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Entanglement is one of the most fundamental features of quantum systems. In this work, we obtain the en-
tanglement spectrum and entropy of Floquet noninteracting fermionic lattice models and build their connections
with Floquet topological phases. Topological winding and Chern numbers are introduced to characterize the
entanglement spectrum and eigenmodes. Correspondences between the spectrum and topology of entanglement
Hamiltonians under periodic boundary conditions and topological edge states under open boundary conditions
are further established. The theory is applied to Floquet topological insulators in different symmetry classes and
spatial dimensions. Our work thus provides a useful framework for the study of rich entanglement patterns in

Floquet topological matter.

DOLI: 10.1103/PhysRevResearch.4.043164

I. INTRODUCTION

Floquet topological phases are intrinsically nonequilib-
rium states in periodically driven systems [1-5]. They are
characterized by large topological invariants [6—15], unique
symmetry classifications [16—19], and anomalous edge modes
with no static analogies [20-22]. The realization of Floquet
topological matter in various experimental settings [23-30]
further promotes the development of new methods in quan-
tum engineering [2], ultrafast electronics [3], and topological
quantum computing [31-33].

Entanglement is one of the most profound concepts in
quantum physics [34—40]. It characterizes the nonclassical
correlation among different parts of a composite quantum
system. Information theoretical measures, such as the en-
tanglement spectrum (ES) [41] and entanglement entropy
(EE) [42], have been further shown to be able to pro-
vide important insights for the understanding of topological
phases in condensed-matter systems [43-57]. For example,
in two-dimension, topology-induced subleading corrections
were found in the EE [45-47]. Moreover, the ES of reduced
density matrix has been shown to contain information about
the bulk-edge correspondence in topological insulators and
superconductors [48-56]. In Floquet systems, the ES and
EE have also been considered in periodically driven Kitaev
chain and graphene lattice, and unique bulk-edge correspon-
dences in the EE of Floquet ground states were identified
[58-61]. However, a systematic approach to reveal the ES
and EE for general states of Floquet systems in different
physical dimensions still awaits to be developed. Furthermore,
connections between the topological properties of Floquet
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entanglement Hamiltonians and Floquet topological edge
states for models belonging to different symmetry classes and
with different numbers of quasienergy bands have yet to be
established.

In this work, we introduce a framework to characterize the
ES and EE of Floquet systems consisting of noninteracting
fermions in discrete lattices. The recipe of our theory is devel-
oped in Sec. II, where we build the connection between the ES
and EE of a Floquet system and the spectrum of its correlation
matrix. The entanglement is introduced by first decomposing
the whole system S into two parts A and B in coordinate space,
and then tracing out all the degrees of freedom belonging to
the subsystem B from the many-particle density matrix p of
the considered Floquet state in S. The reduced density matrix
Pa = Trpp then carries the information about the bipartite en-
tanglement between subsystems A and B. Illustrations of the
considered partitions for one- and two-dimensional systems
are given in Fig. 1. We refer to the entanglement Hamiltonian
Hp of pa, defined by pa = e /2 /Tr(e #4) as the Floquet
entanglement Hamiltonian because it originates from the
many-particle Floquet state. Real-space winding and Chern
number invariants are further introduced to depict the topo-
logical nature of Floquet entanglement Hamiltonians in one
and two spatial dimensions. In Sec. III, we apply our theory
to typical one-dimensional (1D) Floquet topological insulator
models in different symmetry classes and two-dimensional
(2D) Floquet Chern insulator models with different numbers
of quasienergy bands. For each case, we establish concrete
relations between the topological properties of the ES under
the periodic boundary condition (PBC) and the topological
edge states of the Floquet operator under the open boundary
condition (OBC). These entanglement bulk-edge correspon-
dences are generic and applicable to other systems within the
same symmetry classes as those considered in this work. We
summarize our results, compare them with related studies and
discuss potential future directions in Sec. IV. More details
about the properties of EE around Floquet topological phase
transitions are provided in the Appendix.
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FIG. 1. Partitions for the bipartite ES and EE of (a) 1D chain
and (b) 2D lattice under periodic boundary conditions. Red dashed
lines denote the partition boundaries (entanglement cuts) between the
subsystems A and B.

II. THEORY

In this section, we introduce the definitions of ES and
EE for Floquet states in periodically driven noninteracting
fermionic systems. We further establish their connection with
the single-particle correlation matrix of the system. The latter
provides us with an efficient means to explore the ES and EE
theoretically and numerically. Finally, we introduce topolog-
ical invariants for the reduced density matrix, which will be
used to characterize Floquet topological phases at the level of
entanglement Hamiltonian in one and two spatial dimensions.

