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Two dominant timescales of cytoskeletal crosslinking in the viscoelastic response of the cytoplasm
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Cells precisely regulate their frequency-dependent viscoelastic properties in response to chemical and mechan-
ical cues. We use optical trap-based active microrheology using intracellular probes to measure the cytoplasmic
mechanical response of fibroblast and macrophage cells over a broad frequency range (∼0.02–350 Hz). Both
cell types show similar frequency-dependent behavior, suggesting that the mechanisms that control the cell’s
mechanical response are general to many cell types. At frequencies above 1 Hz, the cytoplasmic mechanical
behavior shows a broad distribution of relaxation timescales consistent with power-law mechanics. At low
frequencies (<1 Hz), cells exhibit fluidlike behavior with distinct relaxation timescales, similar to that observed
in reconstituted networks of transiently crosslinked actin filaments. The response across all frequencies can be
captured by a mathematical model combining a power-law term with two crosslinker-unbinding terms. The two
unbinding rates required to describe the low-frequency response suggest that the viscoelastic relaxation of the
cytoplasm is governed either by multiple dominant crosslinkers or by a single crosslinker with multiple states.
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I. INTRODUCTION

Cells tightly regulate their mechanics as abnormal cellular
mechanics are implicated in cancer, scleroses, and fibroses
[1–6]. Cells adapt their mechanics to their environment, be-
havior, and function [7–10]. Further, cells tune their mechan-
ical response over different timescales [11,12]. Over short
timescales, elastic properties dominate the cell’s viscoelastic
response, while viscous properties become increasingly dom-
inant at longer timescales [11,12]. This frequency-dependent
behavior has given rise to various theories attempting to math-
ematically describe the cell’s viscoelastic response, such as
poroelasticity, tensegrity, Kelvin-Voigt, and Maxwell models,
each posing different explanations for the governing mecha-
nism behind the cell’s mechanical behavior [13–16]. Each of
these models describe cellular mechanics in specific systems
well, yet it has been challenging for any one model to capture
the diverse behavior observed across cellular and reconstituted
systems.

Power-law mechanics have often been used to describe
the viscoelastic response of living cells, indicating a broad
range of relaxation timescales [17–22]. Multiple relaxation
timescales may be due to the presence of cytoskeletal
crosslinkers with varying kinetics, entropic cytoskeletal
filament fluctuations, and large-scale network rearrangements
[21,23–25]. In contrast, reconstituted systems consisting of
actin filaments and a single transiently binding crosslinker
exhibit fluidlike behavior at distinct timescales corresponding
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to the crosslinker unbinding rate [26–30], hereafter referred
to as relaxation rate or relaxation timescale. At frequencies
faster than the crosslinker unbinding rate, the network exhibits
the stiff, solidlike behavior of a statically crosslinked polymer
network, while at frequencies near the crosslinker unbinding
rate, the network exhibits more fluidlike and viscous behavior
as dynamic crosslinker detachments allow the network to
rearrange [31]. Only at timescales fast enough to render
crosslinker unbinding irrelevant do these networks exhibit the
power-law behavior expected of entangled, noncrosslinked
networks [31–36]. To describe the low-frequency relaxation
and high-frequency elastic behavior observed in dynamically
crosslinked polymer networks, the dynamic crosslinking
model (DCM) was proposed which combines a dynamic
crosslinking term and a power-law term [31].

