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Periodic driving of a quantum (or classical) many-body system can alter the system’s properties significantly
and therefore has emerged as a promising way to engineer exotic quantum phases, such as topological insulators
and discrete time crystals. A major limitation in such setups, is that generally interacting, driven systems will
heat up over time and lose the desired properties. Understanding the relevant timescales is thus an important
topic in the field and so far, there have only been a few approaches to determine heating times for a concrete
system quantitatively, and in a computationally efficient way. In this paper, we propose a new approach, based
on building the heating rate from microscopic processes, encoded in avoided level crossings of the Floquet
propagator. We develop a method able to resolve individual crossings and show how to construct the heating
rate based on these. The method is closely related to the Fermi golden rule approach for weak drives, but can
go beyond it, since it captures nonperturbative effects by construction. This enables our method to be applicable
in scenarios such as the heating time of discrete time crystals or frequency-dependent couplings, which are
very relevant for Floquet engineering, where previously no efficient methods for estimating heating times were
available.
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I. INTRODUCTION

Periodically driven classical and quantum systems (also
called Floquet systems, after the French mathematician Gas-
ton Floquet, in this context) have been studied since the birth
of those theories. In recent decades the study of periodically
driven quantum many-body systems (QMBS) (for which we
shall simply use the term Floquet systems hereafter) gathered
interest, due to theoretical and experimental developments
[1,2] including drive-assisted tunneling [3] leading to the
observation of dynamical localization in Bose-Einstein con-
densates in shaken optical lattices [4–6], the photovoltaic Hall
effect in graphene [7,8], the realization of topological mod-
els by engineering spin-orbit couplings and artificial gauge
fields [9–20], the simulation of lattice gauge theories [21],
and the observation of discrete time crystals [22–25]. Further
potential prospects include the realization of Hopf insula-
tors [26–28], Floquet engineering using trapped ions [29–31],
counter-diabatic driving through Floquet protocols [32], and
the creation of robust Hamiltonians [33].

All these developments rely on the insight, that a system
subject to a periodic drive can be described by an effective
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Hamiltonian, which may be related to the system Hamiltonian
and simply feature renormalized couplings, but may also be
completely different. However, there are strong arguments
indicating that for generic (ergodic) interacting QMBS the
periodic driving leads the system to heat up to infinite tem-
perature resulting in a featureless state at late times [34,35].
The only exceptions known so far are many body localized
systems, which are believed to resist heating to infinite tem-
perature [36–39] and an O(N ) model in the N → ∞ limit
[40]. While these arguments are not disputed in principle,
over time a number of numerical studies have observed and
reported absence of thermalization to infinite temperature in
clean systems, which was either attributed to dynamical lo-
calization phenomena [41,42] or threshold behavior [43–45],
seemingly challenging the heating to infinite temperature
paradigm.

Another major challenge is the actual determination of the
time it takes for a particular system of interest to heat up to
infinite temperature. This question is particularly important
for the Floquet engineering of, e.g., topological phases, where
the prethermal regime governed by the effective Hamiltonian
should be long enough to observe the transient stabiliza-
tion of interesting phases, well before the heating dynamics
takes over. Understanding the timescales in this setup has
thus gained attention in the last years and there has been
corresponding theoretical progress. Most significant perhaps
are proofs that the heating time is exponentially large, typi-
cally th ∝ exp(ω/J ) with some microscopic energy scale J ,
in the high-frequency regime ω � J (h̄ = 1 throughout the
paper). The proofs use different analytical techniques such
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as an analysis of the errors in linear response theory [46],
the Magnus expansion [47] or multiple rotating frame trans-
formations [48,49]. These approaches rely on bounds such
as Lieb-Robinson bounds [50,51] and can typically not be
used to obtain numerical estimates of the actual heating time
in a specific system. It is therefore of significant importance
to have an accurate, flexible, reliable and computationally
efficient method at disposal to predict the heating times in
driven quantum many body systems.

So far only relatively few quantitative analyses of heat-
ing times (not necessarily focusing specifically on heating
to infinite temperature) in Floquet systems have been per-
formed. Most rely on explicit and computationally expensive
real-time simulations of either sufficiently large finite-size
systems [44,52] or systems treated within truncated schemes
such as density matrix truncation [53], methods based on the
density matrix renormalization group [54,55], nonequilibrium
dynamical mean-field theory [56,57] or a Keldysh approach
[58]. For effectively weakly driven systems, the Fermi golden
rule (FGR) approach provides an accurate picture [59]. To our
best knowledge, the latter one is the only studied method for
generic systems, that is (significantly) computationally less
expensive than the real-time simulations and applicable to
generic systems but is restricted to effectively weak coupling.
Part of the reason for the reduced cost is, that it can ob-
tain accurate predictions from smaller systems than real-time
simulations. The problem in working with small systems, as
discussed in Refs. [34,42,60] and also in later parts of this
paper, is that the Hilbert space is too small to support heating
at large frequencies. This though does however not mean, that
the information about heating timescales is not yet contained
within small systems, as we will demonstrate here.

In this work, we analyze the appearance of avoided level
crossings in the eigenvalues of the Floquet propagator and
will be able to infer and quantitatively predict also very long
heating times. The significance of avoided crossings in Flo-
quet (and generally many-body) systems is well-known and
documented in [61–63], but to our best knowledge there have
not yet been efforts to resolve individual (as we will see often
very narrow) crossings systematically and to link them to the
heating rate.

The paper is structured as follows. In Sec. II, we introduce
some basic notions in Floquet theory necessary to follow
the arguments in further sections. In Sec. III, we review
some of the prior work centered around heating in Floquet
systems. In particular, we explain how heating rates show
in real-time simulations and how they are predicted using
the FGR. Our method of predicting heating rates, based on
avoided crossing spectroscopy, is described in Sec. IV, where
we also make the connection to the FGR for weak drives. In
Sec. V, we discuss in detail the application of our method
to a particular driven spin chain [44,45]. For this model, we
also identify certain commensurate parameter points, akin to
discrete time crystals, where the effective Hamiltonian can-
not be obtained by a perturbative expansion and show that
our method detects these features and is still applicable and
accurate. Finally, in Sec. VI, we use the driven spin chain
with frequency-dependent couplings, an important scenario
in Floquet engineering, to illustrate the applicability of our
method in this case as well. A different spin chain model

[52,53] with weakly broken spin inversion symmetry is dis-
cussed in Appendix F as a further illustration of the power of
our method.

II. ELEMENTS OF FLOQUET THEORY

Floquet theory is concerned with the study of time-periodic
quantum many body systems with Hamiltonian H (t ) with
period T = 2π/ω. A standard setup consists of an average
Hamiltonian H0 and a drive Hamiltonian V as

H (t ) = H0 + f (t )V, (1)

with a T -periodic function f (t ) = f (t + T ) with zero mean.
The propagator over a single period, formally given by the

time-ordered exponential (with time-ordering operator T )

U (T ) = T exp

(
−i

∫ T

0
H (t ′) dt ′

)
, (2)

has the eigenvalues λi = exp(−iθi). We call θi the eigenangles
in the following. The Floquet Hamiltonian HFl is the generator
of the propagator over one period

U (T ) = exp ( − iT HFl(T )) (3)

with eigenvalues θi/T . It is not unique since the angles can be
chosen modulo 2π . A common choice, that we also make, is to
restrict the eigenangles to the first Floquet zone θi ∈ (−π, π ].
In this work, for simplicity, we focus on a square wave drive
(also known as a switched or bang-bang protocol)

f (t ) = sign[sin(ωt )] = 4

π

∞∑
m=0

sin [(2m + 1)ωt]

2m + 1
, (4)

which however is more naturally understood in a discrete
sense using the product

Usw(τ ) = U−U+ = exp (−iτH−) exp (−iτH+), (5)

with the half period τ = T/2 and the Hamiltonians H± =
H0 ± V . Such setups are often used in theoretical studies,
since they can be simpler to analyze analytically and numeri-
cally. They also arise naturally in digital quantum simulation,
for example, via a Trotter decomposition of a time indepen-
dent Hamiltonian, see, e.g., Refs. [44,45].

A. Floquet Hamiltonian

The Floquet Hamiltonian, as defined in (3), governs the
stroboscopic evolution between periods. However, using an-
other starting point within a period (i.e., a different phase of
the square wave), would lead to a different Floquet Hamil-
tonian. For this reason, notions such as Floquet or effective
Hamiltonian are not always used to denote the generator
of the evolution operator. Some literature rather reserves
these names for a gauge invariant formulation, moving influ-
ences such as the initial phase to the so called kick operator
[1,64,65]. We will not make use this formalism, but would
like inform that the Floquet Hamiltonian as defined in (3) is
not gauge invariant [64].

