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We generalize the hidden-fermion family of neural network quantum states to encompass both continuous
and discrete degrees of freedom and solve the nuclear many-body Schrödinger equation in a systematically
improvable fashion. We demonstrate that adding hidden nucleons to the original Hilbert space considerably
augments the expressivity of the neural-network architecture compared to the Slater-Jastrow ansatz. The benefits
of explicitly encoding in the wave function point symmetries such as parity and timereversal are also discussed.
Leveraging on improved optimization methods and sampling techniques, the hidden-nucleon ansatz achieves an
accuracy comparable to the numericallyexact hyperspherical harmonic method in light nuclei and to the auxiliary
field diffusion Monte Carlo in 16O. Thanks to its polynomial scaling with the number of nucleons, this method
opens the way to highly-accurate quantum Monte Carlo studies of medium-mass nuclei.
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I. INTRODUCTION

Since the early 2000s, the combination of nuclear ef-
fective field theories (EFTs) and sophisticated many-body
methods has paved the way to a systematic description
of atomic nuclei that is well rooted in the underlying
theory of strong interactions [1]. In particular, numerical
methods based on single-particle basis expansions, such as
self-consistent Green’s function [2], the in-medium similarity-
renormalization group [3], and Coupled Cluster [4] have
achieved a formidable success in treating binding energies and
radii up to 208Pb [5] and have provided a plausible solution to
the quenching puzzle of betadecays [6]. Nevertheless, some
prominent challenges remain open. As a chief example, most
existing nuclear Hamiltonians cannot simultaneously describe
light nuclear systems and the equation of state of infinite
nucleonic matter [7,8]. Exhaustive tests of nuclear interactions
require many-body methods that are suitable to retain the
complexity of nuclear dynamics at short distances [9,10]. An
accurate description of the latter is also critical to reproduce
exclusive lepton-nucleus scattering cross sections [11–13],
for the calculation of neutrinoless double-beta decay matrix
elements [14], and for studying neutron-star matter in the
high-density regime [8,9,15].

Continuum quantum Monte Carlo (QMC) methods [16]
have no difficulties in treating short-range (or high-
momentum) components of the nuclear wave function,
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but are presently limited to light nuclei, with up to A = 12
nucleons. The primary reason preventing QMC calculations of
medium-mass and large nuclei is the onset of the fermion-sign
problem. Controlling it requires employing sophisticated
wavefunctions, whose calculation either scales exponentially
with the number of nucleons [17,18] or violates the factoriza-
tion theorem [19–21]. Therefore, extending QMC calculations
to medium-mass nuclei rests on our ability to develop wave
functions that capture the vast majority of nuclear correlations
while requiring computational time that scales polynomially
with A. Developing such wavefunctions is also important to
correctly evaluate observables that do not commute with the
Hamiltonian—e.g., spatial and momentum distributions, elec-
troweak transition, and responses—as their QMC estimates
strongly depend upon the quality of the wave-function ansatz.

After the earliest application to prototypical interacting
spins models [22], artificial neural networks (ANNs) have
proven to compactly and accurately represent the wave func-
tion of a variety of strongly interacting systems [23–25]. The
applicability of ANNs in solving the nuclear Schrödinger
equation in momentum space has been first demonstrated in
Ref. [26], where the groundstate of the deuteron is repro-
duced with remarkable accuracy by a single-layer ANN—see
Ref. [27] for a detailed uncertainty-quantification analysis.
Subsequently, an anti-symmetric coordinate-space ansatz de-
fined through the product between a permutation-invariant
ANNs Jastrow and a Slater determinant of single-particle
orbitals has been utilized in a variational Monte Carlo
(VMC) method to solve leading-order pionless-EFT Hamilto-
nians of A � 6 nuclei [28,29]. Detailed comparisons against
Green’s function Monte Carlo and the hyperspherical har-
monics approaches have validated the expressivity of this
ANN Slater-Jastrow (ANN-SJ) ansatz, but also highlighted its
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shortcomings, essentially due to the incorrect nodal surface of
the Slater determinant.