Although dynamic crosslinking describes the mechanics of
reconstituted systems consisting of filaments and crosslink-
ers well, it has been difficult to perform measurements at
the slow timescales corresponding to crosslinker unbinding
dynamics in living cells. Using an optical stretcher to mea-
sure the mechanics of suspended fibroblasts, Wottawah et al.
found that their mechanical response exhibited relaxation at
a distinct timescale and could not be fit to a power law
[37]. Similarly, distinct relaxation timescales were observed in
our previous mechanical measurements taken over a broader
frequency range in adherent fibroblasts via optical-trapping
microrheology [38]. Unlike the power-law behavior of the
high-frequency mechanics, we observed a distinct relaxation
at low frequencies that was better described by a dynamic
crosslinking term, where the timescale of relaxation cor-
responded to the unbinding rate of the actin crosslinking
protein alpha-actinin-4 [38]. While the dynamic crosslinking
model captured the fast and slow dynamics well, it was not
able to fully describe the experimental data at intermediate
frequencies [38].
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To map the cytoplasmic viscoelastic response of living
cells in detail, we performed intracellular optical tweezers
measurements over a broad range of timescales (0.02–350
Hz) in fibroblast and macrophage cells. We modified the
dynamic crosslinking model proposed by Lieleg et al. in
Ref. [31] by adding a second dynamic crosslinking term,
and found that the two-crosslinker model captures cyto-
plasmic mechanical behavior over the entire experimental
frequency range for multiple cell types. The two unbind-
ing rates observed may be due to multiple independent
crosslinkers which dominate the timescales of the cell’s
viscoelastic response, or alternatively may be due to a sin-
gle dominant crosslinker with multiple states which lead
to two unbinding rates. The model provides insight into
the physiological mechanisms of cellular viscoelasticity and
offers a theoretical framework to analyze and understand
cell mechanics.

II. METHODS

A. Cell culture and slide preparation

Macrophages (J774.1, ATTC) and wild-type immortalized
dermal fibroblasts [39] were cultured in complete Dulbecco’s
Modified Eagle Medium (DMEM) media (Thermo Fisher
Scientific) supplemented with 2 mM GlutaMAX (Thermo
Fisher Scientific), 10% Fetal Bovine Serum (FBS) (Thermo
Fisher Scientific), 100 U/mL penicillin, and 100 ug/mL strep-
tomycin. Fibroblasts were passaged at ∼80% confluency via
trypsinization and terminated by P20. Macrophages were pas-
saged at ∼70% confluency via scraping and terminated by
P20. Cells were seeded onto glass coverslips 24–36 h prior to
experiments to yield an appropriate cell density for mechani-
cal measurements, minimizing cell-cell contacts.

Prior to cell seeding, 500-nm fluorescent carboxylated
polystyrene beads (Thermo Fisher Scientific) were PEGylated
following Ref. [40] to minimize interaction with cytoskele-
tal proteins and motors, and then washed and resuspended
in hypertonic complete media (∼107 beads per mL, 10%
Polyethylene Glycol (PEG) 3500, 0.25 M sucrose). The cells
were incubated in the hypertonic media for 1 h to allow bead
uptake via phagocytosis, followed by a < 3−min incubation
in hypotonic media (2:3 water:complete media) to burst the
phagosome membranes around the beads. The cells were then
left to recover in regular complete media for at least 1 h prior
to measurements.

A flow chamber was constructed on a glass microscope
slide using double-sided tape and vacuum grease (Dow Corn-
ing) to mount the cell coverslip. Vacuum grease was used
to seal the ends of the slide and prevent imaging media
(Leibovitz) from evaporating during measurements. Measure-
ments were taken at 37 ˚C using a custom-built environmental
chamber with a heater (World Precision Instruments) and did
not exceed 2 h.

B. Mechanical measurements

We performed optical trap-based active microrheology
[41] using the multicomponent excitation method we de-
veloped previously [38]. The optical trap was built on an
inverted microscope (Ti-E: Nikon, 1.49 numerical aperture

oil-immersion 100× objective) with a near-IR laser beam
(1064 nm, 10 W, IPG Photonics), which was expanded to
overfill the back aperture of the objective. The position of an
intracellular trapped bead [Fig. 1(a)] relative to the trap center
was recorded on a quadrant photodiode (QPD) (Thorlabs) via
back focal plane interferometry. A 22-frequency excitation
sine wave was applied to the trap via an optoacoustic de-
flector (AA Optoelectronics, DTSXY-400-1064, direct digital
synthesizer driver) controlled through a field-programmable
gate array and custom LabVIEW programs (National Instru-
ments). The frequencies of excitation were chosen to cover
the frequency range from ∼0.02 to 1000 Hz without signifi-
cant overlap of the fundamental or harmonic frequencies. The
amplitude of the wave at each frequency ranges from 1 to
50 nm and was chosen to provide a coherent signal while
maintaining a linear response (primary response is > 20 dB
above harmonic responses). Measurements were recorded for
∼275 s at 20 kHz to obtain sufficient data to calculate the
mechanical moduli at the lowest measured frequency.