The appearance of the Floquet Hamiltonian, which can
have a nontrivial dependence on the average and drive
Hamiltonians, is what makes Floquet systems an interesting
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FIG. 1. Floquet diagram of the spin chain with L = 8 with eige-
nangles of Usw(τ ) colored by their energy density with respect to
H0. The location of the first occurrence of an avoided crossing in this
diagram is indicated by a black circle. Due to specifics of the protocol
the eigenangles concentrate onto two points (one point) at τ = π (at
τ = 2π ).

research subject. Correspondingly, large efforts have been de-
voted to obtain approximations to the Floquet Hamiltonian,
usually at large driving frequencies ω [1,48,64–71]. In the
digital setup (5), the Baker-Campbell-Hausdorff (BCH) series
[72] can be used at small half-period τ (high frequency ω)

T HFl ≈ T H0 + i
T 2

4
[V, H0], (6)

where we recognize that the average and the Floquet Hamil-
tonian correspond to each other to first order in T .

B. Floquet diagram

A visualization tool, used at times in the literature and pro-
viding a lot of insight for our method, is the Floquet diagram
wherein the eigenangles θi of Usw(τ ) for a finite size system
are plotted as a function of the half-period τ . For a model
spin chain, to be specified in Sec. III A, such a diagram is
shown in Fig. 1, where we only show the relevant symmetry
sector. The lines denote the eigenangles θi(τ ). The color of the
lines highlights the expectation value of the energy density
with respect to the average Hamiltonian in the eigenstates
of the Floquet propagator: ε0 = 〈θi(τ )|H0/L|θi(τ )〉. Let us
walk through some of the features of the Floquet diagram,
which will be important in developing our method. At small τ ,
starting from τ = 0, the lines are almost straight as the Floquet
propagator eigenstates and the eigenstates of H0 basically
coincide, and thus their slope in the diagram is proportional to

the energy given by H0. Incidentally, for the protocol family at
hand (5), this quantity is proportional to the derivative of the
eigenangles with respect to τ at all values of τ [73]. Due to
the 2π periodicity of the eigenangles, at a certain value τ=τc

the continuation of the lowest and highest energy state of H0

seem to cross as indicated by a circle in Fig. 1. A more refined
analysis shows that the two states undergo an avoided crossing
with a very small minimal angular gap of �θ (τc) ≈ 10−7 rad.

In a small τ -θ region around this avoided crossing, the
many-body system can be sketched as an effective two-level
system, whose dynamics can be understood as Rabi oscilla-
tions [74] (see Appendix A for an example). If we were to
sit right on the crossing at τc and initialize the system in one
of the two eigenstates of H0, the off-diagonal matrix element
responsible for the minimal gap would drive a (resonant) Rabi
oscillation between the two H0 eigenstates, therefore violating
the energy conservation with respect to H0 in an explicit
manner. This exemplary first crossing thus provides an initial
seed on a small system for the proliferation of many-body
heating processes in larger systems. Our proposed method will
build on this important intuition and consists of an automated
analysis of all finite size level crossings in a certain window
of τ and the H0 energy transfer at each of them.

Looking again at the Floquet diagram, we notice that for
our specific choice of H0 and V , the Floquet propagator
Usw(τ ) shows unusual behavior in the considered τ window
at τ = π and τ = 2π , where the eigenangles join at θ = 0, π

and θ = 0 respectively. This behavior is closely related to
discrete time crystals, where at least for τ = π one observes a
recurrent dynamics with period 2τ (i.e., a period doubling) for
generic initial states. While we relegate the discussion of the
specific properties of the Floquet propagators at these values
of τ to Sec. V and Appendix D, an important feature is that
the number of avoided crossings as well as the magnitude
of angular gaps, is strongly suppressed in the vicinity of
those special points leading to a reduced heating rate, which
competing methods such as the FGR treatment cannot easily
access.

III. HEATING IN QMBS

A. Driven spin chain

As an illustration for heating in QMBS and for our method
in later sections, we focus on a model which was recently
studied in the context of digital quantum simulation [44,45]
and argued to exhibit a threshold behavior as a function of the
half period τ , i.e., the absence of detectable heating below a
threshold value of τ . The model is defined by

H+ = X ≡
L∑

i=1

sx
i , H− = Z + ZZ ≡

L∑
i=1

sz
i + sz

i s
z
i+1 , (7)

with spin one-half operators sα
i and periodic boundary condi-

tions,1 leading to

H0 = 1
2 (X + Z + ZZ ), V = 1

2 (X − Z − ZZ ).

1The cited works use open boundary conditions, however, we veri-
fied a similar threshold behavior in our case.
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FIG. 2. Real-time dynamics of the energy density of |x, +〉 for
L = 28 at different half-periods τ . The energy density decays ex-
ponentially in time for large parts of the dynamics. For the smaller
values of τ the heating time increases with frequency as expected.
For larger τ , this trend is reversed due to the specifics of the model.

Any operator in the protocol has a spatial translation sym-
metry and a spatial reflection symmetry, which allows us to
reduce the Hilbert space dimension by working in the zero
momentum and even spatial parity sector throughout this pa-
per. This restriction is only possible for initial states lying
fully within the given sector, for example translation invariant
products states, which we use throughout the paper. H0 is
an Ising model with transverse and longitudinal field, with
parameter values not too far from other instances which have
been reported to obey “eigenstates thermalization hypothesis”
(ETH) properties [75,76]. The average and the drive Hamil-
tonians can thus be characterized as generic (nonintegrable)
QMBS.

B. Phenomenology and earlier diagnostics of heating

Suppose that we evolve a pure state with the Floquet
propagator Usw(τ ) and monitor ε0 after each cycle. Since the
system is a Floquet system with only discrete time translation
invariance, the average energy ε0 need not be conserved. The
initial value is given by the expectation value of the average
Hamiltonian in the initial (product) state. If the hypothesis of
heating to infinite temperature holds true, then ε0 is supposed
to approach zero at late times for our Hamiltonian (in the
thermodynamic limit).

It has been predicted analytically [46–49,77] and observed
in numerical simulations [52,53,59], that for large parts of
the dynamics the energy density changes exponentially slowly
ε0 ∼ exp(−
t ) with the heating rate 
, or equivalently the
heating time th ≡ 1/
, and that this time increases exponen-
tially with the frequency of the drive.

For certain small to intermediate system sizes, the heat-
ing rates can be obtained from real-time simulations using
numerically exact methods. We perform the time evolution
using Krylov subspace methods [78] with partial reorthogo-
nalization [79] and appropriate error bounds [80] and show
the results for a product state along the x axis |x,+〉 in Fig. 2
for four different values of the half-period τ . In the figure, we
can clearly observe the almost perfect exponential decay of
|ε0|, until the curves reach a finite size plateau with fluctuating
|ε0|, here of the order of 10−4 for the system size of L = 28

0 1000 2000 3000 4000 5000
cycles
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L = 24

L = 28

FIG. 3. Dynamics of the energy density starting from |x, +〉 for
various system sizes. At small sizes no heating is detectable, thus
real-time simulations to extract the heating rate require large system
sizes.

spins. In the thermodynamic limit, the energy plateau would
be at 0, but due to the finite system size, it has a finite value
decreasing with system size. More precisely, the steady state
can be described as a random pure state, which can be inferred
from computing the Shannon entropy −∑

i
Pi ln Pi with prob-

abilities in the computational basis. In a Hilbert space with
large dimension N , this quantity is given by approximately
ln(N ) − 0.4228 [81], which we also observe for the steady
states with an error of ≈10−3.

The heating times can be extracted by exponential fits in
an appropriate window, which are indicated by black dashed
lines. Even without extracting the rates, one can see clearly
that the heating time decreases from τ = 1.1 to τ = 1.35 and
τ = 2.2 as expected, but then the heating time increases again
at τ = 2.3. In Sec. V, we will explain this unusual behavior in
more detail.