In the second quantization formalism, the time-dependent
Hamiltonian for a Floquet system of free fermions reads

A(t) =& Hun(t)en, ey

where H(t) = H(t + T) and H,,,(t) = H,,(t + T) are peri-
odic in time ¢ with the driving period T and driving frequency
w=2n/T.¢, (EZ) is the annihilation (creation) operator of a
fermion in the basis {|n)} so that &,|n) = |@) and &{|0) = |n),
where |#) denotes the vacuum state. The fermionic creation
and annihilation operators satisfy the anticommutation rela-
tions

{Ems €1} = Sun- 2)

The Floquet operator of the system generates its dynamics
over a complete driving period. Consider the evolution from
t =0to T, it can be defined as

{em, &0} =1{&],el} =0,

O =Te i Jo Awr, 3)
where T is the time-ordering operator. From now on we set
B = 1. Since H (¢) is Hermitian, U is unitary and it possesses
a single-particle basis {|1;)} called Floquet eigenstates. In this
basis, we can express U as

U = BT, )

where E; € [—m, ) is the quasienergy. The operator 1/}; cre-
ates a particle in the Floquet state [y;) from vacuum, i.e.,
1&] |4) = ;). {In)} and {|+/;)} are both orthonormal and com-
plete basis satisfying

(mln) = 8y, Y Inp(nl =1, (5)
(Wily)) = 8. Y W)yl =1, 6)
J

where a,; = (n|;), or, equivalently,
U= aney. di=) i ©
= "abl. tn=> ayi; (10)
J J

It can be verified that ¥ j and gﬁj also satisfy the anticommu-
tation relation of fermions, i.e.,
Wa ¥y =0 oy =0, (¥t =8, A
We next construct the many-particle density operator for a
set of occupied Floquet states. Since the quasienergies {E;}
of U are phase factors, they do not have a natural order even
though they are stroboscopically conserved in Floquet dynam-
ics. Therefore, the definition of a “quasienergy Fermi surface”
below which each state |v/;) is occupied by one fermion is
ambiguous. Under the conditions: (i) the quasienergies {E;}
are confined to the range of [—m, ), (ii) the configuration
of quasienergies is symmetric with respect to E = 0, and (iii)
the quasienergy spectrum is gapped at E = 0, £, it may look
natural to define a “Floquet ground state” by uniformly filling
all states {|y/;)} with quasienergies ranging from — to zero.
We make this choice for most of the numerical calculations
presented in this work. Here, to be general enough, we just
assume that a collection Floquet states {|¥;)|j € occ.} are
filled initially, such that the many-particle wave function of
the system takes the form

) =[] 419, (12)

jeocc.

which is normalized as (W |W) = 1 and fulfills the eigenvalue
equation U |W) = e~ e £i| W) The density operator corre-
sponding to such a many-particle Floquet state takes the form

p= W) (V. 13)

It satisfies the general feature of a pure-state density matrix,
ie,p=php=p%and Trp = 1.

To investigate the ES and EE, we decompose the system
into two parts A and B with Hilbert spaces H,4 and Hp, such
that the Hilbert space of the whole system H = H ® Hp.
For 1D and 2D systems, such a bipartition is illustrated in
Fig. 1. Tracing over all degrees of freedom belonging to the
subsystem B (Trp) yields the reduced density matrix ps of
subsystem A, i.e.,

1 . .
pa =Trpp = ze—‘L’A, Z = Tre . (14)

In the second equality, we introduced the entanglement
Hamiltonian I-?A, whose eigenvalues form the ES of the
reduced density matrix pa. Note that even though the Hamil-
tonian of the whole system H(z) is time dependent, the Hx
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as constructed from Floquet eigenstates is time-independent
in stroboscopic dynamics. Due to the Hermiticity of pa, Ha
admits a spectral decomposition

Hy=Y 94, (15)
J

where (]3; creates an eigenstate |¢;) of Ha with the entan-
glement eigenvalue §; € R, i.e., |¢;) = qgjl(/)) and ﬁA|¢j) =
&il¢;). The ES is formed by the collection of &; for all j.
Despite the ES, we will also study the EE of Floquet system.
The von Neumann EE for p, is defined as

S = —Tr(paln py). (16)

A larger value of S indicates that the subsystems A and B
are entangled more strongly across their interface. Meanwhile,
the configuration of ES may provide more information about
topological edge states in the system even under the PBC.