The authors of Ref. [30] have recently introduced a par-
ticularly expressive family of variational wave functions,
consisting of augmented Slater determinants involving “hid-
den” additional fermionic degrees of freedom. This family
of wave functions, which has proven to be universal for
fermionic lattice systems, has been utilized to study the Hub-
bard model on the square lattice. In this paper, we generalize
this approach to encompass both discrete and continuous de-
grees of freedom and solve the nuclear many-body problem in
a systematically-improvable fashion. We couple the “hidden
nucleons” wave function with the VMC method developed
in Refs. [28,29] to compute the ground-state energies of 3H,
3He, 4He, and 16O nuclei starting from the pionless-EFT
Hamiltonian of Ref. [31]. We note that 16O becomes the
largest nucleus studied with neural-network quantum states
so far. Both parity and time-reversal symmetries are directly
encoded in the variational state to appreciably improve the
optimization of the ANN’s parameters. The training is further
accelerated capitalizing on a novel version of the stochas-
tic reconfiguration [32] method, with a regularization based
on RMSProp algorithm [33]. Our results for 3H, 3He, and
4He nuclei are benchmarked against the numerically-exact
hyperspherical-harmonics (HH) method [34]. For the larger
16O nucleus, we compare the hidden-nucleon ground-state
energies and point-nucleon density with the ones computed
with the auxiliary-field diffusion Monte Carlo method [35].

This work is organized as follows. Section II provides
an overview of the nuclear Hamiltonian, the hidden-nucleon
wave function, and the optimization algorithm. In Sec. III
we discuss our results, comparing them with existing
hyperspherical-harmonics and QMC nuclear methods. Fi-
nally, in Sec. IV we state our conclusions and provide
perspectives on future developments.

II. METHODS

To a remarkably large extent, the dynamics of atomic nu-
clei can be modeled by nonrelativistic Hamiltonians of the
form

H = −
∑

i

∇2
i

2mN
+

∑
i< j

vi j +
∑

i< j<k

Vi jk, (1)

where vi j and Vi jk denote the nucleon-nucleon (NN)
and three-nucleon 3N potentials. In this work, following
Refs. [28,29], we employ NN and 3N forces derived at leading
order in a pionless-EFT expansion that consist of contact
terms between nucleons [36]. More specifically, we use the
leading-order NN potential “o” of Ref. [31] that is designed
to reproduce the np scattering lengths and effective radii in
S/T = 0/1 and 1/0 channels. We assume the electromagnetic
component of the NN potential to only include the Coulomb
repulsion between finite-size protons. The authors of Ref. [31]
explored different regulator values for the 3N force. Here
we take R3 = 1.0 fm because when used in conjunction with
model “o”, this value of R3 provides binding energies that are
in reasonably good agreement with experiments for various
closed-shell nuclei across the nuclear chart.

To fix the notation, we introduce R = {r1 . . . rA} and
S = {s1 . . . sA} to indicate the set of single-particle spatial
three-dimensional coordinates and the zprojection of the spin-
isospin degrees of freedom si = {sz

i , t z
i } of the A nucleons

comprising a given nucleus. To automatically remove spurious
center of mass contributions from all observables [37], in our
calculations we employ intrinsic spatial coordinates, defined
by ri → ri − RCM, with RCM being the center of mass coor-
dinate.

A. Hidden-nucleon wave function

In Ref. [30] the “hidden-fermion” approach has been suc-
cessfully applied to interacting fermionic hamiltonians with
discrete degrees of freedom. To model the ground-state wave
functions of atomic nuclei we introduce a “hidden-nucleon”
(HN) ansatz that is specifically designed to encompass con-
tinuous and discrete coordinates. In addition to the visible
coordinates R, S, the Hilbert space also contains fictitious
degrees of freedom for the Ah hidden nucleons, which are
in turn functions of the visible ones (Rh, Sh) = f (R, S). The
amplitudes of the hidden-nucleons wave function ansatz in the
R, S basis are schematically given by

�HN (R, S) ≡ det

[
φv (R, S) φv (Rh, Sh)
χh(R, S) χh(Rh, Sh)

]
. (2)

In the above equation, φv (R, S) denotes the A×A matrix repre-
senting visible single-particle orbitals computed on the visible
coordinates—this would be the only component of the wave
function in a Hartree-Fock description of the nucleus. Note
that, in contrast with Ref. [30], the columns of our matrix
denote different particles, while rows refer to different states.
The Ah×Ah matrix χh(Rh, Sh) yields the amplitudes of hidden
orbitals evaluated on hidden coordinates. Finally, χh(R, S)
and φv (Rh, Sh) are Ah×A and A×Ah matrices that provide the
amplitudes of hidden orbitals on visible coordinates and those
of visible orbitals on hidden coordinates, respectively.