C. Measurement processing and model fitting

The optical trap stiffness (pN/nm) and photodiode sensi-
tivity (nm/V) were calibrated per measurement by fitting a
simplified viscoelastic model simultaneously to the transfer
function (TF) between the bead and trap motion and the power
spectrum (PS) of the bead motion using MATLAB’s lsqcurve-
fit function, as described in Ref. [42] [Figs. 1(c)–1(e)]. Only
the portion of the data which can be approximated using this
model was used for calibration, corresponding to data > 1 Hz
in the TF and ∼10–1000 Hz in the PS. Where possible, a step
excitation was used to directly estimate the QPD sensitivity
(Supplemental Material, Fig. S1 [43]) [44]. The mechanical
moduli were then calculated from the calibrated TF following
Ref. [36] for all measured frequencies < 500 Hz where the
coherence between the bead and trap signal is > 90% (Sup-
plemental Material [43]). Using the response only at applied
frequencies minimizes the contribution of thermal noise or
active cellular processes to the bead movement (and thereby
the calculated mechanics), as the magnitude of the bead move-
ment due to laser oscillation at these specific frequencies is
large in comparison to random movement. The mean and
95% confidence intervals were obtained by generating 1000
bootstrap samples with replacement from the measurement
pool (31 unique measurements for the fibroblasts, 49 for the
macrophages).

The mechanical models were fit to the mean data using
MATLAB’s lsqcurvefit function. For models with many free
parameters (> 5), groups of parameters were fit iteratively
to ensure optimal model fits (Supplemental Material, Fig.
S2 [43]). To estimate the confidence of the model fitting,
1000 fits were generated by subjecting the initial parameter
starting point to uniformly distributed random perturbations
between +/−25%. The resulting fit distributions were used to
find the means and 95% confidence intervals (CIs) for model
parameters and Bayesian information criterion (BIC) values.
For parameters with no substantial variation, 95% CIs are not
reported.
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FIG. 1. Experimental setup and sample data. (a) Bright-field image of a fibroblast cell with a trapped bead (arrow). (b) Schematic of
bead and laser motion during laser oscillation. As the laser is oscillated, the motion of the bead is impeded by its surrounding, causing it to
deviate from the center of the trap (right). (c) Diagram depicting the forces acting on the bead due to the trap and viscoelastic environment.
Cytoplasmic stiffness kcyt consists of two components, a constant elasticity (kcyt,0) and a frequency-dependent elasticity (kcyt,1). (d) Theoretical
transfer function expression [Supplemental Material, Eq. (S3) [43]] is fit (brown line) to the transfer function between the bead and trap
motion to obtain the unknown system parameters, including the trap stiffness (ktrap). (e) Theoretical power spectrum expression (Supplemental
Material, Eq. (S4) [43]] is fit (dark brown line) to the power spectrum of the bead’s motion to obtain the system’s unknown parameters. The
power spectrum represents the bead’s thermal motion and is taken in the lateral direction perpendicular to the trap movement. Both the transfer
function (magnitude and phase) and power spectrum are fit simultaneously to the data using MATLAB’s lsqcurvefit function (Supplemental
Material [43]). (f) Mechanical moduli from four individual fibroblast and (g) macrophage cells taken during four different experimental
sessions.

III. RESULTS

Previously, we showed that the cytoplasm of fibrob-
last cells exhibits a transition to fluidlike behavior at long
timescales [38], consistent with the dynamic crosslinking
model proposed by Lieleg et al. [31]. However, addi-
tional measurements were needed to map the low-frequency
mechanics with adequate resolution to constrain mathemat-
ical models. Here, we measured the frequency-dependent
mechanical response of fibroblasts and macrophages with
high-resolution using intracellular optical trap-based mi-
crorheology [38,41], including additional excitation frequen-
cies to better resolve mechanics at slow timescales (see
Methods (Sec. II) and Fig. 1).