For static noninteracting systems, due to the Wick’s theo-
rem, both the ES and EE can be obtained from the spectrum
of single-particle correlation matrix of the occupied state |\V)
restricted to the subsystem A [37]. A similar relation can be
derived for the reduced density matrix of Floquet states. To see
this, we first express the matrix elements of the single particle
correlator as

Con = (W]&},2 W), a7

where the indices m and n are restricted to the subsystem A.
Using Egs. (10)-(12), C,,,, can be cast into the form

Com =Y _ (nlvj)(Wjlm) = (nlPlm), (18)
jeocc.
where P = > jeoce. |¥ {1 is the single-particle projector

onto the occupied Floquet states in |¥). We can use Eq. (18)
to obtain the correlation matrix in numerical calculations.

We next establish the relation between the spectrum of
correlator C and the entanglement Hamiltonian Hy. First, Cyy,
can be equivalently expressed as

Con = Tr(E) Cada)s (19)

since the operator ¢ ¢, belongs to the subsystem A for all
m, n € A.Plugging Eqgs. (14) and (15) into Eq. (19), we obtain

1 .
Com = —Tr(Ey,ene” 269,95y, (20)

When restricted to the subsystem A, both {|n)} and {|¢;)} form
complete bases of A. Therefore, similar to the Eq. (10), we can
express the relation between ¢ * , &, and @' i b j as

AT x« F A
¢, = E b9, &
J

where b,; = (n|¢;). Inserting Eq. (21) into Eq. (20) yields

= bid;. (€3))
J

wabn,/Tr(W«b e TiS9%y (22)

mn =

which will vanish once j # j”. Thus we find

pary
mej nj ZTr(‘PT‘f’ ~L69i%)

d
D P £616;
- % bk ibay Z<— 7, )Tr(e YiEdien, (23)

To proceed, we notice from Egs. (14), (15) and the occupation
nature of fermions that
Z="Tr(e %599 = T](1 +e79). (24)
J

Therefore, we have InZ = )~ In(1 + ¢~%) and

<_i) InZ = l(_i)’ﬁ-(e DI ¢f)
& Z\ 03§

1
= —. 25
e+ 1 25)

Comparing Eq. (25) and the second line of Eq. (23), we arrive
at

(n|¢;)
cmn=2]:e$/+1 Z eff+1 .6

The transpose of correlation matrix C thus admits the spectral
decomposition

@7

_ ;§j|¢j)(¢j|v 8= ki1

Since C and CT share the same spectrum, we establish
the one-to-one correspondence between the spectrum {£;} of
entanglement Hamiltonian Ha and the spectrum {¢;} of corre-
lation matrix C, i.e.,

‘gi =In (é‘j_1 - 1)’

Note in passing that the ranges of eigenvalues are &; € R
and ¢; € (0, 1). Equation (28) allows us to determine the ES
from the spectrum of single-particle correlation matrix for free
fermions in Floquet systems.

The EE can also be extracted from the spectrum of corre-
lation matrix. Plugging Eqgs. (14) and (24) into Eq. (16), we

find
1 1
S=-—Tr|—ePln( et
Z Z

&, 1 —H
= Zln(l +ef)+ zTr(HAe ). (29)
J

With the help of Egs. (15) and (23)—(25), we further obtain

Tr(Hae ™) =) &Te(]dje ™)
j

_fo<

jeA. (28)

—Hay _
)Tr(e )y=Z7 E eéf + 1.
(30)
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The expression for S in Eq. (29) can then be reduced to

e, &
S = Ej |:1n(1—|—e )+eéf‘ l:|. (€19

Replacing &; by ¢; following Eq. (28), we arrive at the expres-
sion of EE in terms of the eigenvalues of correlation matrix C,
ie.,

S==Ylgng+A—¢pn(l—¢nl. (32
J

In previous studies, the Egs. (28) and (32) for the ES and
EE have been derived for static systems of free fermions [37].
Here we showed that they can also be used to describe the
ES and EE of noninteracting fermions in Floquet systems for
rather general partitions of the system and populations of the
initial Floquet state. In Sec. III, we employ the connection
between the correlation matrix, ES and EE to further uncover
the topological and entanglement nature of typical Floquet
systems in one and two spatial dimensions.