In complementary previous work, the heating to infinite
temperature was often diagnosed not from the actual real-time
evolution of the energy, but instead through diagnostics which
build on properties of the set of all eigenstates of the Floquet
propagator Usw(τ ). A prominent example is to determine the
level spacing statistics of the eigenvalues of the propagator, or
the (inverse) participation ratio of eigenfunctions [34–36,44].
These diagnostics build on the idea that for systems which
heat up to infinite temperature the propagator is effectively
an instance of a random unitary matrix (in the circular unitary
(CUE) or circular orthogonal (COE) ensemble) [34,35]. In our
work we demonstrate that these diagnostics are quite conser-
vative, i.e., they are typically unable to detect the heating to
infinite temperature on system sizes which are too small in re-
lation to the underlying heating time. If systems are too small,
such that no heating is observed in real-time simulations, these
measures also cannot be used to learn about heating for larger
sizes [42,60]. This is illustrated in Fig. 3, where the dynamics
of the energy density of |x,+〉 is shown for various system
sizes. As seen in the figure, the smallest shown sizes do not
seem to heat at all and one needs to go to L ≈ 24/28 to really
see a consistent heating rate.

Our work based on avoided level crossings however di-
rectly focuses on the seeds of the heating processes, and is
able to predict even very large heating times from rather small
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systems (L � 12), where the circular ensemble has not yet
permeated most eigenstates of the propagator. Conversely, we
will also see that our method is not well suited to extract
heating times in regimes where the ensemble’s properties are
fully expressed, but since these are the “simple” cases, where
the heating happens typically very fast, this is not an important
limitation.

C. Fermi golden rule

As we will see shortly, there are certain parameter regimes
wherein the heating rate changes over several orders of magni-
tude in a small τ/ω window, rendering real-time simulations
particularly expensive, since to resolve this region one needs
to perform the evolution for multiple parameter values and
potentially very long run times not known a priori.

In weakly driven systems, the FGR has been shown [59]
to give accurate predictions at a much lower cost. The FGR is
rooted in time-dependent perturbation theory/linear response
theory [74,82,83] and proposes the following formula

Ė (ω) = π

2

∑
m

g2
m

∑
i, j

ω ji| 〈 j|V |i〉 |2Pi

× [δ(mω − ω ji ) + δ(mω + ω ji )], (8)

for the extensive energy absorption rate (EAR) Ė (ω) as a
function of the driving frequency ω. In the formula gm is
the mth Fourier component of the driving amplitude f (t ) and
the set of |i〉 denotes the eigenstates of H0 with energy Ei.
Subsequently, ω ji ≡ Ej − Ei is the energy difference between
eigenstates and Pi denotes the probability to find the system
in eigenstate |i〉. The latter is needed since the heating rate is
a priori state-dependent, however during the evolution these
probabilities of course change, which is not captured by the
formula.

In a numerical FGR computation, one has to calculate all
the matrix elements 〈 j|V |i〉 of the drive Hamiltonian V in the
eigenstates of H0, amounting to one full diagonalization of H0.
Then using specific values of ω, gm and a model for Pi one can
evaluate Eq. (8). Apart from providing a computation tool,
the FGR also provides a way to understand the exponential
increase of heating times at high frequency and sheds light on
some statistical aspects of heating in many-body systems.

As a starting point one can rewrite the double sum as an
integral over the density of states D(E ) (details are discussed
in Supplemental Material of Ref. [59])

Ė (ω) = π

2

∑
m

g2
m

∫
dE D(E )D(E + mω)(mω)

× | 〈E + mω|V |E〉 |2(P(E ) − P(E + mω)). (9)

Since the approach operates under the assumption that the
system (i.e., average Hamiltonian) is generic, it is expected
that the matrix elements of the drive are given by the ETH
ansatz

〈E + mω|V |E〉 ≈ fV (Ē , ω)√
D(Ē )

R, (10)

where Ē is the average of E , E + mω, R is a random variable
with zero mean and unit variance and fV is a smooth function
independent of system size [84,85].

For local operators O, fO has been shown numerically to
decay exponentially with ω for high frequencies in a variety
of systems [85–87]. This behavior can serve as an explana-
tion for the exponential suppression of heating and threshold
behavior from a statistical perspective. Furthermore, previous
results from FGR (and our results from crossing computa-
tions) suggest that small systems can already provide good
estimates for this function. In evaluating the formula for such
systems, one effectively cancels the density of states factors
and gets an estimate for the thermodynamic limit, where the
behavior is dictated by fV .

IV. HEATING RATES VIA AVOIDED CROSSING
SPECTROSCOPY

As we have discussed in the previous section, the success
of the FGR is rooted in a sensible separation of microscopic
processes embodied in fV , from statistical factors like the
density of states. We propose to construct the heating rate
in a similar fashion, but using the true microscopic processes
in the systems, encoded in avoided crossings, rather than the
expression based on linear response theory. In later sections,
we will show that this method has clear advantages in several
scenarios occurring in Floquet systems.

A. Avoided crossings

Let us start by analyzing isolated avoided crossings in more
detail. Examining the Floquet diagram from Fig. 1, we postu-
late that close to a crossing the Floquet Hamiltonian within
the subspace of the two crossing states is

T H (subs.)
Fl = δ(τ )sz + �csx, (11)

where we note that the operators sα do not act on the physical
spins but are to be understood as acting on the states within
the two-dimensional subspace of crossing energy levels. This
model features an avoided crossing at δ = 0, where the energy
gap is �c.2 The eigenstates are (anti)symmetric superpositions
of the up and down states (in the subspace). For large δ, the
eigenstates are essentially the up and down states, however
which one of these is higher in energy depends on the sign
of δ. Going through the crossing the states switch, meaning
that the up / down states have the energy of the opposite state
before the crossing.

In a QMBS, the first crossings are the ones between the
edge states, thus after the first crossing the effective Hamilto-
nian is the average Hamiltonian with the two outermost edge
states switched. Hence, already at this point one needs an
additional many-body operator in the Floquet Hamiltonian,
leading to the breakdown of perturbative expansions. This also
means that if the crossings are well separated in τ , there is
no energy absorption with respect to the average Hamiltonian
(from their respective subspace) outside of the close vicinity

2The addition of a sy term does not change the main conclusions,
provided that �c is the total gap at δ = 0.
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FIG. 4. Gap widths of the driven chain with L = 8 as obtained
from the algorithm described at two different resolutions in τ : π ×
10−6 (left) and 5 × 10−8 (right).

of the crossing. At the crossings on the other hand, there are
Rabi oscillations between the corresponding states resulting
in “fast” dynamics, which might however still be very slow
compared to the natural timescales of the total dynamics (see
Appendix A).

The dynamics for the two-level system can be obtained
exactly and is a classic result [88]. In case of an initial diag-
onal density matrix ρ(0) = diag(P0(0), P1(0)) the probability
in the ground state is

P0(t ) = �2
c

δ2 + �2
c

sin2

(√
δ2 + �2

c

2T
t

)
(P0(0) − P1(0)). (12)

As we will argue later, these oscillations are the basis of
FGR and our method, for which we need first to obtain some
quantities for the individual crossings.

Suppose we wanted to evaluate the formula in Eq. (12) for
a single crossing. For this we need T, δ,�c and P0(0) − P1(0),
but since we are interested in the resonant oscillation we set
δ = 0. This amounts to knowing the crossing time τc, the
angular gap width �c, and the pair of states i, j which cross.
To compute these quantities in practice, we first completely
diagonalize the propagator Usw(τ ) for many values of τ . The
τ resolution required depends on how narrow the gaps are in
θ and how far apart they are in τ . Currently, we work with
a fine uniform grid in τ and resolve the crossing locations
and the minimal gaps for different grid resolutions. In future
improvements this could also be done using an adaptive grid
or automated root finding techniques. The determination of
the energy transfer with respect to H0 can be done in different
ways. Here we chose for simplicity a scheme where we track
pairs of crossing states back to their energy as τ → 0, this
is done by working backwards through the crossing history
of the involved states. Other possible ways to determine the
energy transfer would be to measure the expectation values of
H0 in the pair of states before and after the crossing, or—for
our particular protocol—to determine the slopes θ̇ (τ ) before
and after the crossing. We leave these refinements for future
work however. Details of the algorithm(s) are discussed in
Appendix C.

In Fig. 4, we show the gaps for the driven chain with L = 8
at two different resolutions in τ . Here, one can see that the
gaps change over several orders of magnitude in a small τ

window. For small values of the avoided gaps (� 10−6), the
resolution has a visible effect, however for the larger gaps
there is not any noticeable difference.