Reported measurements of the viscoelastic response of the
cytoplasm in living cells vary considerably due to differences
in cell types, culture conditions, and experimental techniques.
While many measurements of cell mechanics in the literature
are consistent with power-law behavior [19,21,45–49], other
measurements show deviation from power-law behavior at
low frequencies [37,38,50]. Here, we find that a power law
[Eqs. (1) and (2)] using two exponents (α, β ) to describe
two frequency-dependent regimes fails to accurately capture
the mechanics of both macrophages and fibroblasts at slow
timescales [< 1 Hz, Figs. 2(b) and 2(c)]. While the data do
show broad trends consistent with previously reported cellular
power-law mechanics [21,47–49], with a low-frequency ex-

ponent near 0.2 and a high-frequency exponent approaching 1
(Table I), the model clearly fails to capture the low-frequency
response [Figs. 2(b) and 2(c)]. Given the distinct minima and
maxima observed at the lower frequencies, it appears that
the mechanical behavior in this frequency range is governed
by phenomena which lead to distinct relaxation timescales,
explaining the inability of the power-law model to describe
this response.

We next fit the dynamic crosslinking model proposed by
Lieleg et al. to our viscoelastic response measurements, given
in Eqs. (3) and (4) [31]. This model accounts for a plateau
elastic modulus (G0) and a single crosslinker unbinding rate
(koff ), as well as a power-law frequency regime with dynamics
governed by an exponent β. The crosslinker unbinding rate
gives a local maximum in the viscous response as energy
is effectively dissipated via network rearrangement, and a
corresponding local decrease in the elastic response [31].
However, the single-koff DCM [Fig. 2(a)] was also unable to
capture the broad relaxation dynamics observed and offered
only a slightly better characterization of the responses than
the power-law model [Figs. 2(b) and 2(c)]. In response, we
extended the DCM to include two dominant crosslinkers with
different unbinding kinetics [Eqs. (5) and (6), Supplemental
Material [43]). The double-koff DCM includes the same pa-
rameters as the single-koff DCM with the addition of a second
crosslinker unbinding rate, koff2, thus providing a model with
two timescales of relaxation [Fig. 2(a)]. This model was able
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FIG. 2. Mechanics of fibroblasts and macrophages follow a double-unbinding rate dynamic crosslinking model. (a) Analytical expressions
for the elastic (G′) and viscous (G′′) modulus in the double power-law model, 1-koff dynamic crosslinking model, and 2-koff dynamic
crosslinking model. a–d represent scaling constants; N1 and N2 are the number of crosslinkers in the system with unbinding rates of koff1

and koff2, respectively; α, β control the frequency dependence of the power-law terms; and f0 determines the frequencies at which the
power-law terms become predominant. (b) Viscoelastic response of fibroblasts (mean ± 95% CI from 1000 bootstrapped samples) and (c)
macrophages cannot be described by the power-law model (dashed) or 1-koff DCM (solid), as both fail to simultaneously characterize the low-
and intermediate frequency response. (d) Both the fibroblast and (e) macrophage data sets are well described by a 2-koff DCM, with similar
fast (solid arrow) and slow (dashed arrow) crosslinker unbinding rates. Insets show normalized BIC value for models with 0–3 koff terms
(0 = power−law model). (n = 31 fibroblasts, 49 macrophages).

to characterize the observed behavior over the entire fre-
quency range, as it provides a framework capable of capturing
the relaxation rates seen at both the low and intermediate
frequencies [Figs. 2(d) and 2(e)]. Adding a third koff term to
the dynamic crosslinking model did not further improve the
model fit to the data [Figs. S3(e)–S3(h), Table S2, [43]].
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We used Bayesian information criteria (BIC) to quanti-
tively compare the candidate models and account for their
varying complexity [51]. The 2-koff DCM has the lowest in-
formation criterion value of all models in both cell types when
comparing the BIC values obtained using normalized resid-
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TABLE I. Model parameter and BIC values for models fit to the cytoplasmic viscoelastic response. Frequency-dependence parameters
represent variables which control how the mechanics vary in response to frequency, while scaling constants adjust the magnitude of the
mechanical moduli. Numbers in brackets represent 95% confidence intervals (provided where relevant). f0 = 1 for all models.