In the limit Ah = 1, χh(R, S) = 0, and φv (Rh, Sh) = 0 we
recover the usual Slater-Jastrow formulation, which can be
thereby interpreted as a limit of the hidden-nucleon ansatz.
If the function f is permutation invariant, it is immediate to
prove that �HN (R, S) is anti-symmetric under the exchange of
two-particles coordinates. The authors of Ref. [30] provided
a mathematical proof of the expressivity of the hidden-
fermion wave function for discrete degrees of freedom, such
as discrete orbitals or spatial coordinates, provided that the
functions χh and f are general. In order to bypass the combi-
natorial nature of the function f , we directly parametrize each
column “i” of φv (Rh, Sh) and χh(Rh, Sh) in terms of indepen-
dent, real-valued, permutation-invariant neural networks as

φi
v (Rh, Sh) = eU

i
φ (R,S) tanh

[
V i

φ (R, S)
]
,

χ i
h(Rh, Sh) = eU

i
χ (R,S) tanh

[
V i

χ (R, S)
]
. (3)

As in Refs. [28,29,38], permutationinvariance is achieved by
expressing the functions U i

φ , V i
φ , U i

χ , and V i
χ in terms of the

Deep-Sets architectures [39,40]. A number of artificial neu-
ral network architectures have been developed to efficiently
represent permutation invariant functions, including 3D point
cloud [41–43] and attention-based methods [44–46]. In
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addition to satisfying the universal approximation theorem for
permutation-invariant functions, we found Deep-Sets to be a
practical choice for its simplicity and accurate enough for our
purposes. Taking pair coordinates as input of the Deep-Sets
instead of single-particle ones was found to accelerate the
training when the sum pooling is used [29]. Here, we achieve
similar performances with single-particle inputs employing
the logsumexp pooling

F (R, S) = ρF

[
log

(∑
i

eφF (ri,si )

)]
. (4)

Both φF and ρF are dense feed-forward neural networks,
comprised of two hidden layers with 16 nodes each. The latent
space, i.e., the size of the output of φF and the input of ρF , is
16-dimensional. The output layers of ρF contain A nodes for
F = U i

φ and F = V i
φ, and Ah nodes for F = U i

χ and F = V i
χ .

The single-particle orbitals defining φv (R, S) and χh(R, S)
are represented by dense feed-forward neural networks that
take as input the single particle coordinates of the nucleons.
They are both comprised of two hidden layers with 10 nodes
each, while their outputs are onedimensional with linear acti-
vation functions.

To gauge the optimal number of hyperparameters, we an-
alyzed the convergence of the 4He ground-state energy as
obtained with a single hidden-nucleon ansatz. We found no
significant improvements by using more than two hidden lay-
ers with 16 nodes each for φF and ρF and two hidden layers
with 10 nodes each for φv and χv . On the other hand, using
less than 12 nodes for φF and ρF and less than 8 nodes for φv

and χv worsen the energy of 4He by about 0.5 MeV.
The hyperbolic tangent is the activation function chosen

for the hidden layers of all the dense feed-forward neural
networks used in this work. We tried alternative differentiable
functions, such as Softplus [47] and GELU [48], without
finding appreciable differences. Note that our choices are
restricted to differentiable activation functions because the
calculation of the kinetic energy requires evaluating their sec-
ond derivatives.