B. Heating from crossings

For deriving a formula for the EAR from a Rabi oscillation,
we follow the linearization of the expression (12) as in the
derivation of the FGR [74,82,83]. This amounts to using the
identity

δ(α) = lim
t→∞

sin2(αt )

πα2t
,

for the delta function, which leads to a linear rate rather than
an oscillation. Of course, this treatment can be valid only
under certain assumptions, for example that the probability
transfer is small, which are discussed in more details in the
cited literature. A possible interpretation is that the dynamics
can be viewed as an off-resonant (far-detuned) Rabi oscilla-
tion.

Using the linearization procedure, we obtain the following
formula for the EAR (details of the derivation along with a
derivation of the FGR are laid out in Appendix B)

Ė (ω) = π

2

∑
m

∑
c

�2
c

T 2
c

(�Ec)(�Pc)δ(mω − ωc), (13)

where the sum runs over all modes and the avoided cross-
ings c attributable to the corresponding mode, with Tc the
period and �c the gap. (�Ec) is (the absolute value of) the
energy difference of the states that cross with respect to the
average Hamiltonian. In the FGR this would simply be given
by the frequency ω (or multiples thereof). Generally one can
use the difference in expectation values for any observable
to obtain the absorption rate for that particular observable.
Finally, (�Pc) is the difference in occupation of the crossing
states. This of course depends on the instantaneous state of
the system during the dynamics, however we will be using a
high-temperature ansatz to obtain an estimate later.

Given the discussion above, the formula has an intuitive
interpretation: at each avoided crossing transitions with the
rate (π/2)(�c/Tc)2δ(mω − ωc) occur and transfer an energy
corresponding to the energy difference per unit time. The
probabilities are a sort of “balancing” factor, such that transfer
is enhanced for a large difference and vanishes in the fully
mixed state (compare this to (12)).

Presumably, the gap widths cannot be related directly to
matrix elements in general. Therefore an analysis of the con-
vergence similar to the one in Sec. III C will not be possible
in general. However, in some cases, for instances at fast or
strong drives, a relationship to matrix elements similar to
the FGR can probably be recovered by transforming into an
appropriate frame and applying the same formalism therein.
Also as discussed in Sec. V B, the Floquet formalism close
to a discrete time crystal is very similar to the one at τ = 0,
hence we expect the same convergence as in the FGR at this
point.

Note as well, that even if a relationship with matrix ele-
ments is given, this does not imply that the sum over gaps
in a finite system yields an accurate estimate for the ther-
modynamic limit. For example, driven many-body localized

043174-6



ESTIMATING HEATING TIMES IN PERIODICALLY … PHYSICAL REVIEW RESEARCH 4, 043174 (2022)

systems have been reported to not heat in certain frequency
windows [36–38,77]. Clearly though, the naive evaluation of
the formula for a finite, small to intermediate size, system
would yield an observable rate. The lack of heating thus
has to stem from a different scaling with system size of the
number/width of the gaps compared to the FGR case and
extracting this behavior would require a more in depth anal-
ysis than just the evaluation of the formula. Nevertheless, for
ergodic systems or systems, possibly transformed to a suitable
frame, the simple treatment can be justified and convergence
with system size is expected.

This formula, along with the automated resolution of cross-
ings, is the central result of our work. In the next paragraph,
we will show that for weak drives it is equivalent to the FGR,
but in subsequent sections it will also become clear that it has
a much larger region of validity, since here the actual crossing
in the concrete system are used instead of perturbative approx-
imations.

C. Comparison with FGR

Comparing formulas (8) and (13) (note that the double sum
in the FGR is actually a single sum due to the delta functions
as well), we recognize that the FGR is a special case of the
crossing based formula, wherein the crossing time as well
as the energy transfer are given by the energy difference ωi j

between the states. This would be the case if the lines in
the Floquet diagram were perfectly straight lines, which is
reasonable for weak drives. Furthermore, the matrix elements
and gap widths have to be related by

g2
m|Vi j |2 = �2

i j

T 2
⇔ �i j

T
= gm|Vi j |,

which corresponds to the gap width one would obtain in the
Rabi model in the two-state subspace as discussed in Ap-
pendix B.

We investigate this relation numerically by introducing a
factor g for the drive strength, changing V → gV in the pro-
tocol. We then compare the exact matrix elements with the
appropriate expressions from our computed gaps for the first
mode (g1 = 4/π for the square drive). The results are shown
in Fig. 5 for L = 8 and drive strengths g = 0.01 and g = 1,
where the latter corresponds to the original model.

Here we observe that for g = 0.01 the correspondence
is very good, apart from a region at very small τ where
the gaps are limited by the resolution and some very small
crossings which are likely due to “multi-photon resonances,”
i.e., levels with energy difference ωi j meeting at frequency
ω = mωi j in the Floquet diagram (one can see this visually in
Fig. 1—the levels with the largest slope meet a second time
(ωi j = 2ω) within the τ window). At g = 1 the expressions
are still qualitatively similar, but especially the locations of the
gaps are noticeably different. This means that strictly speaking
the assumptions of the FGR are not valid anymore for the
model, i.e., states do not cross at a τ given by the energy
difference. However, for larger systems the density of cross-
ings will increase and these small corrections will be washed
out allowing the FGR to still make a good prediction. In this
sense, in the rough region of validity of the FGR, we expect
our method to not improve predictions significantly. However,

10−6

10−5

10−4

10−3

10−2 Mat. El. Gap

0.50 0.75 1.00 1.25
τ

10−6

10−5

10−4

10−3

10−2 Mat. El. Gap

FIG. 5. Matrix elements of the drive computed exactly and from
gaps for the driven chain with L = 8 and different drive strengths
g = 0.01 (top) and g = 1 (bottom). For the weak drive, the data co-
incides very well apart from very small τ , where the gaps are limited
by resolution and few gaps likely from “multiphoton resonances.”
For the stronger drive, the magnitude fits reasonably well but the
locations of the gaps are shifted.

in the following sections, we will show two scenarios in which
our method, has clear advantages.

V. DRIVEN SPIN CHAIN

Having described the method in general, let us now use the
driven spin chain as a concrete example to demonstrate the
power of our approach. The gap widths and energy transfers
obtained as explained in Sec. IV A are shown in Fig. 6 for dif-
ferent even system sizes, ranging from L = 6 to L = 12. On
the y axis we plot the half-period τ of the protocol. The points
denote identified crossings, while the color scale of the points
encodes the absolute value of the energy difference with re-
spect to H0 between the two Floquet eigenstates involved
in the avoided crossing. Furthermore, we have indicated a
dashed line at the mean angular spacing �̄ = 2π/ dim H dic-
tated by the dimension dim H of the relevant Hilbert space
sector H.

A. High-frequency region

Let us first focus on smaller τ values τ � 2: we observe
that the magnitude of the gap widths increases over 4–5 orders
of magnitude in this τ window. As the system size increases
gaps at increasingly small values of τ appear as the spec-
trum now contains states with the corresponding frequency
difference. For the larger system sizes some of these gaps
are limited by the resolution resulting in blob like structures,
which we color light gray. Furthermore, the magnitude at fixed
τ remains roughly constant unless it is would be larger than
the mean level spacing, which then acts as a cutoff for the
magnitude of the gaps. We color the region where this is the
case in darker gray.
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FIG. 6. Gap widths and energy transfer (color code) with respect to H0 for different system sizes. The kink at small τ for larger sizes (light
gray) is due to finite resolution in τ (5 × 10−8 for τ � 1 and π × 10−6 otherwise). The results from expanding the states from τ = 0 and
τ = π are shown in color, while in the central region (gray) the true energy transfers cannot be obtained by the expansion.

Finally, on a technical note, there seem to be some cross-
ings with a magnitude and energy transfer that do not fit
the overall picture. These occur for two reasons: first the
algorithm as outlined in the previous section is very sensitive
even to small wiggles between the distance of adjacent levels
and therefore detects some “ghost” crossings even between
levels that seem to evolve mostly straight. Since these “ghost”
crossings are not accompanied by an actual swap of two
states, these cause the ordering of switched levels during the
algorithm to become inaccurate after a while. For a further
discussion and illustration of the wrong order introduced by
“ghost” crossings see Appendix F. As a second reason, it turns
out that many of the seemingly wrong crossings at τ ≈ π are
actually genuine crossings with a switching. The nonfitting
magnitude and energy transfer here result from the fact, that
levels originating at τ = π cross within the same subspace
(take the two subspaces in Fig. 1 as an example) and therefore
have very similar energies. In principle one could correct
for those by including some sort of curvature check in the
algorithm to determine if a switching really took place or
by simply discarding crossings where magnitude and energy
transfer do not fit together. However, we found no noticeable
effect of the nonfitting crossings, since they have a small
energy transfer and there are relatively few of them (compared
to “standard” crossings). Therefore we move forward using
the most straightforward scheme of the algorithm.