Power law Power law 1-koff DCM 1-koff DCM 2-koff DCM 2-koff DCM
(fibroblasts) (macrophages) (fibroblasts) (macrophages) (fibroblasts) (macrophages)

Frequency - dependence parameters
α 0.264 0.275
β 0.953 0.836 0.574 0.647 0.621 0.647

[0.616, 0.624]
koff1 (Hz) 0.333 0.0597 0.011 6 0.0153

[0.331, 0.334] [0.006 30, 0.019 6] [0.013 5, 0.017 2]
koff2 (Hz) 0.936 0.878

[0.743, 1.17] [0.756, 1.05]
Scalingconstants

G0 (Pa) 34.0 27.5 34.0 27.5 34.0 27.5
a (Pa) 38.0 33.0
b (Pa) 1.92 3.61 5.97 5.87 5.03 6.60

[4.97, 5.15] [6.56, 6.66]
d (Pa) 14.5 11.7 11.9 10.9

[14.5, 14.6] [11.6, 12.2] [10.8, 11.0]
a1N1 (Pa Hz) 1.02 0.229 0.0138 0.003 25

[1.02, 1.03] [0.306, 2.98] × 10−2 [2.72, 3.91] × 10−3

a2N2 (Pa Hz) 2.44 1.89
[2.04, 2.83] [1.65, 2.23]

c1N1 (Pa Hz) 3.89 1.83 0.351 0.920
[3.84, 3.96] [0.314, 0.412] [0.885, 0.960]

c2N2 (Pa Hz) 13.7 10.1
[9.93, 18.1] [8.25, 12.9]

In f ormation criteria

BIC (norm) −4.93 27.9 17.0 36.4 −14.2 9.42
[−19.6, −6.51] [8.79, 10.4]

BIC (raw) 341 401 335 406 334 411
[335, 336] [330, 337]

uals, such that the data are weighted approximately equally
across the frequency range [Figs. 2(d) and 2(e); Table I].
Interestingly, this advantage becomes less apparent when
comparing BIC values obtained using raw residuals, which
naturally weigh the higher-frequency data more heavily due
to their larger magnitude. This indicates that while a power
law or 1-koff DCM may be suitable to describe the cell’s
viscoelastic response in cases where high-frequency data are
the primary focus, these models are incapable of accurately
capturing the cell’s slower frequency behavior.

Within the 2-koff DCM, both the fibroblasts and
macrophages showed comparable behavior, with similar
power-law exponents (∼ 0.6) and crosslinker unbinding rates
(koff2 ∼0.9 Hz and koff1 ∼ 0.01 Hz). The values for the pa-
rameters of all the models fit to the data are given in Table I.
Note that the estimates for koff1 are based on the position of
the low-frequency peak in the loss modulus, which lies at the
edge of the experimental range. Measuring the response at
low frequencies poses significant challenges due to the long
measurement duration required to obtain several periods of
measurement while active processes are ongoing in the cell,
leading to a high degree of variance in the moduli at the lower
frequencies and therefore a high degree of uncertainty in the
estimates of the slower unbinding rate (koff1). In particular,

PEG-coated beads were more susceptible to interactions with
motor proteins in macrophage cells, and beads were often
pulled out of the trap prior to the end of the measurement.
In addition, crowded cytoplasmic environments often led to
beads being jostled out of the trap center prematurely, limiting
the measurement length which can be reliably obtained and
reducing the availability of data at the slower frequencies.
This limited our ability to capture the cells’ slower dynamics,
and more reliable koff1 estimates would require additional ex-
periments to better delineate the mechanics at slow timescales.
The 2-koff DCM fits obtained when excluding the slowest
frequency data are similar to those in Fig. 1, and are provided
in the Supplemental Material [Figs. S3(c) and S3(d); Table S1
[43]].