B. Symmetries and sampling

In this work, we enforce pointsymmetries, such as par-
ity and time reversal, into the hidden nucleon ansatz. Since
all the atomic nuclei considered in this work have ground-
states with positive parity, we can construct such variational
states by

�P
HN (R, S) ≡ �HN (R, S) + �HN (−R, S). (5)

For even-even nuclei, such as 4He and 16O, we can addition-
ally enforce time-reversal symmetry

�PT
HN (R, S) ≡ �P

HN (R, S) + �P
HN (R, θS), (6)

where θS is obtained by applying the operator −iσy to all
single-particle spinors [49]. Note that no complex conjugate
operation is required in the above definition since �P

HN (R, S)
is a real-valued function. As discussed in Sec. III, enforc-
ing pointsymmetries considerably accelerates the training and
augments the expressivity of the ANN for a fixed number
of hyperparameters. In principle, additional pointsymmetries,

such as “signature”, and “simplex” [50], can be imposed in
a similar fashion as Eqs. (5) and (6). Their impact on ANN
quantum states will be investigated in future works.

The set of variational parameters p entering the ANN
variational state are optimized minimizing the expectation
value of the Hamiltonian E = 〈�|H |�〉/〈�|�〉. The 3A spa-
tial dimensional integrals and the spin-isospin summations
are evaluated in a stochastic fashion, using the Metropolis-
Hastings sampling algorithm discussed in the supplemental
material of Ref. [28]. It has to be noted that the hidden-
nucleon ansatz is completely general and does not prevent the
Metropolis-Hastings algorithm to sample nonphysical states.
To better elucidate this issue, consider a nucleus with a
given total isospin projection Tz. Even though nuclear in-
teractions are charge conserving, the hidden-nucleon ansatz
yields nonzero amplitudes for states S such that

∑
i t z

i �= Tz.
The latter are avoided by constraining the Metropolis walk
onto states with

∑
i t i

z = Tz, which is equivalent to multiplying
�HN (R, S) by the Kronecker Delta δ(

∑
i t i

z − Tz ). Similarly,
the LO pionless-EFT Hamiltonian of Eq. (1) does not contain
a tensor force and preserves the total spin projection on the
zaxis Sz. As a consequence, to prevent sampling nonphysical
states, we restrict the Metropolis walk to S with

∑
i sz

i = Sz. In
practice, this is achieved by starting the walk with a state that
satisfies the above requirements and sampling the new ones
by exchanging the spin and the isospin projections of two, not
necessarily different, pairs of nucleons.

C. Optimization

Given the neural-network architecture, and the sampling
procedure as described in the previous discussions, we fur-
ther need to specify a procedure to minimize the variational
energy and find the optimal parameters of the model wave
function. The stochastic-reconfiguration (SR) algorithm [32],
closely related to the natural gradient descent method [51]
in unsupervised learning, has proven to efficiently optimize
neural network quantum states for a variety of applications,
ranging from spin models [22,30,52] to periodic bosonic
systems [38] and atomic nuclei [28,29]. The variational pa-
rameters are updated as pt = pt−1 − ηS−1

t−1gt−1, where η is
the learning rate, S is the quantum Fisher-information matrix,
and g = ∂E/∂p is the gradient of the energy. The inversion
of matrix S is typically stabilized by adding a small positive
diagonal matrix S → S + εI , implying that all diagonal el-
ements are shifted by the same amount, thereby neglecting
potential order of magnitudes differences in the parameters’
changes [53]. To remedy this shortcoming, inspired by the
RMSProp method [33], we accumulate the exponentially-
decaying averages of the squared gradients

vt = βvt−1 + (1 − β )g2
t , (7)

and regularize the the Fisher-information matrix by S → S +
ε diag(

√
vt + 10−8). In the original formulation of the SR

algorithm, taking larger values of ε reduces the magnitude
of the parameters’ update and rotates it towards the stochas-
tic gradient descent direction. In our RMSProp version, the
regularization term rotates the update towards the RMSProp
direction, which typically yields faster training than the simple
stochastic gradient descent. Since the dimension of the Fisher
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FIG. 1. Convergence of the SR algorithm for 3He (upper panel)
and 3H (lower panel) with the original (blue solid circles) and
RMSProp-like (orange solid circles) diagonal shifts. The ANN-SJ
and the HH energies of Ref. [29] are displayed by the purple dashed
and solid green lines, respectively.

matrix scales quadratically with the number of variational
parameters, storing it in memory becomes unfeasible for a
nucleus as large as 16O. To overcome this limitation, as in
Ref. [54], we use the iterative conjugate-gradient method to
solve the linear system associated with the SR parameters’
update. Finally, the Adaptive Epsilon heuristic scheduler in-
troduced in Ref. [28] has been adopted to determine the best
value of the regularization parameter ε at each optimization
step.