Let us finish the discussion by trying to understand the
significance of the region, wherein the average angular level
spacing due to the Hilbert space dimension is smaller than the
gap width for small sizes (gray region in the figure) for our
method, which is tied to some fundamental questions about
heating in Floquet systems, particularly to the thermodynamic
limit. To our best knowledge some of these questions have
no definite answer yet, hence we give our best attempt at an
interpretation of the results in the literature related to these
questions in the context of our method. Clearly, in the ther-
modynamic limit the average level spacing vanishes and thus
the information about microscopic processes as encoded in
the gap widths is somehow hidden. The Floquet propagator

then “has properties of matrices of the COE of random matrix
theory” in the words of [34]. However, we still expect some
structure depending on the frequency based on the results
in Refs. [47–49], wherein the exponential timescale in the
heating time at high frequency was established for many-
body systems. This, along with the real-time simulations in
current and other works (see references in Sec. I) suggest
that the EAR converges in the thermodynamic limit (as also
discussed in Sec. IV B). Hence, some of the structure visible
at small sizes survives. In what form the information about
the timescales enters the Floquet propagator for large systems
is unclear to us. It might be that there are traces hidden in
the spectrum, for instance there is a mechanism in the ETH
leading to a “shrinking” of matrix elements with system size
through the factor 1/

√
D(E ). However, it is doubtful, whether

the ETH formalism can be applied at finite frequency for large
sizes, because the eigenstates of the Floquet propagator are
likely to be fully mixed in the basis of the average Hamiltonian
at those sizes. Thus the spectrum might also be (statistically)
equal at all frequencies for large enough sizes. This latter sce-
nario seems to be consistent with the results in Refs. [34,35].
Therefore we can only operate under the assumption that
the information we extract is indeed relevant for large sizes
without proof. Staying within this assumption though, we see
that smaller sizes have a larger frequency window, wherein the
gap width is separated from the mean level spacing. However,
having chosen a frequency, one should strive for the largest
possible sizes, for which the gap width is still unaffected,
because larger sizes lead to a much more accurate estimate
for the density of states and a finer frequency resolution due
to more available gaps, which are needed to compute a smooth
curve for the energy absorption.

B. Commensurate points

Let us now focus on the upper half of the τ window from
τ ≈ 2 up to τ = π . Due to the discrete nature of the protocol
and the commensurability of the coupling strengths in the
Hamiltonian, the Floquet Hamiltonian is not simply chaotic
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for all small frequencies. Instead, at some frequencies the
propagator resp. Floquet Hamiltonian take on simpler forms,
which shows in the spectrum as the appearance of degenerate
subspaces (in our case, one or two depending on system size).
This effect can clearly not be captured by a perturbation theory
based on the average Hamiltonian and thus is not captured
by the FGR. A detailed analysis, carried out in Appendix D,
reveals that at all integer multiples of π the propagator takes
on “simple forms” (but not always in the same way). At
τ = π , the system features a discrete time crystal [24,25]
(albeit a fine-tuned one), since U 2

sw(π ) = I and therefore there
is no heating, but instead completely periodic dynamics with
a doubled period.

In general, such nonperturbative points at τ ′, where
T ′HFl(τ ′) = H ′, can be integrated into the general formal-
ism of Floquet expansions by expanding around τ ′. Writing
dτ = τ − τ ′ and expressing the propagator as

U (τ ) = exp (−iH−dτ ) exp (−iH ′) exp (−iH+dτ ),

the approximate Floquet Hamiltonian can again be obtained
through the BCH series

T HFl ≈ H ′ + 2dτH0 + 2idτ
[V, H ′]

2
. (14)

The radius of convergence is certainly more questionable for
this expansion, and it might be more appropriate to transform
into the rotating frame of H ′ here. However, we do not make
explicit use of the expansion and its only virtue is to show,
how the average Hamiltonian appears away from the high-
frequency limit. In fact the commutator term does not have
matrix elements in the degenerate subspaces, therefore H0 is
responsible for the splitting to first order, irrespective of what
H ′ actually is. This can be observed in Fig. 1 since HFl at θ

equal to π and 2π are different from one another.
For the dynamics this means that close to the time crystal

the dynamics is a combination of the fast (period 2 cycles)
dynamics and the much slower heating. The point here is that
our method detects this, as exemplified by the vanishing of the
gaps in Fig. 6 close to τ = π , and therefore the gap widths and
the crossing locations can be obtained without any changes to
the algorithm. For our chosen heuristic to determine the en-
ergy transfer by tracing the crossing states back to their initial
energy at τ = 0, we need to alter the reference point to τ = π

in the regime close to τ = π . This is however only a limitation
of our simplistic heuristic, and a more robust determination of
the energy transfer using previously mentioned ideas would
not require a reference point to start with.

C. Heating rates

We are now in a position to benchmark our avoided
crossing spectroscopy method with large-scale real-time sim-
ulations as well as the FGR predictions for the driven spin
chain. For the evaluation of Eqs. (13) and (8), we follow [59]
in using a high-temperature thermal state (usual Boltzmann
distribution expanded to first order in β) as a model for Pi,
as we expect the evolved state to be sufficiently mixed in
the Hilbert space for large parts of the dynamics, and using
a broadened delta function, for example a normalized Gaus-
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FIG. 7. Heating in the driven chain: Heating times of three states
based on exponential fits to the energy (symbols). Predictions from
FGR and based on the gap formula for different system sizes (lines).
The dotted parts indicate the estimated range of validity for each
system size. As discussed, for smaller τ the FGR and gaps agree
well, while the FGR is unable to detect the commensurate point at
τ = π . Overall, both methods resolve a variation in the heating time
of about five orders of magnitude, over a small change in half-period
/ frequency.

sian with width dE , mimicking the density of states in the
thermodynamic limit (see also Appendix C).

From the EAR, the heating rate 
 = 1/th is obtained
through


 = Ėβ

Eβ − E∞
,

where the subscripts indicate the energy evaluated at high- and
infinite-temperature. Using the high-temperature expansion,
the resulting heating rate is independent of temperature and
should therefore give rise to a monoexponential decay of the
energy density towards zero. A more careful treatment would
take into account the concrete occupations, which might be
incorporated into a sort of Boltzmann equation using the ideas
developed in this work, however we restrain from this here
since our goal is to get a feeling for the timescales involved
and especially to identify the region in τ , wherein the heating
time changes drastically as discussed in previous sections.

The heating rates obtained with the different methods (for
dE = 0.1) are shown in Fig. 7, which features heating times
(measured in cycles) extracted from real-time simulations for
three product states, the prediction based on FGR and the pre-
dictions based on avoided crossing spectroscopy for different
system sizes. For the latter method, we estimate a range of
validity following the discussion in Sec. V A.

The figure summarizes the earlier arguments, so let us also
go through the main features again: for high frequencies the
heating time increase rapidly and changes by several orders
of magnitude, which is captured by both our method and the
FGR. For lower frequencies, the FGR predicts a continuous
decrease of heating times, while the observed times increase
again due to the commensurate point at τ = π . This is cap-
tured by the computed gap widths and using our method
corresponding heating times can be extracted. The range of
validity decreases with the system size, hence smaller (and
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therefore computationally cheaper systems) can provide a
more accurate estimate of the timescales involved. This comes
however at the cost of featuring a lower density of crossings
making it more difficult to obtain smooth curves for the heat-
ing times, if relying on broadening the delta function in the
computation.

Overall, the proposed avoided crossing spectroscopy co-
incides with the FGR at high frequency, but also is accurate
in resolving the temporal stability of the discrete time crystal
as τ → π . It is impressive that the computation based on
minimal assumptions such as the high-temperature ansatz and
rather small systems sizes, ranging from L = 6 to L = 12,
provide heating rates ranging over several orders of magnitude
and capturing the regimes of rapid changes in the heating
timescale very well. To increase accuracy one would need
to improve on the model for occupations (the differences
here are likely responsible for the different rates depending
on the initial state) and to use different ways to introduce a
density of states than to broaden the delta function for smaller
sizes.