Besides the ES and EE, we can also characterize the nature
of reduced density matrix (or entanglement Hamiltonian) of
Floquet states through topological invariants, whose defini-
tions are insensitive to the choice of boundary conditions. In
one spatial dimension, if the Floquet operator of the system
possesses the chiral (sublattice) symmetry (i.e., for systems
belonging to the symmetry classes AIIl, BDI and CII), we
can introduce an open-bulk winding number [62—65] for the
resulting correlation matrix C, which is defined as

W = LTV(TAQIQ, M) (33)
Here 'y and N, are the chiral symmetry operator and position
operator of the subsystem A. In the definition, the subsystem
A is decomposed into a bulk region and two edge regions
around its left and right boundaries. The trace Tr’ is taken over
the bulk region of A, whose size is L' = Lp — 2Lg, where Lx
is the length of subsystem A and Lg counts the number of
lattice sites belonging to the left and right edge regions of A.
The projector matrix Q is defined as

Q=) [0 —1/2)—01/2=lig) bl (34)
i

where the step function ®(¢) = 1(=0)if ¢ > 0(¢ < 0). {¢;}
and {|¢;)} are eigenvalues and eigenvectors of the correlation
matrix C. In Sec. IIT A, we demonstrate that when working
in symmetric time frames, the winding number W introduced
here could fully capture the topological phases of 1D Floquet
systems in the symmetry classes BDI and CII.

In two spatial dimensions, we will focus on the ES and EE
of Floquet Chern insulators. For that purpose, we introduce
the local Chern marker (LCM) [66-68] for the entanglement
Hamiltonian, i.e.,

C(x,y) = —4nIm(x, y|PXPyP|x, y), 35)

where %, § are position operators along the x, y directions, and
{|x, y)} refers to position eigenbasis of the 2D plane. P is the
projector to the eigenstates of entanglement Hamiltonian at

half filling, i.e.,
P =Y "00/2-¢)l;) sl (36)
J

From €(x,y), one can extract a real-space Chern number
that works equally well for uniform and nonuniform samples,
which is defined as

1
T 2wy, (37)

Y Xy

Ch =

where the coordinates (x, y) belong to a region of the sub-
system A with size L, x L, that is chosen away from the
boundaries of A. The real-space Chern number Ch has been
used to characterize the topology of Chern insulators in the
presence of junctions and various types of onsite potential
[66=70]. In Sec. III B, we will demonstrate that the Ch in
Eq. (37) can also be used to describe the topological properties
of entanglement Hamiltonians for 2D Floquet systems.

III. RESULTS

In this section, we use the entanglement tools introduced
in Sec. II to study topological phases and phase transitions in
1D and 2D Floquet systems. In one dimension, we consider
two prototypical Floquet topological insulator models in the
symmetry classes BDI and CII, which are characterized by
Z x Z and 2Z x 2Z topological invariants. Under the OBC,
they possess twofold- and fourfold-degenerate edge modes at
the quasienergies zero and . We discuss how the numbers of
these topological edge modes and the transition points where
these numbers change could be related to the ES and EE of the
corresponding Floquet systems under the PBC in Sec. IIl A. In
two dimensions, we demonstrate the connection between the
topological property of a uniformly filled Floquet band and
the gapless chiral edge modes in their related ES for both two-
and three-band Floquet Chern insulator models. The EE and
the real-space Chern number of the entanglement Hamiltonian
are further shown to be able to capture the topological phase
transitions in these systems.

A. Entanglement spectrum and entanglement entropy
in one-dimensional Floquet systems

1. Floquet topological insulators in BDI symmetry class

We first consider a model of Floquet topological insula-
tor in the symmetry class BDI, which is characterized by
Z x Z topological invariants. It was first proposed as a
spin-1/2 extension of the on-resonance double kicked rotor
(ORDKR) in Ref. [71], and later realized experimentally by
a nitrogen-vacancy (NV) center in diamond in Ref. [72]. The
possibility of realizing this model in cold atom systems is also
discussed in detail in Ref. [73]. The Floquet operator of the
model takes the form

U = e~ife=ith (38)
where
H, = K > (@fortug +He), (39)
2 n
n=5 > (@foyenss — He). (40)
2i -
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Here K; and K, are kicking strengths [71]. o, = | {} |+
[1){(1] and o, = i(]{){1] — [1){{]) are Pauli matrices acting
on the spin-1/2 degree of freedom. &, = (G4, Gy, ¢)T, and
Cn.o 1s the annihilation operator of a fermion with the mo-
mentum index n € Z and spin o € {?, |} [71]. T denotes
the matrix transpose and H.c. means the Hermitian conjugate.
To describe the symmetry and topology of the system, one
can introduce symmetric time frames by performing unitary
transformations to U, so that the transformed Floquet opera-
tors possess the chiral symmetry explicitly and a topological
winding number can be defined for each of them appropriately
[74]. For 1D systems, there are two such time frames available
in the usual case, and the Floquet operators in these time
frames can be obtained by shifting the initial time of the
evolution forward and backward over a quarter of the driving
period. For our model, the resulting Floquet operators in a pair
of complementary symmetric time frames read