While using an active intracellular microrheological ap-
proach allowed us to obtain detailed measurements of the
cytoplasmic mechanics at a wide range of frequencies, op-
tical tweezer-based microrheology has several limitations.
Beads may interact nonspecifically with cellular components,
or cause reorganization of the cytoplasm and cytoskeleton.
Using endogenous probes like lipid droplets could alleviate
these limitations, but introduces other difficulties, such as
uncontrolled interactions between the mechanical probe and
the cytoskeleton, difficulties in trap calibration due to the
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uncertain size of the probe, and the inability to exert adequate
forces due to their size and refractive index [52]. We therefore
opted to introduce probe beads via phagocytosis, followed by
an osmotic shock to lyse phagosomes and release passivated
beads into the cytoplasm. Cells were then allowed to recover
from the probe uptake procedure before undergoing mechani-
cal measurements [see Methods (Sec. II)] [38]. However, any
intracellular probe necessitates an in situ trap calibration, as
the trap strength varies from cell to cell and probe to probe
due to their varying optical properties [38,42,53]. Finally,
the use of a high-powered laser to trap the probes causes
a local increase in the intracellular temperature and could
alter diffusion and protein binding kinetics, influencing the
measured mechanics and estimates reported for koff [29,54–
57]. The trap wavelength was therefore chosen to have low
absorption in biological tissue [58] and measurements were
kept under 5 min in duration to minimize the effects of
local heating. Despite the above limitations, optical tweezer-
based microrheology provides high-resolution maps of the
frequency-dependent viscoelastic properties of the cytoplasm
due to their high sensitivity (< 0.1 pN, < 1 nm) and ability
to probe mechanics over a broad range of timescales, from
microseconds to minutes.

IV. DISCUSSION

The inability of the power-law model to describe the
cell’s low-frequency viscoelastic behavior indicates that the
mechanics of the cytoplasm are governed by distinct phe-
nomena over low and high frequencies, with cytoskeletal
crosslinker unbinding dynamics governing low-frequency me-
chanics and cytoskeletal filament dynamics governing only
the cell’s high-frequency response [24,31]. The proposed
2-koff model [Fig. 2(a)] does not differ significantly from pure
power-law models at high frequencies, as the crosslinkers
remain statically bound to the network at these timescales
[Fig. 3(a)] and the mechanical behavior is governed chiefly by
filament fluctuations, which are accounted for by the power-
law term [Fig. 3(d)]. However, at intermediate frequencies,
the mechanics begin to deviate from power-law behavior,
as can be seen by a peak in the viscous modulus and a
decrease in the elastic modulus [Fig. 3(e)]. This occurs at
koff2, when the crosslinkers with a dissociation rate of koff2

are unbinding and allowing some cytoskeletal rearrangement
to occur [Fig. 3(b)]. The effect of koff2 on the mechanical
response becomes less distinct as koff2 becomes faster, since
the broad range of relaxation timescales present at high fre-
quencies prevents the contribution of individual relaxation
rates from being observable [Fig. 3(e)]. At very low frequen-
cies, the second population of crosslinkers begins to unbind
at a rate of koff1 [Fig. 3(c)], leading to another maximum in
the viscous modulus and dip in the elastic modulus at koff1

[Fig. 3(f)].
Several possible mechanisms might lead to the observa-

tion of two distinct unbinding rates. Although a multitude of
cytoskeletal crosslinkers has been identified to date [59–63],
obtaining reliable estimates for their unbinding rates is exper-
imentally challenging and estimates vary widely by technique
[64–66]. However, several have been found to have unbind-
ing rates on the order of magnitude of the rates reported

FIG. 3. Network behavior and corresponding mechanics over
different timescales in the double-unbinding rate dynamic crosslink-
ing model. (a) At frequencies � koff2, the crosslinked network is
static, and the mechanics are governed by entropic filament fluctu-
ations. (b) At frequencies near koff2, some cytoskeletal crosslinkers
are unbinding, allowing for limited network rearrangement. (c) At
frequencies < koff1, all cytoskeletal crosslinkers are unbinding and
allowing for network rearrangements, leading to an increase in flu-
idlike behavior. d) Increasing beta (0.5x–2x, light orange to brown)
increases the frequency dependence of the elastic (solid lines) and
viscous (dashed lines) modulus at high frequencies. (e) Increasing
koff2 (orange to brown) shifts the intermediate peak in the viscous
and drop in the elastic modulus to higher frequencies. (f) Increasing
koff1 (orange to brown) shifts the leftmost peak in the viscous and
drop in the elastic modulus to higher frequencies.