VI. SYSTEMS WITH FREQUENCY-DEPENDENT
COUPLINGS

In the cases discussed above, the average Hamiltonian
played an important role, which could be understood within
the expansion. If the coupling strength depends on frequency
itself though, specifically if it diverges with frequency, the
Floquet Hamiltonian is not necessarily given by the average in
lowest order. This allows to simulate dynamics (within a given
timescale) with a Hamiltonian that may otherwise be inacces-
sible and thus is an important tool in modern experiments (see
references in the Introduction, Sec. I). Note that oftentimes
in the analysis of Floquet systems, no specific functional
dependence of the frequency is specified a priori. Rather it
turns out, that naturally a coupling strength ∝ ω results in a
sensible high-frequency limit. A well known example is the
modification of tunneling in Bose-Einstein condensates [4,6].
More recently, setups with strong couplings have been studied
outside of the high-frequency limit and shown similar features
[43,89]. As in the frequency independent case, different meth-
ods can be used to formulate high-frequency expansions for
the effective Hamiltonian (see references in Sec. II A), which
however often result in infinite series that cannot be summed
analytically [65]. Thus we refer to the literature for the full
details and content ourselves with a sketch of the argument
using the BCH series here.

We consider the switched setup from earlier, but make
the drive strength proportional to the frequency V → (1/τ )V .
Therefore the expressions H±τ appearing in the propaga-
tor are given by H0τ ± V . The BCH series consists of
nested commutators, including commutators of the form
[. . . [H0τ,V ],V ], . . .V ] (or other orderings), which, different
from the independent case, are all O(τ ) and thus contribute
to the Floquet Hamiltonian. Hence, H0 is only one of the
(typically infinitely many) terms at the lowest order. Also,
the terms can introduce interactions of all ranges and lead
to very complex Hamiltonians, even from basic ingredients.
In the remainder of this section, we will show that our
method can provide useful results even in this setup, when
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FIG. 8. Eigenangles of the frequency-dependent driven chain
with L = 8 colored by the (average) energy density. Compared to
the frequency independent case we observe that the angles are not
ordered strictly by energy at small τ , show larger curvature and do
not join at any (finite) values of τ .

neither the effective Hamiltonian nor the effective drive is
available.3

A. Driven chain with frequency-dependent couplings

In order to illustrate the effect of frequency dependence,
we stay with the driven spin chain from previous sections and
modify it slightly V → (4/τ )V , where the factor of four is
chosen such that the additional terms have visible effects,
but are not strong enough to change the overall scales sig-
nificantly, such that we can operate in the same τ windows
as before. The main conclusions concerning the applicability
of our method are however not dependent on this choice, as
will be apparent from the discussion. In Fig. 8, we show the
eigenangles colored by ε0, where we can see that the slopes
are not governed by ε0 and also display a stronger curvature
overall. Also, the commensurate Floquet points at τ = π, 2π

vanish as expected.
In Fig. 9, we show the energy transfers with respect to

H0 obtained again by tracking the switchings between states.
The overall behavior of the gap widths at high frequency
looks similar to the frequency independent case, therefore we
verify additionally that the new Floquet Hamiltonian is in fact
significantly different from the average in Appendix E. This is
also visible from the mismatch between the energy transfers
and the frequency of the drive, in contrast to the frequency
independent case.

B. Heating rates

In Fig. 10, we finally show the estimated heating rates,
evaluated with dE = 0.3, as well as extracted rates from

3We call here the new operator that is responsible for avoided
crossings effective drive for lack of other terminology.
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FIG. 9. Energy transfer of the frequency-dependent driven chain
with L = 10. Compared to the frequency independent case the trans-
fers do not correspond to the frequency and the shape of the decay
region appears somewhat changed.

real-time simulations. Again, the dotted parts indicate the
estimated range of validity for a given size.

As in the frequency independent case the agreement is
reasonable overall, while being better at lower frequencies for
the smaller sizes and better at higher frequencies for the larger
sizes. Furthermore, in the Floquet diagram shown in Fig. 8, we
observe that the energy (color code) seems to change during
the evolution, as at the bottom there are no saturated levels
while at intermediate τ there is some saturation. Hence, the
extraction of energy transfers based on the original values also
potentially leads to a lower accuracy.
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FIG. 10. Heating times in the frequency-dependent driven chain
obtained from real-time simulations using three states with L = 26
(symbols) and the gap data for different system sizes (lines). The
dotted parts indicate the estimated range of validity for each system
size. The agreement overall is reasonable, with different sizes show-
ing good agreement in different parts as discussed in the text.

VII. CONCLUSION AND OUTLOOK

In this paper, we have shown how to analyze isolated
avoided crossings in Floquet systems and how one can con-
struct a versatile and accurate estimate for heating times
based on those crossings. We have discussed that this method
is closely related to the FGR, but with the demonstrated
potential to go beyond it, since the crossings include non-
perturbative effects. For this, we have given two concrete
examples using a driven spin chain: a discrete time crystal
for commensurate points in a digital Floquet setting and a
Floquet Hamiltonian beyond the average Hamiltonian due to
frequency-dependent couplings. In Appendix F, we have also
shown that the setup can be used to detect nongeneric behav-
ior (here weak symmetry breaking) in a seemingly generic
system. Furthermore, throughout the paper we have discussed
how the method combines microscopic and statistical aspects
and how this understanding can be used to understand why the
method performs well in small systems and to obtain estimates
for the region of validity at at given system size.

The approach introduced in this paper has the potential
to address and potentially solve long-standing issues, such
as the detailed heating dynamics in driven Bose and Fermi-
Hubbard systems, where multiply occupied sites seem to have
slow dynamics, and we also believe avoided level-crossing
spectroscopy in an adapted form is able to shed light on the
intricate relaxation and thermalization dynamics of noninte-
grable quantum many body systems, such as the quenched
Bose-Hubbard model [90,91].

For most of the numerical computations and the creation
of the figures we use Python [92] with the packages [93–97].
The data for all figures, as well as corresponding plot scripts,
are freely accessible online [98].
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APPENDIX A: RABI-OSCILLATION EXAMPLE

In the main paper, we discussed that at individual crossings
the eigenstates of the Floquet Hamiltonian in the subspace
are the (anti)symmetric superpositions of the original states,
which therefore perform a Rabi oscillation, with the probabil-
ities oscillating as

P(t ) ∼ sin2

(
�c

2T
t

)
, (A1)

where �c is the gap width at the crossing. We verify this
for two distinct crossings, by identifying the gap width, gap
position and the crossing states using the methods discussed
in the previous section. As we will see, the resonance region
is very narrow, hence for these specific crossings we manually
improve on the exact values.

The results for the first (highest frequency) crossing can
be seen in Fig. 11. In the figure, we show the dynamics of
the lowest energy eigenstate of H0 for three different values
of τ (before, at and after the resonance). One can see clearly
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FIG. 11. Rabi oscillation for the spin chain with L = 8 starting from the lowest energy eigenstate of H0. The probabilities are in the basis
of H0. The oscillation period matches the value obtained from the gap width �c ≈ 3.7 × 10−9. The contribution from other states results from
perturbative corrections to the eigenstates.

that the dynamics is restricted to the subspace of the lowest
and highest energy state to a large degree. It is not fully in
the subspace, since outside of the vicinity of the crossing, the
eigenstates of the Floquet Hamiltonian are eigenstates of H0

with perturbative corrections. Given that to obtain the heating
rate one needs to sum over all states in a given window, this
supports the argument that energy absorption is governed by
off-resonant oscillations.

APPENDIX B: FERMI GOLDEN RULE
AND ENERGY ABSORPTION

The Fermi golden rule can be derived from time-dependent
perturbation theory. In this Appendix, we present the main
steps in the derivation, mostly following [82], and then show,
how these ideas can be used to derive Eq. (13). Finally, the
relationship between the gap widths and the matrix elements
discussed in Sec. IV C will be justified.

In the derivation of the FGR, we are first concerned in the
transitions between eigenstates |n〉 of H0 under an evolution
generated by H (t ) = H0 + ∑

m>0
gm sin(mωt )V , with gm ∈ R.