U, = eii%eﬂﬁze*i%, U, = eii%eﬂﬁ‘e%%. 41)
In these time frames, the Floquet operators possess the chiral
symmetry I' = o, in the sense that TU,I'~! = U{j (x=1,2).
This implies that, for any Floquet eigenstate |v/;) of U, with
the quasienergy E; (i.e., Uy|¥;) = e 'Fi|y;)), there must be
another eigenstate I'[v;) of U, with the quasienergy —E -
Floquet states with E; =0 or E; = 7 then must come as
degenerate pairs. The same spectral symmetry also holds for
the Floquet operator U in the original time frame [Eq. (38)],
as unitary transformations do not change the Floquet spectrum
obtained by solving U |yr) = e F|y) [74].

Besides the chiral symmetry, U, also possesses the time-
reversal symmetry K and particle-hole symmetry o, K, where
IC takes the complex conjugation. It thus belongs to the sym-
metry class BDI [74]. In Ref. [71], two integer-quantized
topological winding numbers (w;, w; ), defined for the U, and
U, in symmetric time frames, were used to characterize the
Floquet topological phases and bulk-edge correspondence of
the spin-1/2 ORDKR. With the increase of kicking strengths
(K1, K»), rich Floquet phases featured by large winding
numbers (wy, Wy ) = (w; + wy, w; — wy)/2 and many topo-
logical edge states at zero and 7 quasienergies can be induced
[71]. Different Floquet topological phases are separated by the
phase transition lines

w2

K—12+K—22=F, M,UGZ (42)
in the parameter space [71]. Across each phase boundary
line, wy or w, gets a quantized change. Within each topo-
logical phase, the winding numbers (wg, w,) are related to
the number of Floquet edge modes at zero and m quasiener-
gies (ng, n,) through the bulk-edge correspondence relation
(ng, ny) = 2(Jlwg|, lwy|) [71]. wo (wy) thus counts the num-
ber of degenerate Floquet edge modes at the quasienergy zero
().

In the following, we reveal the topology, phase transitions
and bulk-edge correspondence of the spin-1/2 ORDKR by
investigating its ES, EE, and the winding numbers of the
entanglement Hamiltonian. Starting with the Floquet opera-
tors U; and U, in Eq. (41), we consider a half filled system
where all Floquet states with quasienergies E € (—m, 0) are

12

T 27 37 47 T 27 3T 4z
K, K,

FIG. 2. Quasienergy and correlation matrix spectra of the spin-
1/2 ORDKR versus the kicking strength K,. We set the kicking
strength at K; = 0.57. The length of lattice is L = 300 for all panels.
Panel (a) shows the Floquet spectrum under the PBC. Panel (b) shows
the Floquet spectrum under the OBC, where the red crosses de-
note the edge states with quasienergies £ = 0, +. Panels (c) and
(d) show the spectrum of correlation matrices C; and C, in two
symmetric time frames. Red crosses in panels (c) and (d) denote
eigenstates of C; and C, whose profiles are localized around the cuts
between subsystems A and B.

uniformly occupied. Following Egs. (4)—(27), the correlation
matrix reads

Co =257 l#)e5 . (43)
J

where o = 1, 2 are indices of the two symmetric time frames.
The ES and EE are further obtained according to Egs. (28) and
(32), 1.e., for ¢ = 1, 2 we have

EJ‘?‘ =1In (1/{1‘?‘ - 1),
Se==2_ g mey +(1=¢7) (1 =)

J

JjEA, (44)

(45)

Meanwhile, we find the Floquet spectrum E of U in Eq. (38)
by solving the eigenvalue equation U|y) = e~ |yr). All cal-
culations are performed under the PBC by setting ¢, = €4
in Egs. (39) and (40), with L being the length of lattice. A
direct advantage of the entanglement approach deserves to be
mentioned. For the spin-1/2 ORDKR, the lattice structures in
Egs. (39) and (40) are defined in momentum space [71], where
the realization of an OBC for detecting the edge states there
is practically challenging. As will be seen in the following,
the entanglement approach allows us to get access to the
information about Floquet edge states even under the PBC,
which can be implemented more naturally for the momentum
space of a rotor.

