clear way to define the strong-
coupling regime. Moreover, the magnon modes are bosonic
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modes, thus additional nonlinearities are needed to enhance
their coupling with light. Hybrid systems, composed from
YIG structures and superconducting qubits, both placed in a
cavity, operate in the strong-coupling regime [8–10], where
extremely low operation temperatures are needed.

The scheme we propose here is based on SDs interacting
with magnon polariton modes supported by an AFM layer
[11,12]. The SDs are used to store and process the informa-
tion, while the magnon polariton modes are used to transmit
the information between the SDs by enhancing the coupling
strength between them. The SD/AFM layer interaction is
within the strong-coupling regime, which appears as Rabi
oscillations in the population dynamics of the single SD, and
population exchange between a pair of SDs. Spin defects are
quantum impurities like color centers in diamond or hexago-
nal boron nitride, where their near field can excite and interact
with the magnon polariton modes. A deep understanding of
such process is important to develop practical quantum com-
puting and sensor applications.

The interaction of a single SD and a magnetic layer has
been investigated with an emphasis on its relaxation, or spin-
flip, rate for relaxometry measurements to detect the magnon
polariton modes [12–14] or for quantum information applica-
tions [15]. Moreover, magnon polariton modes can be tuned
by an applied electric field, and such changes can be probed
by SDs interacting with these modes [16]. Thus, SDs can be
used as sensors to improve dc electric field sensitivity. Also,
the relaxation of SDs above an YIG thin layer can be used for
sensing nanomechanical forces [17]. Finally, the relaxation
of the SDs can be used to probe superconductivity in two-
dimensional materials [18]. The entanglement between a pair
of SDs has been theoretically investigated considering dif-
ferent nanostructured environments, such as a ferromagnetic
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FIG. 1. Contour plot of the real part of the electromagnetic field
created by a pair of spin defects, which are entangled through
the magnon mode of the antiferromagnetic (AFM) layer. The total
SD/AFM layer system is embedded in air.

infinite [19] and finite [19,20] waveguide and a magnetic layer
[21–23].

All the above studies are based on density matrix calcu-
lations where the Markov approximation has been employed,
thus not including memory effects in the entanglement dy-
namics. Moreover, they only considered the relaxation (of a
single SD) and the exchange (between a pair of SDs) rates at
a single emission energy.

The Rabi oscillations in the relaxation of a single SD
and the population exchange between a pair of SDs have
been investigated when interacting through an YIG sphere
[24,25], but the structure and material parameters are difficult
to approach by the current experimental capabilities. More-
over, in Ref. [26] the Kerr magnons are used to promote the
entanglement of distant spin qubits, where the master equa-
tion approach is used.

In this paper, the macroscopic quantum electrodynamics
(QED) theory [27,28] is used to describe the interaction be-
tween a pair of SDs, placed above an AFM layer (Fig. 1).
The optical response of the AFM layer is given through
the frequency-dependent magnetic permeability μ2(ω) [see
Fig. 2(a)], which is connected with the spins’ microstructure
in the AFM layer. The macroscopic QED theory has been
used extensively to describe the relaxation process of quantum
systems with electric dipole, while its magnetic counterpart
is far less explored [29]. We present that the entanglement
dynamics between the two SDs is within the strong-coupling
regime, where the two SDs exchange energy coherently. In
our analysis the full spectrum to describe the SD/AFM layer
coupling is used, where a simple Lorentzian fit widely used is
not possible for our case. Moreover, we analyze the dispersion
relation of the magnon polariton modes and present how the
penetration depth and polariton wavelength influence to the
entanglement dynamics between two SDs.

In Sec. II we provide the material parameters of the MnF2

layer, the dispersion relation of the magnon polariton modes
for a single dielectric/AFM layer interface, the macroscopic
QED theory used to investigate the entanglement dynamics,
and the Green’s tensor formalism for the AFM layer. In
Sec. III we provide results and a discussion of them, pre-
senting the magnon polariton modes of the AFM layer and
introducing the penetration depth of the magnon mode. Then,
we present the spin-flip rate of a single SD and the exchange
rate between a pair of SDs. We discuss these rate varying
different parameters. The population dynamics of a single

FIG. 2. (a) Real and imaginary parts of the magnetic permeabil-
ity for the antiferromagnetic MnF2 material; the colored area defines
the energy span that Re[μ2x (ω)] < 0. (b) Real and imaginary parts
of the magnon polariton mode of an AFM/homogeneous dielectric
materials interface.

SD and the population probability exchange between a pair
of SDs is presented. For the pair of SDs the entanglement
dynamics is presented. Finally, Sec. IV is kept for the conclu-
sions and discussion of the future directions of our research.

II. MATERIAL PARAMETERS AND
THEORETICAL MODEL

A. Magnetic permeability

We focus on an AFM material with uniaxial or easy-axis
anisotropy along the z direction, with a rutile crystal struc-
ture, a body-centered tetragonal lattice where the magnetic
ions occupy the corner, and body-centered positions [30]. In
the absence of an external field the spins are arranged in
two oppositely directed sublattices, pointing along the easy
or c axis. The magnetic properties are described by a spin
Hamiltonian consisting of the exchange coupling between
nearest neighbors and magnetic anisotropy contributions [31].