In the interaction picture, the propagator can be approximated
by the first term in the Dyson series

U (t ) ≈ I − i

t∫
0

eiH0t ′
V (t ′)e−iH0t ′

dt ′, (B1)

and our goal is to compute the transition probability Pnk (t ) =
| 〈k|U (t )|n〉 |2. Some steps can be performed exactly

Pnk =
∣∣∣∣

t∫
0

eiωknt ′
Vkn

∑
m>0

gm sin(mωt ) dt ′
∣∣∣∣
2

= |Vkn|2
∣∣∣∣∑

m>0

gm

2i

t∫
0

(
ei(ωkn+mω)t ′ − ei(ωkn−mω)t ′)

dt ′
∣∣∣∣
2

= |Vkn|2
4

∣∣∣∣∑
m>0

gm

(
ei(ωkn+mω)t − 1

ωkn + mω
− ei(ωkn−mω)t − 1

ωkn − mω

)∣∣∣∣
2

,

(B2)

where ωkn = Ek − En and Vkn = 〈k|V |n〉. If we were to ex-
pand the absolute value, we would get a double sum over
modes with “mixed” and “diagonal” terms. Within the di-
agonal terms, there are also “mixed” terms stemming from
different denominators. It can be argued [82] that the con-
tributions from the “mixed” terms can be neglected, and the
remaining expression is

Pnk (t ) ≈ |Vkn|2
4

∑
m>0

g2
m

(
sin2 ((ωkn + mω)t/2)

((ωkn + mω)/2)2

+ sin2 ((ωkn − mω)t/2)

((ωkn − mω)/2)2

)
, (B3)

where the identity |eixt − 1|2 = 4 sin2(xt/2) was used. The
expression can now be “linearized” using the representation

δ(α) = lim
t→∞

sin2(αt )

πα2t
(B4)

for the Delta function. Inserting this yields

Pnk ≈ π

2
|Vkn|2

∑
m>0

g2
m(δ(ωkn + mω) + δ(ωkn − mω))t,

(B5)
and we can define the transition rate 
nk = Ṗnk


nk = π

2
|Vkn|2

∑
m>0

g2
m(δ(ωkn + mω) + δ(ωkn − mω)). (B6)

We now consider a state with occupations Pn and determine
the change in energy due to transitions with rates 
nk . Each
transition has an energy transfer rate (Ek − En)
nk = ωkn
nk

and the total energy absorption rate is given by

Ė =
∑

n

Pn

∑
k

ωkn
nk = π

2

∑
m

g2
m

∑
n,k

Pnωkn|Vkn|2

× (δ(ωkn + mω) + δ(ωkn − mω)). (B7)

This is precisely the FGR as stated in Eq. (B). We now apply
some further manipulations to get the formula to a form closer
to Eq. (13). For this we first consider the exchange of indices
n, k in the sum: Pn → Pk, 
nk → 
kn = 
nk, ωkn → ωnk =
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−ωkn. We therefore can rewrite the sum as

Ė = π

2

∑
m

g2
m

∑
n>k

ωkn(Pn − Pk )|Vkn|2

× (δ(ωkn + mω) + δ(ωkn − mω)). (B8)

Finally, we recognize, that due to the delta functions only
terms with exactly matching energies contribute, hence the
double sum is a single sum in disguise, and we can write this
as

Ė = π

2

∑
m

g2
m

∑
ωkn=±mω

ωkn(Pn − Pk )|Vkn|2

× (δ(ωkn + mω) + δ(ωkn − mω)). (B9)

Comparing this to Eq. (13), we recognize that both coincide,
given that �Ec = m|ωkn|, �Pc = Pn − Pk and �2

T 2 = g2
m|Vkn|2.

Note that here we order the states such that ωkn > 0 and
thus only one Delta function is included. Furthermore, the
sum over all avoided crossings implicitly includes the sum
over modes, since in the weak drive (FGR) regime the levels
with ωkn = mω meet at T = 2π/ω as discussed in Sec. II B.
Therefore the avoided crossings include contributions from all
modes.

Having derived the FGR from perturbation theory, we now
consider deriving Eq. (13) from the dynamics of isolated
avoided crossings. We begin though, by briefly recalling the
main results from the Rabi model [74,83], using which we
can make a connection between the effective Hamiltonian in
the subspace [Eq. (11)] and matrix elements in a weak drive
limit. For this, we look at the dynamics of a two-level system
under a single mode drive described by the Hamiltonian

H (t ) = H0 + gV cos(ωt ). (B10)

This Hamiltonian can be solved exactly within the “rotating
wave approximation.” The solution for the transition proba-
bility is [83]

Pnk (t ) = g2|Vnk|2
g2|Vnk|2 + (ω − ωnk )2

× sin2

(√
g2|Vnk|2 + (ω − ωnk )2t

2

)
. (B11)

From this expression, Eq. (B2) can be obtained by taking the
high detuning limit (ω − ωnk ) � gm|Vi j |

Pnk (t ) = g2
m|Vnk|2

(ω − ωnk )2
sin2

(
(ω − ωnk )t

2

)
. (B12)

We now compare the full solution to the dynamics in the
static model H = δ

T sz + �
T sx, where sx could be replaced by a

combination of sx and sy with the same spectrum. The solution
reads [88]

Pnk (t ) = �2

�2 + δ2
sin2

(√
�2 + δ2t

2T

)
. (B13)

Comparison to Eq. (B11) shows that in the weak drive limit
�
T = gm|Vnk| and δ

T = mω − ωnk, provided that the resonance
of the m − th mode is targeted. Of course the entire derivation
assuming one mode and a fully decoupled subspace is not
strictly valid, however in the regime with very small gaps

the levels are well isolated and the energy differences are
reasonably large for the resonances from different modes to
be well separated.

Finally, let us consider the off-resonant (high detuning)
limit off an avoided crossing characterized by ωc and �,
where as above we identify δ/T = mω − ωc. Note that here
we dot necessarily associate ωc with the energy difference
between the states, allowing for more general scenarios, such
as the discrete time crystal point discussed in Sec. V B. The
transition probability then reduces to

Pnk (t ) = �2

T 2(mω − ωc)2
sin2

(
(mω − ωc)

t

2

)
. (B14)

Following exactly the same procedure as described before, we
arrive at Eq. (13).

APPENDIX C: DETAILS OF THE ALGORITHMS

Here we summarize how the gaps are computed, how the
energy differences are then extracted and how Eq. (13) is
evaluated. In the text, we sketch the corresponding algorithms,
with concrete code snippets in PYTHON being available in
Ref. [98].

We assume that we have an array of eigenangles θi(τn) (in
the first Floquet zone −π � θ < π ) for a grid of half-periods
τn. In the following we sketch the main steps, which are also
illustrated in Fig. 12.

(1) We start with the eigenangles on a grid (leftmost sub-
figure).

(2) First the angles are sorted in ascending order at each
half-period, then we compute the differences between consec-
utive levels �i = θi at each τ including the first and last level
(second subfigure from left).

(3) The difference between the first and last level (�0 in
the figure) has a redundant factor of −2π , which we compen-
sate for by adding 2π to it at each τ (third subfigure).

(4) There are discontinuities in the values of �i due to
levels wrapping around the first Floquet zone and distorting
the ordering. We follow the levels at every τ step (starting
from 0) and check if the mean difference between consecutive
slices is too large. For this, we use the change in the previous
step and compare this to the change in the current step. If the
change is too large (we define work with a threshold of ten
times larger), we “rewrap” the next slice until it fits (fourth
subfigure). This requires a good enough resolution, which is
however needed anyways to resolve small gaps.

(5) We can now use a local minima search to identify the
locations of the minimal gaps. In the two last subfigures, we
show the resulting crossing locations i.e. which levels cross
and the gap widths together with the crossing times.

Having this information we can identify the energy differ-
ences at each crossing by backtracking (here to the origin). For
this we simply need the spectrum of H0 sorted in ascending
order. We now go through the crossings in order of τ , noting
the energy difference of the crossing levels as well as the
switching in the spectrum due to the crossing. For instance
the first crossing is between the first and last state, so we note
the energy difference of these states, switch the first and last
entry in the spectrum and then proceed to the next crossing.
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FIG. 12. Illustration of the gap finding algorithm - see the text in Appendix C for an explanation.

Finally, to compute the EAR we need to evaluate Eq. (13).
For this, we replace the delta function by a (normalized)
Gaussian with width dE We use dE ≈ 0.1 in the examples
(check the corresponding sections for concrete values), which
we arrive at by starting from low values and increasing until a
more or less smooth curve emerges. Also, as discussed earlier,
we use a high-temperature ansatz for �Pc, wherein �Pc =
|e−βEi − e−βEj |/Z (β ) ≈ β|ωi j |/ dim H with i, j referring to
the crossing levels. Substituting this into the definition of the
heating rate


 = Ėβ

Eβ − E∞
,

with Eβ being the thermal expectation value and E∞ the ex-
pectation value at infinite temperature, one gets an expression
independent of β. In practice, we observe that at β ≈ 0.001
the result is well in the regime independent of β and thus use
this value as default. A discussion of the ansatz can also be
found in Supplemental Material of Ref. [59]. For larger sizes,
this procedure is more stable and leads to similar result over a
range of widths, while smaller sizes are more sensitive due to
the low density of crossings.