In Fig. 2, we report the quasienergy spectrum and ES (pre-
sented by the spectrum of correlation matrices in symmetric
time frames o = 1,2) of the spin-1/2 ORDKR versus the
kicking strength K. In Fig. 2(a), we see that the gap of Floquet
spectrum closes/reopens alternately at E = w and E = 0O for
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18—

Nia, Wia, Sip

FIG. 3. The number of maximally entangled states, winding
numbers of the entanglement Hamiltonian and the EE evaluated in
symmetric time frames o = 1, 2. The kicking strength K; is set to
0.57 and the length of lattice is L = 300. N, denotes the number
of eigenstates of the correlation matrix C, whose eigenvalues are
equal to 1/2. W, denotes the open-bulk winding number of the
entanglement Hamiltonian [Eq. (15)]. S, denotes the EE [Eq. (45)]
in the time frame o.

Ky =vmr (v=1,2,...), as predicted by Eq. (42). New Flo-
quet edge states emerge at the quasienergy £ = 0 or 7 after
each transition, as shown in Fig. 2(b). With the increase of
K5, the number of zero () Floquet edge modes changes in
the sequence np =2 — 6 — 10 (n, =0 - 4 — 8) follow-
ing each transition at E = 0 (E = m) [71].

Near the critical kicking strengths K, = v (v =1, 2,...),
the ES in Figs. 2(c) and 2(d) show discontinuous changes
around the correlation matrix eigenvalue ¢ = 1/2. In Fig. 3,
the EE in both symmetric time frames also show nonanalytic
cusps around K, = v, implying the presence of phase tran-
sitions around these critical kicking strengths. Referring to
Figs. 2(a) and 2(b), we confirm that the ES and EE indeed
provide signatures for Floquet topological phase transitions in
the spin-1/2 ORDKR.

Away from these transition points, the eigenvalues of C,
appear around 0, 1/2 and 1. According to the Eq. (45), the
eigenvalues ¢¢ ~ 0,1 have vanishing contributions to S,.
Meanwhile, each eigenvalue ¢ = 1/2 has the largest contri-
bution In 2 to the EE in Fig. 3. The corresponding eigenstate
|¢j‘) should be maximally entangled, which means that it
should appear around the spatial cuts between the subsystems
A and B. We thus refer to the eigenstates |9%) of C, with
eigenvalues {7 = 1/2 as “edge states” of the entanglement
Hamiltonian. In Fig. 3, we also observe a steady growth in the
global profile of S;, which implies an increase of the number
N of entanglement edge states with ¢ jl = 1/2 in the ES of

U,. Note in passing that the global profile of S also shows a
slow growth with the increase of K;. Since we have N, = 2
at all K, # v, the ¢? = 1/2 modes cannot contribute and
this increase should be due to the appearance of eigenmodes

whose ES deviates further from ¢ = 0, 1 but not reaching 1/2,
as observed in Fig. 2(d).

To further decode the topological nature of entanglement
Hamiltonian, we report the numbers of localized modes
(N1, Ny) with eigenvalues (¢, ¢7) = (1/2,1/2) in the ES
[Figs. 2(c) and 2(d)] and the winding numbers (W;, W,) with
respect to the kicking strength K. (W, W,) are defined fol-
lowing Egs. (33) and (34). For the spin-1/2 ORDKR, we have
I'n = I' = o, and the projector in Eq. (34) takes the form

Qu =) [0 — 1/2) — (172 = £)]|¢5 @5

J

. (46)

where {Cj‘."} and {|¢j‘)} are the eigenvalues and eigenbasis of
the correlation matrices [Eq. (43)] in the time frames « = 1, 2.
The resulting topological winding numbers [Eq. (33)] of the
entanglement Hamiltonian reads

WO,:%Tr/(azQa[Qa,NA]), «=1,2 @)

We now establish the correspondence between the ES and
Floquet topological phases. First, by comparing (N;, N;) in
the ES of Fig. 3 and the number of edge modes (ng, n, ) with
quasienergies zero and 7 in Fig. 2(b), we arrive at the relations

Ni=ng+ng, N»=|ng—ngl. (48)

That is, in the symmetric time frame 1 (2), the number of
modes with eigenvalue { = 1/2 in the ES under the PBC
is equal to the sum of (the absolute difference between) the
number of zero and 7 Floquet edge modes in the quasienergy
spectrum under the OBC. Notably, the total number of Floquet
topological edge modes ngy + n, in the quasienergy spectrum
can be captured by the number of entanglement eigenmodes
N; in a single time frame. This indicates that the ES of
a Floquet system indeed contain rich information about its
nonequilibrium topological properties.