043180-2



MAGNON-MEDIATED SPIN ENTANGLEMENT IN THE … PHYSICAL REVIEW RESEARCH 4, 043180 (2022)

The equation of motion of the spin operators is used to de-
fine the magnetization components which are connected with
the magnetic permeability that describes the macroscopic re-
sponse of the AFM layer.

Here we focus on MnF2, which is a well-studied ma-
terial where spin standing waves have been experimentally
observed [1,32,33] and we consider its optical response at
4.2 K. The electromagnetic response of the AFM layer is
given by the magnetic permeability μ2(ω), which is described
by a Lorentz oscillator model and it is diagonal and uniaxial
μ2(ω) = diag(μ2x(ω), μ2y(ω), μ2z ). In the absence of an ex-
ternal magnetizing field, the diagonal elements are given by

μ2x(ω) = μ2y(ω) = 1 + 2μ0gBAMS

ω2
0 − (ω + iκ )2

, μ2z = 1, (1)

where BA is the anisotropy field, MS is the sublattice
magnetization, g is the gyromagnetic ratio, and κ is a phe-
nomenological damping parameter. In the approximation of
low losses, the resonance frequency ω0 is given by the expres-
sion ω0 = γ

√
2BABE + B2

A = 1.1 meV/h̄ (λ0 = 1.117 mm),
where BE is the exchange field that defines the magnetic field
needed to invert neighbor spin pairs and γ is the gyromag-
netic ratio. The operation temperature is significantly higher
than the millikelvin temperature that the quantum computers,
based on superconducting qubits, operate on.

The material losses of the MnF2 are connected with the
Im[μ2x(ω)] and in Fig. 2(a) we observe that at h̄ω0 the high-
est loss is observed; the real part of μ2x(ω) is connected
with the dispersion of the material and the energy span at
which the magnon polariton mode is supported is defined
by Re[μ2x(ω)] < 0, which is given by the colored area in
Fig. 2(a).

B. Single dielectric/AFM interface

It is didactic to first consider the dispersion relation of an
AFM/nonmagnetic dielectric single interface, which is given

by kMP = ω
c

√
μ1μ2x

μ1+μ2x
, where μ2x is given by Eq. (1), and is

plotted in Fig. 2(b). We observe that the magnon polariton
mode, long-range ordered spin waves of the AFM material, is
excited when Re[(μ2x(ω)] < 0.

We note that the highest magnon wave vector value of
Re(kMP ) = 2.2 × 10−5 nm−1 is achieved at energy of h̄ωMP =
1.114 meV where Re(μ2x(ωMP )) = −μ1 = −1 to fulfill the
polariton condition. For comparison, the free-space wave
vector for the magnon polariton energy h̄ωMP is ωMP/c =
5.6 × 10−6 nm−1. Thus, the light line is close to the y axis of
Fig. 2(b), away from the magnon polariton light. That means
that the magnon polariton modes cannot be excited by direct
light illumination. Moreover, we observe the polariton disper-
sion curve that bends back for energies above h̄ωMP due to the
material losses, which are connected with the Im[μ2x(ω)].

The magnon polariton modes are confined in the perpen-
dicular dimension in the AFM/nonmagnetic dielectric inter-
face, where kz =

√
k2

0 − k2
MP ∼ ikMP, considering the AFM

permeability μ2x = μ′
2x + iμ′′

2x, where for μ2x ∼ −|μ′
2x| �

−μ1 the magnon polariton wave vector is imaginary kz1 ∼
k′′

z = ik0μ1
√|μ′

2x|/|μ′
2x|, thus the out-of-plane electromag-

netic field away from the interface ∼exp(ikzz) is decaying.
This physical condition holds for the magnon polariton modes
of the AFM layer.

C. Macroscopic quantum electrodynamics

The Zeeman Hamiltonian describes the interaction of
multiple SDs in a magnetic environment and is given by
[24,28,29]

Ĥ = Ĥ0 + Ĥint, (2)

where Ĥ0 is the free-space Hamiltonian of the SDs and the
bosonic field operator, given by

Ĥ0 =
∑

j

h̄ω1|↑ j〉〈↑ j | +
∫

d3r
∫

dω h̄ωf̂†
m(r, ω) · f̂m(r, ω),

(3)
where the summation is over the multiple SDs. The index j
gives the number of the SD that is in the state |↑〉, at position
r j , and all the other SDs are in state |↓〉; the SDs consid-
ered are identical with the same transition energy, h̄ω1, and
magnetic dipole moment. The bosonic field operator f̂m(r, ω)
describes all the electromagnetic modes available in the sys-
tem, including the magnon polariton modes.

The interaction between the multiple SDs, placed at r j ,
with the magnetic field B̂(r j ), considered at the position of
the relevant SD, is given by the Zeeman Hamiltonian,

Ĥint = −
∑

j

μ̂ j · B̂ j (r j ), (4)

where μ̂ j = μBg
h̄ Ŝ j , μB is the Bohr magnetron and Ŝ j = h̄

2 σ̂ j

is the spin angular momentum operator, g 
 2.000 02 is the
spectroscopic splitting factor, and μ̂ j = gμB/2[σ̂x, σ̂y, σ̂z] j is
the transition magnetic dipole moment of the j SD.