here, and suggest that the unbinding rates of many crosslink-
ers may be too similar to one another to be distinct in the
cell’s viscoelastic response [Figs. 3(e) and 3(f)] [64,67–70].
In this case, koff1 and koff2 would represent the ensemble aver-
age unbinding rates of two dominant groups of cytoskeletal
crosslinkers controlling the timescales of cytoplasmic me-
chanics [Fig. 4(a)]. However, it is also possible that only a
select few of the large variety of crosslinkers in the cytoplasm
have a significant effect on the cell’s viscoelastic response in
the frequency range being studied. While the mechanical role
of certain cytoskeletal crosslinkers has been studied (often
in simplified reconstituted systems), the exact contribution
of each cytoskeletal-binding protein to the cell’s mechanical
response for the large part remains unknown [38,66,71–73],
and it is therefore possible that many do not have a measur-
able effect on cytoplasmic mechanics. In this case, the two
unbinding rates may be due only to the two crosslinkers with

043167-6



TWO DOMINANT TIMESCALES OF CYTOSKELETAL … PHYSICAL REVIEW RESEARCH 4, 043167 (2022)

FIG. 4. Possible explanations for the two unbinding rates governing cytoplasmic mechanics. (a) Cytoskeletal crosslinkers fall into two
categories: a slow-unbinding group (orange) and fast-unbinding group (brown). These two groups of cytoskeletal crosslinkers (orange, brown)
govern the two relaxation rates of the cytoplasmic viscoelastic response. (b) Out of the cell’s multitude of different cytoskeletal crosslinkers
(orange, brown, gray), only two crosslinkers play a significant role in determining the cell’s mechanical response (orange, brown). Each
of the two dominant crosslinkers governs one of the relaxation rates of the cell’s viscoelastic response. (c) Out of the cell’s multitude of
different cytoskeletal crosslinkers (brown, gray), only a single dominant cytoskeletal crosslinker plays a significant role in determining the cell’s
mechanical response (brown). This crosslinker exhibits two conformational states (straight linker, bent linker), leading to the two unbinding
rates governing the relaxation rates of the cytoplasmic viscoelastic response.

the strongest influence on the cell’s viscoelastic properties
[Fig. 4(b)].

Finally, a third possibility is that these are in fact two
unbinding rates of a single dominant cytoskeletal crosslinker
[Fig. 4(c)]. Certain cytoskeletal crosslinkers can switch
between conformational states and thereby change their bind-
ing kinetics [74]. This can be caused by regulatory factors
which operate to switch the crosslinker between conforma-
tional states with fast and slow unbinding rates, or an intrinsic
load dependence which causes it to unbind with increasing
frequency in response to increasing tension (slip bond) or
decreasing frequency in response to increasing tension (catch
bond) [74–79].

The agreement between our data and the DCM model
fit suggests that dynamic cytoskeletal crosslinkers are a ma-
jor contributor to cytoplasmic mechanics at low frequencies.
However, there are many components which contribute to
the cytoplasmic viscoelastic response, including membranes,
different cytoskeletal filaments, cytoskeletal motor proteins,
cytosolic fluid, and the interactions between these compo-
nents [17,26,39,80–87]. Simple models like the 2-koff DCM
proposed here provide a framework for interpreting future
research investigating the function of individual cytoskeletal
elements and crosslinkers.

V. CONCLUSION

Detailed measurements of the cell’s low-frequency vis-
coelastic response using active microrheology reveal that the
power-law model is incapable of capturing the cell’s cyto-
plasmic mechanical behavior at slow timescales. In contrast

to the broad range of relaxation timescales described by
power laws, the cell exhibits two distinct relaxation rates,
one at low (∼0.01 Hz) and one at intermediate (∼0.9 Hz)
frequencies. The observation of these relaxation timescales
in both macrophage and fibroblast cell types suggests that
cytoskeletal crosslinker unbinding is a conserved mechanism
controlling the frequency dependence of low-frequency cyto-
plasmic mechanical behavior, which can be described using a
double-unbinding rate dynamic crosslinking model. The pro-
posed model provides a theoretical framework to understand
the physiological basis for the cell’s viscoelastic response,
elucidating the unique physiological factors regulating low-
frequency and high-frequency mechanics. Further work is
required to identify the main crosslinkers responsible for
regulating the cell’s viscoelastic relaxation rates as well as
the components of the cytoskeleton with which they interact.
This could provide crucial insight into the cell’s mechanical
regulatory system and further our understanding of diseases
associated with abnormal mechanical properties.
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