Second, according to Fig. 3, the (Ny, N;) and winding
numbers (W;, W,) are related by the relation

Ny =2|W|, N, =2[W;|. (49)

Although obtained under the PBC, it may be viewed as
a “bulk-edge correspondence,” as N, (o = 1,2) counts the
number of modes with degenerate eigenvalue { = 1/2 that are
localized at the spatial entanglement cuts between subsystems
A and B. Finally, combining Eqgs. (48) and (49), we find the
relation between the topology of entanglement Hamiltonian
under the PBC and the Floquet zero/m edge modes under the
OBC,i.e.,

no = 3[sgn(Wi)N; + sgn(Wo)No| = [Wy + Wal,
ne = 3lsgn(W)N; — sgn(Wo)No| = [Wy —Wal.  (50)

Equation (50) allows us to determine the numbers of Flo-
quet topological edge modes in an arbitrary time frame under
the OBC from the entanglement information of the system
under the PBC. We can thus regard it as an entanglement
bulk-edge correspondence for Floquet systems. We have also
checked the Egs. (48)—(50) in other parameter regions of
the spin-1/2 ORDKR and confirmed their validness, which
implies that they are generic for 1D Floquet topological in-
sulators in the BDI symmetry class. Equations (48)—(50) thus
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form one set of key results in this work. The generality of
this topology-entanglement connection will be further demon-
strated in the next section by considering Floquet topological
insulators in another symmetry class.

2. Floquet topological insulators in CII symmetry class

We now study a spin-1/2 periodically quenched ladder
(PQL) model [75], whose Hamiltonian takes the form H(t) =
#1 in the time durationz € [£, € 4+ 1/2) and F(r) = H, in the
time durationt € [£ 4+ 1/2,£4 + 1), where £ € Z and

= ZJx(éZJO ® 16,41 + H.c.)

— Y iV(@&oy ® Totu — Hee), 51)
n
= ZJyéZao ® 1,6,
+ ) ida(&o; ® T, — He). (52)

Here have we set the driving period T = 1. J,, J,, and J;
denote the hopping amplitudes along the x, y, and diagonal
directions of the ladder. V' denotes the spin-orbit coupling
between fermions with opposite spins in adjacent unit cells
[75]. oy y,; and T, ; are Pauli matrices acting on the spin-1/2
degree of freedom and the two sublattices (a, b), respectively.
op and 7y are 2 x 2 identity matrices. The vector annihila-
tion operator €, = (&4,4,as €n,1,b> Cn, |.a> 6,,,¢,b)T, where ¢, 0.1
annihilates a fermion with spin o (=%, |) at the sublattice ©
(=a, D) in the nth unit cell. The Floquet operator of the system
takes the form

U = e HaesM, (53)

To characterize the symmetry and topology of the system, we
also transform { into symmetric time frames in parallel with
what we did in Sec. III A 1, yielding the Floquet operators

U = eiiﬁ‘e%ﬁze*iﬁ‘, U, = e it =it 54)
u 1 and Z/Alg have been shown to possess the time-reversal
symmetry ioy ® 1okC, particle-hole symmetry oy ® 7,/C, and
chiral symmetry I' = —o, ® 7, with I['> = 1 [75]. As the time-
reversal and particle-hole symmetries both square to —1, the
spin-1/2 PQL belongs to the symmetry class CII. The Floquet
topological phases of U are thus characterized by a pair of
even-integer quantized winding numbers [75]. In Figs. 4(a)
and 4(b), we show the quasienergy spectrum of the system
by solving the eigenvalue equation U|Y) = e E|y) under the
PBC and OBC, respectively. With the increase of J;, a series
of gap closing and reopening processes are found at £ = 0
and E = +£7. Fourfold-degenerate edge modes are observed
at the quasienergies zero and 7 (denoted by red stars). Both of
their numbers (ng, 1, ) change in the sequence 0 - 4 — 8§ —
12 — 16 following the topological phase transitions induced
by the increase of J; [75].