III. RESULTS

We begin our analysis comparing the performances of
the original SR method with the version that includes the
RMSProp-inspired diagonal shift in the Fisher-information
matrix. In Fig. 1, we show the convergence of the ground-
state energy of 3He (upper panel) and 3H (lower panel) as
obtained with Ah = 3 hidden nucleons and the positive-parity
ansatz of Eq. (5). The orange solid circles, corresponding to
the energies obtained using the RMSProp-like regularization,
are noticeably closer to the numerically-exact HH result of
Ref. [28] than those obtained with the original version of
the SR algorithm, displayed by solid blue circles. The fact
that the SR-RMSProp estimates are less scattered that the

FIG. 2. Upper panel: 4He ground-state energy convergence with
the ansatz that conserves parity (blue solid circles) and parity plus
time reversal (orange solid circles). The ANN-SJ and the HH ground-
state energies of Ref. [29] are displayed by the purple dashed and
solid green lines, respectively. Lower panel: Convergence of the
parity-conserving ansatz utilizing a wider ANN than in the upper
panel.

SR ones is another indication of the better minima found by
the new version of the algorithm. Most notably, independent
of the particular regularization choice, both the SR and SR-
RMSProp energies are appreciably lower than the ANN-SJ
value reported in Ref. [29].

Because of its superior training performances with respect
to the original version of the algorithm, in the remain-
der of the paper we will only show results obtained with
the SR-RMSProp minimizer. The convergence of the 4He
ground-state energy computed with Ah = 4 hidden nucleons
is displayed in Fig. 2. The parity-conserving wave function
�P

HN (R, S) is outperformed by �PT
HN (R, S), which additionally

preserves the time-reversal symmetry. Both of them provide
significantly better energies than the original ANN-SJ model,
as they can improve the nodal surface of the single-particle
Slater determinant. More importantly, �PT

HN (R, S) provides a
variational energy that is consistent with the numerically-
exact HH estimate of Ref. [29]. It has to be noted that
�P

HN (R, S) should in principle converge to the exact energy,
even with Ah = 4 hidden nucleons, but it requires wider (or
deeper) ANN architectures. To prove this point, in the lower
panel of Fig. 2 we show the training of �P

HN (R, S) with Ah = 4
in which the number of nodes in the hidden layers in φF
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and ρF has been increased from 16 to 24. After about 4800
optimization steps, the parity-conserving ansatz yields ener-
gies that are consistent with the HH method. Nevertheless,
our results indicate that enforcing time-reversal symmetry
is effective in reducing the training time and augments the
expressivity of the hidden-nucleon ANN architecture.

Neural-network quantum states applications to nuclear sys-
tems have so far been limited to light nuclei, with up to A = 6
nucleons [26,28,29]. Here, we significantly extend the reach
of this method by computing the ground-state of 16O utilizing
the hidden-nucleon ansatz. In Ref. [31], the AFDMC method
has been employed to study this nucleus using as input the LO
pionless-EFT Hamiltonian of Eq. (1). The AFDMC trial wave
function takes the factorized form �T (R, S) ≡ 〈RS|F |〉. The
Slater determinant of single-particle orbitals (R, S) deter-
mines the long-range behavior of the wave function. The
correlation operator is expressed as

F =
⎛
⎝ ∏

i< j<k

F c
i jk

⎞
⎠(∏

i< j

F c
i j

)(
1 +

∑
i< j

F op
i j

)
. (8)

The spin-isospin independent three-body correlations F c
i jk act

on all triplets of nucleons. Similarly, the central two-body Jas-
trow F c

i j is applied to all nucleon pairs, while the spin-isospin
dependent term, F op

i j , appears in a linearized form [55]. This
approximation reduces the computational cost of evaluating
�T (R, S) from exponential to polynomial in A but makes
the trial wave function nonextensive: if the system is split
in two (or more) subsets of particles that are separated from
each other, the F does not factorize into a product of two
factors in such a way that only particles belonging to the
same subset are correlated. As a consequence, the correlation
operator of Eq. (8) becomes less effective for nuclei larger
than 16O, preventing the applicability of the AFDMC method
to medium-mass nuclei.