Due to the form of the transition dipole moment μ̂ j , there
are no z magnetic transitions for the SDs. So, in the rest of
the paper we focus on x-oriented transition dipole moments,
where for the j SD have the form μ̂ j = μBg/2[|↓ j〉〈↑ j | +
H.c.] [2,34–36]. We consider one of the SDs to be excited
above an AFM layer of thickness D; then it can relax to the
ground state by emitting a photon or exciting the magnon
polariton mode, indicated by the spin-flip rate of the SD. If
there is nearby a second SD interacting with the excited SD,
then an exchange of population through the magnon polariton
mode can be observed.

The magnetic field operator is given by the expression [37]

B̂(r, ω) = μ0

∫
d3r′{∇r × G(r′, r, ω)} · {∇r′ × M̂N (r′, ω)},

(5)
where M̂N (r, ω) is the Langevin noise magnetization op-
erator that accounts for the lossy AFM layer [27]. The
form of M̂N (r, ω) is connected with the imaginary part of
the magnetic permeability Im[μ(r, ω)] that describes the
electromagnetic response of the AFM material [38]. The mag-
netization is given in terms of the bosonic vector field f̂m(r, ω)
through the equation

MN (r, ω) =
√

− h̄k0

π
Imμ(r, ω)−1 f̂m(r, ω), (6)
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where k0 = ω/c, G(r′, r, ω) is the Green’s tensor, a 3 × 3 ma-
trix with Green’s function entries; in the end of this section we
present how to calculate this quantity for an AFM layer.

To describe the light-matter interactions in the time do-
main, we start by considering a single SD, j = 1, and placed
at r1, in the one-state excitation [39]

|ψ (t )〉 = c1(t )e−iω1t |↑, 0r1,ω〉

+
∫

dr
∫

dωC(r, ω, t )e−iωt |↓, 1r,ω〉, (7)

where |c1|2 is the probability for the SD to be at the excited
state and |C(r, ω, t )|2 is the spatial probability distribution of
the electromagnetic modes. From the Schrödinger equation,
we focus on the expression for the excited state probability of
the SD,

dc1(t )

dt
= iμ0

∫
dr′

∫
dω

√
− h̄k0

π
Imμ(r′, ω)−1

× C(r′, ω, t )e−i(ω−ω1 )tI(r′, r1, ω), (8)

where I(r2, r1, ω) = ∇1 × ∇2 × G(r2, r1, ω) is a tensor that
gives the electromagnetic response of the AFM layer at posi-
tion r2 to a magnetic dipole excitation at position r1. For the
field probability density

dC(r, ω, t )

dt
= −i

√
− h̄

μ0π
Imμ(r, ω)−1

× c1(t )ei(ω−ω1 )tI∗(r, r1, ω), (9)

which we formally integrate and get the expression

C(r, ω, t ) = iμ0

√
− h̄

μ0π
Imμ(r, ω)−1I∗(r, r1, ω)

×
∫ t

0
dt ′c1(t ′)ei(ω−ω1 )t ′

, (10)

which we plug into (8) to extract the integrodifferential equa-
tion for the population dynamics of the excited state of the
SD:

dc1(t )

dt
= i

∫ t

0
K (t − t ′)c1(t ′)dt ′, (11)

where the kernel of the equation is given by

K (τ ) = ieiω1τ

∫ ∞

0
J (ω)e−iωτ dω (12)

and J (ω1, ω, r1) = 
B (ω1 )
2π


x(ω, r1) is the spectral density,
where h̄ω1 is the energy difference between the ground and
the excited states of the SD, 
B is the free-space spin-flip rate
of the SD, and 
x is the spin-flip rate in the presence of the
AFM layer and its full form is given in Sec. II D. The system
of two identical SDs, that are placed at r1 and r2, is described
by the state [40]

|ψ (t )〉 = c1(t )e−iω1t |↑1,↓2, 0r1,ω〉 + c2(t )

× e−iω1t |↓1,↑2, 0r2,ω〉 +
∫

dr
∫

dωC(r, ω, t )

× e−iωt |↓1,↓2, 1r,ω〉, (13)

where in |1, 2, field〉 the third entry describes the number of
electromagnetic excitations in the system, and the first and
second indices describe the ↑ or ↓ state of SDs 1 and 2,
respectively. After a few algebraic calculations, similar to the
case of a single SD discussed earlier, we extract the system of
integrodifferential equations,

dc1(t )

dt
= i

∫ t

0
K (t − t ′)c1(t ′)dt ′ + i

∫ t

0
K12(t − t ′)c2(t ′)dt ′,

(14a)

dc2(t )

dt
= i

∫ t

0
K12(t − t ′)c1(t ′)dt ′ + i

∫ t

0
K (t − t ′)c2(t ′)dt ′,

(14b)

where |ci(t )|2 (i = 1, 2) is the population density of the ex-
cited state of each SD.