APPENDIX D: PROPAGATOR AT COMMENSURATE
POINTS

We want to understand why the Floquet propagator takes
on simple forms at integer multiples of π . Remember that the
propagator is given by

Usw(τ ) = e
−iτ

∑
i

sz
i sz

i+1
e
−iτ

∑
i

sz
i
e
−iτ

∑
i

sx
i

=
(∏

i

e−iτ sz
i sz

i+1

)(∏
i

e−iτ sz
i

)(∏
i

e−iτ sx
i

)
.

The single-particle terms can be evaluated using the rota-
tion formula∏

i

e−iτ sx/z
i =

∏
i

(
cos

(τ

2

)
I − i sin

(τ

2

)
σ

x/z
i

)
and two particle terms by writing out the matrix in the com-
putational basis

e
−iτ

∑
i

sz
i sz

i+1 =
∏

i

⎛
⎜⎜⎝

e−i τ
4 0 0 0

0 ei τ
4 0 0

0 0 ei τ
4 0

0 0 0 e−i τ
4

⎞
⎟⎟⎠

i,i+1

,

where i, i + 1 denote the spins upon which the matrix acts
(note that at the boundary i = L this has to be understood
rather formally). Using this one, can evaluate the propagator
at multiples of 2π easily.

(1) Usw(8π ) = I (thus the entire angle diagram repeats
between 8nπ intervals)

(2) Usw(4π + 8nπ ) = (−1)LI.

(3) Usw(2π + 8nπ )=e
−2π i

∑
i

sz
i sz

i+1⇒HFl(2π ) ∼ ∑
i

sz
i s

z
i+1.

The situation at π is more difficult, since the single particle
terms do not vanish but instead combine to iL

∏
i

σ
y
i . This

means that the full propagator is given by

Usw(π ) = iLe
−iτ

∑
i

sz
i sz

i+1
∏

i

σ
y
i .

We are unable to find a full expression for the Floquet Hamil-
tonian, but can prove that this propagator has a period 2
dynamics for even system sizes, meaning that U 2

sw(π ) = I ,
thus it is a toy example of a (stable but fine-tuned) discrete
time crystal. For this, let us work in the computational basis
(product states along z-axis):

∏
i

σ
y
i is completely antidiago-

nal and the other term completely diagonal. One can readily
verify that U 2

sw is then a diagonal matrix with entries

(U 2
sw(π ))i,i =

(∏
i

σ
y
i

)
i,i′

(∏
i

σ
y
i

)
i′,i

×
(

e
−iτ

∑
i

sz
i sz

i+1
)

i,i

(
e
−iτ

∑
i

sz
i sz

i+1
)

i′,i′
,

where i′ is the “complement” i.e. the Hilbert space dimension
minus i which is also the state with all spins flipped. Due to the
properties of σ y under spin flips the product of corresponding
terms gives the identity. The interaction term is invariant under
spin flips, therefore the entire expression is given by(

e
−i2τ

∑
i

sz
i sz

i+1
)

i,i
= e

−i τ
2 (

∑
i

σ z
i σ z

i+1 )i,i

The matrix elements of
∑

i σ
z
i σ z

i+1 are −2� + 2k, with L = 2�

and k being the number of kinks on top of the fully polarized
state. Substituting this and some straightforward algebra leads
to the claimed result that U 2

sw(π ) = I . On a final note, we
would like to point out that the Floquet Hamiltonian at π is
not a simple single particle operator, since for some product
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TABLE I. Energy density of product states with respect to the
average Hamiltonian (ε0) and the full lowest order term ε. The results
are based on L = 18 and τ = 10−3.

State |z,+〉 |z,−〉 |x, +〉 |x, −〉 |y, +〉 |y, −〉
ε0 3/8 −1/8 1/4 −1/4 0 0
ε 0.258 −0.069 0.184 0.084 0.326 −0.333

states we observe an increase in the bipartite entanglement
entropy upon action with the propagator.

APPENDIX E: FLOQUET HAMILTONIAN WITH
FREQUENCY-DEPENDENT COUPLINGS

We want to verify that the lowest order term in the Floquet
Hamiltonian, in the protocol with frequency-dependent cou-
plings, is significantly different from the average Hamiltonian
H0 = 1

2 (X + Z + ZZ ). As discussed in Sec. VI, an analytic
formula for the lowest order term is not available, therefore
we construct an approximation numerically. We compute the
full propagator and then construct the Floquet Hamiltonian
via full diagonalization. For sufficiently small half-periods,
this should largely coincide with the first term in the high-
frequency expansion. In principle, one can now obtain the
coefficient of any operator (for example X ) by using an appro-
priate scalar product. However, here we use the energy density
ε of the product states along the x, y, and z axes to compare
the contributions of operators consisting solely of X , Y , or Z
terms, since for these states the expectation value of all mixed
terms vanishes. We find consistent results for τ � 0.01 and
system sizes L = 12–18, which are summarized in Table I.

As one can see the energy densities of the products states
along the x and z axes change significantly and in the case of
x states do not have opposite signs anymore, hence there must
be additional operators with even number of X terms. The
most striking change however is seen from the y states, which

go from a vanishing energy density to the largest/smallest
one. Since they are almost the negative of another, the largest
contribution comes from operators with odd number of Y .
Finally, we also observe that the y states are almost at the very
edge of the spectrum, therefore we conclude that the Floquet
Hamiltonian is significantly different from the average and
that the heating rates, although looking similar are the result
of a truly different dynamics.

APPENDIX F: SPIN CHAIN WITH SPIN
FLIP SYMMETRY BREAKING

Additionally, to the driven spin chain in the main part, we
consider a model of a spin chain, which has been studied in the
context of heating in Floquet systems [52,53] and also can be
regarded as an example system with weak symmetry breaking.
The average and drive are given by

H0 = hxX + JzZZ + JxXX, V = hyY + hzZ,

with coefficients hx = 0.42, hy = 0.34, hz = 0.26, Jx =
3, and Jz = 4, where the letters denote spin one-half oper-
ators analogous to the main text. Different from the cited
works, we use periodic boundary conditions, which however
does not seem to change the observed heating rates as well as
further conclusions in this section. The average Hamiltonian
is then invariant under translations, spatial reflection and spin
flips about the z axis generated by the flip operator

F =
L∏

i=1

σ x
i .

The drive has the same spatial symmetries but is not invariant
under spin flips, which leads to a (weak) breaking of this
symmetry, whose effects we will observe in the spectroscopic
approach. Due to the spatial symmetries we can again focus
on the zero momentum and positive parity sector.

Anticipating a near-conservation of spin flip parity (〈F 〉)
we color the levels in Fig. 13 by 〈F 〉 instead of ε0 and can
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FIG. 13. Avoided crossing spectroscopy of spin chain with weak symmetry breaking. (a) Eigenangles with L = 6 colored by spin flip
parity. The states are close to fixed parity states, but crossings between both sectors are possible. (b) Gaps colored by spin flip transfer with
L = 10. For high frequencies, only gaps between different sectors have an appreciable magnitude and contribute to heating. With increasing
τ the ordering is changed (see discussion) and it appears that the transfer is independent of the sectors. (c) Heating times based on real-time
simulations with L = 24 (symbols) and the FGR as well as the gap data evaluated with dE = 0.5 (lines).
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observe clearly in Fig. 13(a) that the eigenstates are (almost)
fixed parity states and in Fig. 13(b) that the matrix elements
of states with the same parity are significantly smaller than
the ones between different parity (this result can be explained
by the oddness of the drive under spin flips [53]). In fact,
the small gaps seem to be limited by resolution and might
be much smaller in actuality, however they will not affect
the heating rate in any case. Looking closely at the Floquet
diagrams, it seems that the smaller gaps should be attributed
to same parity states for all τ values and not be mixed as in
the figure. The observed mixing should rather be understood

as illustrating the effects of ghost gaps, as discussed in the
main part.

Furthermore, upon inspection of the diagrams, we observe
phenomena that we call “nested crossings”: here there is a
switching between two states which are not neighbors in
the Floquet diagram, but rather separated by a middle state
which seems unaffected. We have not observed such crossings
in the driven chain and suspect that they are related to the
(nearly) spin-flip symmetry. Anyway, this seems to not affect
the heating times displayed in Fig. 13(c) and further sup-
ports the robustness of the method, while also suggesting the
study of crossings with near symmetries as a potential future
direction.
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