The AFDMC projects out the groundstate of the system
from the starting trial wave function performing an evolution
in imaginary time τ

|�0〉 ∝ lim
τ→∞ |�(τ )〉 = e−Hτ |�T 〉. (9)

The fermion-sign problem is mitigated by means of the
constrained-path approximation, which essentially limits the
imaginary-time propagation to regions where the propagated
and trial wave functions have a positive overlap [16]. Contrary
to the fixed-node approximation, the constrained-path approx-
imation does provide an upper bound to the true ground-state
energy of the system [56]. The accuracy of the trial wave
function is critical to reduce this bias, as the constrained-path
approximation becomes exact when the trial wave function
coincides with the groundstate one.

In Fig. 3, we display the ground-state energy of 16O as a
function of the number of hidden nucleons Ah for the parity
and timereversal conserving ansatz of Eq. (6). For compar-
ison, the VMC energy of 16O obtained with the correlation
operator of Eq. (8) is represented in Fig. 3 by the dashed
green line, while the shaded area is the Monte Carlo statistical
uncertainty. The solid horizontal line and the shaded area
indicate the constrained-path AFDMC energy and its statis-
tical uncertainty as listed in Ref. [31]. Already for Ah = 2,

FIG. 3. Ground-state energy of 16O as a function of the number
of hidden nucleons Ah (solid blue points). The VMC and AFDMC
energies—the latter taken from Ref. [31]—are shown by the green
dashed and orange solid lines. The shaded areas represent the Monte
Carlo statistical uncertainties.

the hidden-nucleon wave function matches the VMC value.
By further increasing Ah, the variational energy lowers until it
becomes consistent with the AFDMC value, within error bars,
demonstrating the accuracy of the hidden-nucleon ansatz even
in the p-shell region.

It has to be noted that the Authors of Ref. [57] showed that
the hidden-fermion wave function is a universal approximator
for fermionic systems with discrete degrees of freedom even
when a single hidden fermion is used (Ah = 1 in our case).
However, their proof relies on constructing lookup tables and
cannot directly be applied to continuous coordinates. On the
other hand, it can be shown that an augmented Slater de-
terminant containing Ah hidden states yields Ah-particle and
Ah-holes excitations of the original Hartree-Fock state. Hence,
we conjecture that when Ah � A, the hidden-nucleon ansatz
can also represent any fermionic wave function on the contin-
uum.

Unless a forward-walk propagation is used [58,59], within
diffusion Monte Carlo methods, expectation values of opera-
tors that do not commute with the Hamiltonian are typically
estimated at first order in perturbation theory as

〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉 � 2

〈�T |O|�(τ )〉
〈�T |�(τ )〉 − 〈�T |O|�T 〉

〈�T |�T 〉 . (10)

Hence, in addition to controlling the fermion-sign problem,
the accuracy of �T (R, S) is critical to evaluate observables
that do not commute with the Hamiltonian, such as density
distributions in coordinate and momentum space. In any case,
the extrapolated estimator is always biased in a quantity dif-
ficult to assess. On the other hand, neural-network quantum
states provide pure estimators and no extrapolations are re-
quired for computing expectations values of operator that do
not commute with the Hamiltonian.

One such operator is the point-nucleon density, which is
defined as

ρN (r) = 1

4πr2
〈�V |

∑
i

δ(r − |ri|)|�V 〉, (11)
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FIG. 4. Point nucleon density of 16O as obtained with the hidden
nucleon ansatz (solid blue circles) compared with the perturbatively-
corrected AFDMC estimates of Eq. (10).

where again, ri is the intrinsic spatial coordinate of the ith
nucleon.