The kernel K (τ ) of Eq. [14] describes the interaction of the
individual SDs with the AFM layer and is given by K (τ ) =
ieiω1τ

∫ ∞
0 J (r j, ω)/2πe−iωτ dω, j = 1, 2 for the position of

each SD; J = 1/[2π ]
B
̃x is the spectral density and has the
same value for both SDs because they are placed at the same
distance above the AFM layer.

The interaction between two SDs is given by the kernel
K12(τ ) = ieiω1τ

∫ ∞
0 J12(r1, r2, ω)/2πe−iωτ dω, where J12 =

1/[2π ]
B
̃12
x is the exchange energy rate between the two

SDs, respectively. In this paper we consider SDs that are
identical, with the same transition energy h̄ω1 and are placed
at the same distance zSD above the AFM layer of thickness D
at an in-plane distance ρ.

D. Green’s tensor formalism for an antiferromagnetic layer

The Green’s tensor satisfies the Helmholtz equation,

∇ × 1

μ(r1, ω)
∇ × G(r2, r1, ω) − ω2

c2
ε(r1, ω)G(r2, r1, ω)

= δ(r2 − r1), (15)

where μ(r1, ω) is the magnetic permeability and ε(r1, ω) is
the dielectric permittivity of the media the SD is embedded
within. The method of scattering superposition is used to
calculate the Green’s tensor G(r2, s1, ω), where it splits into
two parts:

G(r2, r1, ω) = Gh(r2, r1, ω) + Gs(r2, r1, ω), (16)

Gh(r1, r2, ω) is the homogeneous part that accounts for direct
interaction between the source and target point at r1 and r2,
respectively, and is nonzero when both points are in the same
media. Gs(r2, r1, ω) is the scattering part, is always present,
and accounts for the multiple reflections and transmissions
taking place at the interfaces.

The general form of the scattering part of the Green’s
tensor has the form

Gs(ri, rj, ω) = i

8π2

∫
d2kρ

1

kz jk2
ρ

∑
T

R±(i j)±
T T(kρ,±kzi, ri)

⊗ T∗(kρ,±kz j, rj); (17)

a summation is implied for each pair of ± indices.
These indices show the direction of propagation of the
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electromagnetic modes, the first index for the target point and
the second for the position of the excitation source. Also the
summation over T is over the M and N modes which are
connected with the transverse electric and transverse magnetic
modes, respectively.

We focus on the case in which the SDs are placed above
an AFM layer, of thickness D, embedded in a homogeneous
nonmagnetic, μ1 = 1, dielectric media with dielectric permit-
tivity ε1 = 1, free space. The boundary conditions imposed
on the system of multilayers are the continuity condition and
the radiation condition. The two conditions are imposed to the
two interfaces z1 = D and z2 = 0,

ẑ × [G(i+1,1)(r2, r1, ω) − G(i,1)(r2, r1, ω)]|z=zi = 0,

(18a)

ẑ ×
[

1

μi+1
∇ × G(i+1,1)(r2, r1, ω)

− 1

μi
∇ × G(i,1)(r2, r1, ω)

]∣∣∣∣z=zi = 0, (18b)

with i = 1, 2 denoting the upper and lower interfaces and
μi the magnetic permeability tensor of each medium.
The transverse electric and magnetic modes are given
by M(k, r) = ik × ẑeik·r and N(k, r) = i 1

k k × k × ẑeik·r, re-
spectively. Where k = (kρ, kz ) is the total wave vector, kρ =
ikx + jky is the in-plane wave vector and kz is the out-of-plane
wave vector.

By applying the boundary equations at the z = 0 and z = D
interfaces, defined by an AFM layer with thickness D placed
in a homogeneous dielectric environment, an inhomogeneous
system of four equations is extracted, which has four un-
known quantities, the generalized Ri1

M and Ri1
N coefficients, for

i = 1, 2, 3. These coefficients uniquely determine the prob-
lem under consideration through the exact knowledge of the
scattering part of the Green’s tensor Gs(r2, r1, ω). In order to
find the form of the generalized coefficients, a matrix equa-
tion system is solved for the transverse electric and transverse
magnetic modes,

�M(N ) · RM(N ) = V M(N ), (19)

where �M(N ) are the characteristic matrices of the system of
equations from the boundary conditions at the two interfaces.
RM(N ) are the columns of the generalized reflection coeffi-
cients and V M(N ) are the free term vectors whose elements
are given by the homogeneous part of the Green’s tensor.

RM =

⎛
⎜⎜⎜⎜⎜⎝

R+(11)−
M

R+(21)−
M

R−(21)−
M

R−(31)−
M

⎞
⎟⎟⎟⎟⎟⎠, RN =

⎛
⎜⎜⎜⎜⎜⎝

R+(11)−
N

R+(21)−
N

R−(21)−
N

R−(31)−
N

⎞
⎟⎟⎟⎟⎟⎠; (20)

the free-space terms are given by

V M =

⎛
⎜⎜⎜⎝

e−ikz1D

kz1

μ1
e−ikz1D

0
0

⎞
⎟⎟⎟⎠, V N =

⎛
⎜⎜⎜⎝

kz1

k1
e−ikz1D

− k1
μ1

e−ikz1D

0
0

⎞
⎟⎟⎟⎠, (21)

and the characteristic matrices have the form

�M =

⎛
⎜⎜⎜⎜⎝

eikz1D −eiko
z2D −e−iko

z2D 0
kz1

μ1
eikz1D − ko

z2

μ2x
eiko

z2D ko
z2

μ2x
e−iko

z2D 0

0 1 1 −1

0
ko

z2

μ2x
− ko

z2

μ2x

kz3

μ3

⎞
⎟⎟⎟⎟⎠, (22a)

�N =

⎛
⎜⎜⎜⎜⎜⎝

kz1

k1
eikz1D − ke

z2

k2
eike

z2D ke
z2

k2
e−ike

z2D 0
k1
μ1

eikz1D − k2
μ2x

eike
z2D − k2

μ2x
e−ike

z2D 0

0
ke

z2

k2
− ke

z2

k2

kz3

k3

0 k2
μ2x

k2
μ2x

− k3
μ3

⎞
⎟⎟⎟⎟⎟⎠,

(22b)

where kzi =
√

k2
i − k2

ρ , ki = ω/c
√

εiμi for i = 1, 3, and kρ

is the in-plane wave vector. Within the AFM layer ordi-
nary and extraordinary modes are allowed [1], where ko

z2 =√
k2

2 − k2
ρ and ke

z2 =
√

k2
2 − μ2x/μ2zk2

ρ , respectively, for k2 =
ω/c

√
ε2μ2z.

After the above analysis we can now calculate the spectral
densities connected with the spin-flip (for the single SD) and
exchange (between two SDs) rates through the knowledge
of the scattering part of the Green’s tensor. We remind the
reader that the Green’s tensor needs to be translated to the
I tensor through the expression I(r2, r1, ω) = ∇r2 × ∇r1 ×
G(r2, r1, ω); I gives the electromagnetic response of the ge-
ometry under consideration to a magnetic dipole excitation.
Considering a SD placed at r1 = (0, 0, zSD) distance above the
AFM layer, with a magnetic transition dipole moment along
x, the spin-flip rate is given by [37]


x(r1, ω)


B
= √

ε1μ1 + 6πc

ω
Im[Ixx(r1, r1, ω)], (23)

which equation is extracted using the linear fluctuation-
dissipation theorem, written in terms of the dyadic Green’s
tensor for the macroscopic quantum electrodynamics [27].
Through the relation 2πJ = 
B
x the normalized spectral
density is given by

2πJ (r1, ω)


B
= √

ε1μ1 + 3c

4ω
Im

[
i
∫ ∞

0
dkρ

kρk2
1

kz1

(
R+11−

N

− k2
z1

k2
1

R+11−
M

)
e2ikz1zSD

]
. (24)

Similarly the exchange rate between a pair of SDs, placed at
r1 = (0, 0, zSD) and r2 = (ρ, zSD), is given by

2πJ12(ω, r)


B

= 3c

2ω
Im

{
i
∫ ∞

0
dkρ

kρk2
1

kz1

[(
J1(kρρ)

kρρ
− J2(kρρ)

)
R+11−

N

− J1(kρρ)

kρρ

k2
z1

k2
1

R+11−
M

]
e2ikz1zSD

}
, (25)

where Ji(r), for i = 1, 2, are the Bessel functions, and ρ and
kρ are the in-plane distance between the two SDs and the
in-plane wave vector, respectively. 
B is the reference spin-

flip rate of the individual SD, 
B = μ0
μ2

Bg2
s

3π h̄
ω3

c3 , where μ0μ
2
B

h̄ =
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FIG. 3. Dispersion relation ω(kMP) of the antiferromagnetic layer
considering two different thicknesses (a) 10 nm and (b) 100 nm.
The dashed lines define the kρ = 0.05 nm−1 connected with the
penetration depth of 10 nm.

1.025 nm
ns and gs 
 2 [24]. The unit of 
B is [
B] = ns−1 nm−2.

Here R+11−
N (M ) are the generalized Fresnel coefficients, which can

be calculated through Eq. (19).

III. RESULTS AND DISCUSSION

In Figs. 3(a) and 3(b) the dispersion relation ω(kMP) of a
freestanding MnFe2 AFM layer is presented for two thick-
nesses: (a) 10 nm and (b) 100 nm. The contour plots of Fig. 3
present the normalized values of the integrand of the Green’s
tensor, Imag[dG(r, r, ω)/dkρ], for which an exact value is not
important to describe the physics governing the magnon po-
lariton modes; the magnon polariton ω(kMP) curve is given by
the black color. The width of the dispersion curve is connected
with the MnFe2 material loss h̄κ = 8.7 × 10−5 meV, Eq. (1).
The dispersion relation presents two branches: the symmetric
and antisymmetric transverse electric/magnetic modes. As
the thickness D of the AFM layer is increased, the two modes
overlap for smaller values of the in-plane wave vector, kρ ,
compared to the thinner one. The magnon polariton modes are

supported at energies above h̄ω0, where μ2x(ω) < 0. The dis-
persion relation curve of the magnon polariton modes is away
from the light line, thus they cannot be excited by direct light
illumination due to momentum mismatch. The near field of
the SD can efficiently excite the magnon polariton modes of
the AFM layer, when placed within the penetration depth δ

of the magnon polariton mode, δ = 1/Im(2kz ), and for kz =√
k2

0 − k2
MP 
 ikMP we get δ = 1/(2kMP), which ultimately

characterizes the interaction length between the SD/AFM
layer.