In Fig. 4, we display the point-nucleon density of 16O
as obtained with Ah = 16 hidden nucleons, compared with
the AFDMC results, which are obtained in perturbation
theory as in Eq. (10). Remarkably, despite the lack of mean-
field information encoded in the hidden nucleon anstaz—the
single-particle orbitals are randomly-initialized feed-forward
neural networks—the training procedure yields a point-
nucleon density of 16O that is very close to the AFDMC one.
This excellent agreement confirms the accuracy of the hidden-
nucleon ansatz in modeling the wave functions of atomic
nuclei at both short and long distances.

IV. CONCLUSIONS

We have developed a h idden-nucleon, neural-network
ansatz suitable to solve the nuclear many-body Schrödinger
equation of a leading-order pionless-EFT Hamiltonian in a
systematically improvable fashion. To this aim, we extend the
hidden-fermion family of variational states to encompass both
continuous and discrete degrees of freedom, corresponding to
the spatial and spin-isospin coordinates of the nucleons. Point
symmetries such as parity and time reversal are built in the
neural-network wave function to augment its expressivity. We
have concurrently improved the stochastic-reconfiguration al-
gorithm by introducing a nonconstant diagonal regularization
inspired by the RMSProp optimization method.

We first gauge the hidden-nucleon wave function in 3H,
3He, and 4He nuclei, whose ground-state energies turn out in
excellent agreement with numerically exact hyperspherical-
hamonics results reported in Ref. [29]. In A = 3 nuclei, we
observe that the RMSProp-inspired diagonal shift consider-
ably accelerates the convergence of the training compared
to the default version of the SR method and adopt it for
all the subsequent calculations. We observe that enforcing
time-reversal symmetry noticeably accelerates the optimiza-
tion of the 4He ground-state wave function and improves the
expressivity of the neural-network ansatz for a fixed number
of variational parameters.

We then applied the hidden-nucleon architecture to study
the groundstate of 16O, the largest nuclear system yet com-
puted with neural-network quantum states. Even using only
two hidden nucleons, we are able to match the VMC energies
obtained with conventional spin-isospin dependent variational
wavefunctions. By further increasing Ah, the hidden-nucleon
architecture gains the capability to reproduce the AFDMC
constrained-path energy, thereby proving the expressivity of
this ansatz for continuous degrees of freedom.

In addition to the ground-state energy, the neural-network
architecture is capable of learning the single-particle density
of 16O, at both short and long distances. This is particularly
remarkable, as, in contrast with other QMC methods, the
hidden-nucleon ansatz is agnostic to the mean-field properties
of the specific nucleus of interest. Besides the Hamiltonian
of choice, the only information entering the calculation are
the number of protons and neutrons, the total spin, and its
point symmetries; the short- and long-range components of
the ground-state wave functions are learned by minimizing the
energy expectation value.

The hidden-nucleon ansatz provides a compact represen-
tation of nuclear wave function in terms of a relatively-small
number of variational parameters. For instance, the ground-
state wave function of 16O with Ah hidden nucleons is
completely determined by about 77,000 neural-network pa-
rameters. This is an order of magnitude smaller than the
number of coefficients required to represent the wave func-
tions by state-of-the-art nuclear many-body methods based on
a single-particle basis expansion, such as the no-core shell
model [60]. The wave functions computed in this work, as
well as the Google-JAX [61] program used to generate them,
are publicly available [62]. They can be readily used to com-
pute quantities of experimental interests, without the need of
training the ANN.

In principle, generalized backflow transformations similar
to those employed to model the groundstate of electronic
systems [24,25] can be used to augment the expressivity of the
hidden-nucleon architecture. We anticipate using them when
dealing with more sophisticated nuclear forces, characterized
by strong tensor components. Since the latter do not conserve
the total spin projection on the zaxis Sz, it may well be benefi-
cial to employ an over-complete spin basis, similar to the one
employed by the AFDMC method.

Finally, it has to be noted that the hidden-nucleon approach
exhibits a favorable polynomial scaling in computational time
with the number of nucleons. The calculation of the wave
function requires A3 operations, while evaluating the expec-
tation value of the spin-isospin dependent component of the
NN potential costs A5 operations. On the other hand, includ-
ing spin-isospin dependent 3N forces without resorting to
density-dependent approximations would make the method
to scale as A6. We envision treating medium-mass nuclei as
large as 40Ca by exploiting leadership class hybrid GPU/CPU
computers.
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