In Fig. 4 we present contour plots of the spin flip of a SD
and the exchange rate between a pair of SDs when interacting
through the AFM layer, where we vary the emission energy
and the position of the SDs. Two thicknesses are considered.
Figures 4(a), 4(c) and 4(e): D = 10 nm; Figs. 4(b), 4(d) and
4(f): D = 100 nm.

We start the discussion by focusing on the spin-flip rate of
a single SD [Figs. 4(a) and 4(b)]. We observe that for D =
10 nm there are two peaks in the J (r, ω) spectrum, while for
D = 100 nm there is only a single peak. This effect can be
explained with the help of the dispersion relation of Fig. 3;
for D = 10 nm the dispersion relation presents two branches
[Fig. 3(a)] for high values of the in-plane wave vectors kMP,
meaning that the two polariton modes are accessible for small
SD/AFM layer separations. While for D = 100 nm, the two
branches collapse to a single branch at smaller kMP values,
presenting a single peak in the spin-flip spectrum of the SD.
The penetration depth for a SD that is placed 10 nm away
from the AFM layer is connected with the wave-vector value
of kMP = 0.05 nm−1, which is shown by the dashed line in
Fig. 3, and the energies it crosses the ω(kMP) curve that give
the energy peaks of the J spectrum observed in Figs. 4(a) and
4(b).

A pair of SDs exchange energy with a rate J12(r1, r2, ω),
and in Figs. 4(c) and 4(d) contour plots are presented for
varying the transition energy of the SDs and the zSD SD/AFM
layer separation distance. In Fig. 4(c) the in-plane distance
between the SDs is 15 nm and we observe that J12 presents
multiple peaks and troughs. The reason for such behavior is
that for varying h̄ω the magnon polariton modes propagate
with different polariton wavelengths λMP = 2π/kMP along the
AFM layer, leading to the oscillatory features in Fig. 4(c),
where kMP is the magnon polariton wave vector presented in
Fig. 3. On the other hand, in Fig. 4(d) the separation distance
is 25 nm and we observe that for a given SD/AFM layer
separation there are less peaks and troughs concentrated close
to the transition energy of h̄ω = 1.11388 meV; again this ef-
fect is connected with the magnon polariton resonance energy
and the relevant wavelength. The thicker the AFM layer the
closer the magnon polariton dispersion relation to the single
AFM/dielectric interface [Fig. 2(b)]. Thus, as anticipated from
the comparison with plasmonic materials, the thicker AFM
layer behaves as a single interface geometry. The different
thicknesses of the AFM layer support confined modes with
different polariton wavelength; hence, we focus on separation
distances between the SDs that are connected with the highest
value of the interaction strength between them.

To further investigate the oscillatory behavior of the ex-
change rate J12 between a pair of SDs, we consider a
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FIG. 4. Contour plot of the spin-flip rate, J , of a single spin defect (SD) and the exchange interaction rate, J12, between a pair of SDs, placed
close to an antiferromagnetic (AFM) layer. We vary the emission energy and position of the SDs. Two different thicknesses are considered:
(a),(c),(e) 10 nm and (b),(d),(f) 100 nm, for the AFM layer. The lateral separation distance between the pair of SDs is (c) ρ = 15 nm and
(d) ρ = 25 nm. The emission energy is (e) h̄ω1 = 1.1135 meV and (f) h̄ω1 = 1.113 88 meV.

fixed transition energy for the SDs and vary the separation
distance from the AFM layer zSD and the in-plane separation
distance ρ. The transition energies of the SDs are (e) h̄ω1 =
1.1135m meV and (f) h̄ω1 = 1.113 88 meV. In Fig. 4(e) we
observe that as the in-plane separation ρ between the SDs
increases there are oscillations connected with the magnon
polariton propagating wavelength along the AFM layer, which
has a value λMP = 30 nm; at the same time as the separation
distance of the SDs from the AFM layers zSD simultaneously
increases the J12 value drops; this decrease is again connected
with the penetration depth of the magnon polariton mode.
For the thicker AFM layer, D = 100 nm, we again observe
that the exchange rate J12 presents an oscillatory behavior

with larger magnon polariton wavelength, λMP ∼ 100 nm,
meaning a larger distance between the maxima and minima
of J12. Thus, the SDs can interact over larger distances along
the AFM layer. Moreover, the thicker AFM layer supports
magnon polariton modes with higher penetration depth, al-
lowing SDs to interact over larger zSD.

To fully describe the interaction between a pair of SDs
the full spectra of the J (ω) and J12(ω) are needed in the set
of Eq. (14), although it is very common for these rates to
be described by using Lorentzian fittings close to resonance
peaks. From the spectra presented in Fig. 4 we clearly observe
that this method is not valid for our case, since J12 supports
multiple peaks and troughs accompanied with a sign change
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FIG. 5. (a) Spin-flip rate, J (ω), of a SD and exchange rate J12(ω) for a pair of SDs that are 10 nm placed above a 10 nm AFM layer.
(b) Population density of the excited state of a single SD. (c) Population probability of the excited states of a pair of SDs that are 15 nm apart
and (d) value of the concurrence between the SDs.

as well. Furthermore, J and J12 do not have a Lorentzian
profile. We consider a pair of SDs placed 10 nm away from
an AFM layer of thickness of 10 nm. The separation distance
between them, ρ = 15 nm, has been chosen because it is
connected with the highest |J12| 
 0.0004 MHz value for the
transition energy of h̄ω1 = 1.1135 meV, as can been seen in
Fig. 5(a); the quality factor of the magnon resonance mode
is ω1/�ω1 = 2700. The strong-coupling regime appears as a
coherent energy exchange between the SD and the AFM layer;
in Fig. 5(b) we present the excited state population dynamics
of a single SD where the characteristic Rabi oscillations are
observed, where a close to a sinusoidal profile can be seen.

To apply quantum computing processes using the SD/AFM
layer system we need to investigate the interaction between
a pair of SDs that are the main components of the CNOT

gate. Quantum computer systems surpass the capabilities of
the conventional computer systems used in our everyday life
for increasing problem sizes due to scaling, although it is
extremely challenging to develop such devices. In Fig. 5(c)
we consider the interaction between a pair of SDs which have
been initialized to the state |ψ (0)〉 = |↑1,↓2, {0}r,ω〉, where
the SD 1 is at the excited state and, as the time evolves, ex-
change population with SD 2 through the magnon mode of the
AFM layer. This effect can be clearly demonstrated through
the degree of entanglement between the two SDs presented by

the concurrence, which after the summation over the magnon
modes is given by C(t ) = 2|c1(t )c∗

2(t )|, where c1 and c2 are
given by Eqs.[14]; also check Appendix B [41,42]. The two
SDs are entangled when the quantum state of each cannot be
described independently of the state of the other; a completely
entangled state is left invariant under the spin-flip operation,
such that its projection to the initial state is 1, meaning the
highest value of the concurrence is C = 1 and the lowest is
C = 0. In Fig. 5(d) we observe that initially the two SDs
are disentangled, and due to the interaction with the magnon
mode of the AFM layer the C value increases, because the
SDs exchange population. The high value of entanglement is
persistent over long time spans reaching a value C = 0.4.

We now consider a thicker AFM layer, 100 nm, and in
Fig. 6(a) we present the spin flip J (ω) and exchange rate
J12(ω) of SDs placed 10 nm away from the AFM layer and
a separation distance of 25 nm. The transition energy of the
SDs is h̄ω1 = 1.113 88 meV and we observe that both rates
present a single peak value. Moreover, both rate values have
been increased one order of magnitude for the D = 100 nm
AFM thickness compared to the D = 10 nm; the reason is
that for the thicker AFM layer there is a stronger coupling
with the near field of the SDs. In Fig. 6(b) the population
of the excited state of a single SD presents Rabi oscillations
and the difference with the D = 10 nm is that the SD does
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FIG. 6. (a) Spectral density value of a spin defect that is placed above an antiferromagnetic layer, J (ω), for a single SD and J12(ω) for
a pair of SDs. (b) Population density of the excited state of the spin SD. (c) Population probability of the excited state of a pair of SDs and
(d) value of the concurrence between the SDs. The AFM layer thickness is 100 nm, the SD/AFM layer separation is 10 nm, and the separation
distance between them is 25 nm.

not fully relax to the ground state; this effect is attributed to
the stronger SD/AFM layer interaction. When we consider
the interaction between a pair of SDs, Fig. 6(c), we observe
that they exchange population probability, showing a clear
non-Markovian behavior. Again high entanglement between
a pair of SDs is observed between a pair of SDs which is
measured by the concurrence value in Fig. 6(d). Due to the
stronger interaction between a pair of SDs for D = 100 nm,
compared to D = 10 nm, the period of the oscillations is
reduced meaning that more oscillations are observed on the
same time span.

IV. CONCLUSIONS AND FUTURE WORK

We presented that the AFM MnF2 layer can be used as a
platform to achieve the strong light-matter interaction, where
entanglement between two SDs is presented. The SDs inter-
act through the magnon polariton modes supported by the
AFM layer. The properties of the magnon polariton modes are
characterized by the layer thickness, where the thicker AFM
layers resemble the single dielectric/AFM material interface.
Moreover, the magnon wavelength characterizes the interac-
tion between the two SDs, as can be seen from Fig. 4.

Starting from the single SD/AFM layer interaction, a
reversible dynamics is probed in the SD excited state popu-
lation, |c1|2, which is a sign that the SD/AFM layer system
operates in the strong-coupling regime. By placing a second
SD in the vicinity of an initially excited SD, population ex-
change is observed. The interaction between the two SDs
leads to a high degree of entanglement which is observed
through studying the concurrence value C(t ).

The SDs are important elements for quantum sensing and
computing applications. Thus, the exact theoretical model-
ing of their relaxation when placed close to an AFM layer
is important. We use experimentally measured quantities to
describe the electromagnetic response of the AFM layer.
Moreover, the propagation wavelength of the magnon polari-
ton mode of the thinner AFM layer can be used to potentially
couple multiple SDs over smaller distances.

In particular, the AFM layer of D = 10 nm thickness
presents a very interesting feature; the exchange rate J12

between a pair of SDs presents an oscillatory behavior, main-
taining the maximum absolute value over multiple oscillation
periods, three periods over 100 nm [see Fig. 4(e)], while for
the AFM layer of thickness D = 100 nm after one period the
coupling strength drops [see Fig. 4(f)]. Thus, the AFM layer
of D = 10 nm thickness can be used to solve the problem of

043180-9



KARANIKOLAS, KURODA, AND INOUE PHYSICAL REVIEW RESEARCH 4, 043180 (2022)

connectivity between multiple qubits, since each single SD
can be coupled to multiple SDs. This will be the next step of
our research.
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APPENDIX

1. Intermediate steps to calculate the two spin-defect dynamics

We apply the Schrödinger equation at state |ψ (t )〉,
Eq. (13), using the Hamiltonian of Eq. (2) and we extract the
following system of equations that describe the excited state
population of the two SDs:

dcl (t )

dt
= iμ0

∫
dr′

∫
dω

√
− h̄k0

π
Imμ(r′, ω)−1

×C(r′, ω, t )e−i(ω−ω1 )tI(r′, rl , ω), (A1)

for l = 1, 2 for each of the SDs. The field density probability
is given by the equation

dC(r, ω, t )

dt
= −i

√
− h̄

μ0π
Imμ(r, ω)−1

× [c1(t )ei(ω−ω1 )tI∗(r, r1, ω)

+ c2(t )ei(ω−ω1 )tI∗(r, r2, ω)]. (A2)

After a few algebraic calculations we extract the system of the
integrodifferential equations, Eq. (14) of the main part of the
paper.

2. Quantum entanglement between two spin defects

The single-photon interaction between a pair of SDs
is given by Eq. (13), where in |1, 2, field〉 the third en-
try describes the electromagnetic excitation in the system,
and the first and second indices describe the ↑ or ↓ state
of SDs 1 and 2, respectively. The density matrix of the
two SDs in the basis B = {|1〉 = |↑,↑〉, |2〉 = |↑,↓〉, |3〉 =
|↓,↑〉, |4〉 = |↓↓〉}, where again the first and second entries
describe the state of the two SDs. Then the density matrix has
the form

ρ̂ =

⎛
⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎠; (A3)

then we need to trace out the electromagnetic degrees
of freedom from Eq. (13) over the basis B, through the

expression

ρ̂A =
4∑

j=1

〈 j|B|ψ (t )〉〈ψ (t )|| j〉B, (A4)

then the reduced density matrix has the form

ρ̂A =

⎛
⎜⎜⎜⎝

0 0 0 0

0 |c1(t )|2 c1(t )c∗
2(t ) 0

0 c∗
1(t )c2(t ) |c1(t )|2 0

0 0 0 1 − |c1(t )|2 − |c2(t )|2

⎞
⎟⎟⎟⎠.

(A5)

The nondiagonal elements ρ23 = ρ∗
32 = c1(t )c∗

2(t ) describe
the interaction and the subsequent exchange of population
between the two SDs [41,42]. The level of entanglement can
be described through the value of the concurrence C. Here we
consider SD 1 to be initially excited; then the concurrence is
given by the expression

C(t ) = 2|c1(t )c∗
2(t )|. (A6)

The maximum possible entanglement between the two SDs
is achieved when C = 1 and the two SDs are completely
disentangled when C = 0.

3. Additional relations for the Green’s tensor formalism
of the antiferromagnetic layer

The

M(k, r) = ik × ẑeik·r, N(k, r) = i
1

k
k × k × ẑeik·r (A7)

modes of the Green’s tensor, Eq. (17), when inserted into the
boundary conditions, Eqs. (18), satisfy the relations

ẑ × M(k, r) = ikρeik·r, (A8a)

ẑ × N(k, r) = ±kz

k
ẑ × kρeik·r, (A8b)

ẑ × �μ−1∇ × M(k, r) = ±μ−1
x kzẑ × kρeik·r, (A8c)

ẑ × �μ−1∇ × N(k, r) = iμ−1
x kkρeik·r, (A8d)

where k = (kρ, kz ) and kρ = ikx + jky is the in-plane wave
vector. �μ is the magnetic permeability tensor, which for the
case considered here is a diagonal matrix and is expressed
as a vector; the AFM layer is the only magnetic material
considered in this geometry.

To translate the Green’s tensor G to the I tensor we use
the I(r, s, ω) = ∇r × ∇s × G(r, s, ω) expression, where the
relations

∇ × M(k, r) = kN(k, r), (A9a)

∇ × N(k, r) = kM(k, r) (A9b)

hold [37].
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