We now characterize the topology and phase transitions in
this spin-1/2 PQL from the quantum entanglement perspec-
tive. We again focus on the case with all Floquet states whose
quasienergies E € (—m, 0) are uniformly filled. The spin-1,/2
PQL possesses four quasienergy bands, and the density op-

2T 4

0 T 27 3 4z
Ja

FIG. 4. Quasienergy and correlation matrix spectrum of the
spin-1/2 PQL versus the diagonal hopping amplitude J,;. Other sys-
tem parameters are set as (Jy, Jy, V) = (0.57, 0.6, 0.27), and the
length of lattice is L = 250 for all panels. Panel (a) shows the Floquet
spectrum under the PBC. Panel (b) shows the Floquet spectrum under
the OBC, where the red crosses denote edge states with quasienergies
E =0, £x. Panels (c) and (d) show the spectrum of correlation ma-
trices C,, in symmetric time frames o = 1, 2. Red crosses in panels
(c) and (d) highlight eigenstates of C, for « = 1,2 with localized
profiles around the cuts between subsystems A and B.

erator of our consideration then refers to the occupation of
the two lower Floquet bands in the first quasienergy Brillouin
zone. In the time frame «, the correlation matrix, ES, and EE
of the spin-1/2 PQL share the same form with the spin-1/2
ORDKR, as described by Egs. (43)-(45). In Figs. 4(c) and
4(d), we show the spectrum of correlation matrices C; and C,
versus J; under the PBC. Other parameters of U, and U, are
chosen to be the same as those used in Figs. 4(a) and 4(b).
We again observe discontinuous behavior in the ES whenever
the quasienergy spectrum gap of the spin-1/2 PQL closes
at E =0 or E = +7r. Meanwhile, the numbers of localized
modes in the ES with eigenvalue {7 = 1/2 change following
different patterns in the two time frames o = 1 and 2. This
situation is similar to what we encountered in the spin-1/2
ORDKR. It implies that the entanglement characteristics of
Floquet reduced density matrices in both two symmetric time
frames are needed in order to capture the full topological in-
formation of the system. We regard this as a generic feature of
1D Floquet topological phases protected by chiral symmetry.

In Fig. 5, we first notice that in both time frames, the
EE shows a nonanalytic cusp right at each gap closing point
in Figs. 4(a) and 4(b). Therefore, the EE can also be used
to signify transitions between different Floquet topological
phases of the spin-1/2 PQL. Moreover, a steady growth of
S is observed with the increase of J;. It goes in parallel with
the monotonic raise of the number of ¢ j‘ = 1/2 eigenmodes
by four after each transition. Every such eigenmode makes a
largest contribution In 2 to ;. Meanwhile, the S, also shows a
growth with a much smaller rate in its global profile. Since the
number of ¢? = 1/2 eigenmodes N, only oscillates between
zero and four following the transitions induced by J,, instead
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FIG. 5. The number of the maximally entangled states, winding
numbers of the entanglement Hamiltonian and the EE of the spin-1/2
PQL, evaluated in symmetric time frames « = 1, 2. Other system
parameters are (Jy, Jy, V) = (0.57, 0.6, 0.2), and the length of
lattice is L = 250. N,, denotes the number of eigenstates of the cor-
relation matrix C, with eigenvalue 1/2. W, is the open-bulk winding
number of C, [Eq. (43)]. S, denotes the EE in the time frame o
[Eq. (45)].

of showing a monotonic increase as observed in Ny, the global
increase in S, cannot be originated from these maximally
entanglement eigenmodes. Then there must be some other
states whose ES deviates from zero and one further with the
increase of J,;, as we indeed observe in Fig. 4(d).

To relate the topology of Floquet entanglement Hamilto-
nian under the PBC and ¢ = 1/2 eigenmodes with Floquet
edge states under the OBC, we construct the projector of
correlation matrix eigenmodes in the time frame « as the
form in Eq. (46). The open-bulk winding number [Eq. (33)] of
entanglement Hamiltonian in the time frame « is then given
by

1
We = ETIJ(FQa[Qa»NA])’ (35)

where « = 1,2. I' = —0, ® 7, is the chiral symmetry oper-
ator of the spin-1/2 PQL. Other quantities share the same
meanings with those in Eq. (47). Referring to the results
reported in Figs. 4 and 5, we conclude that the relation be-
tween the numbers of { = 1/2 eigenmodes (N, N,) in the
ES and the numbers of Floquet edge modes (ng, n,) with
quasienergies zero and 7 in Eq. (48) holds also for the spin-
1/2 PQL. This observation implies the generality of Eq. (48)
in describing the relationship between entanglement and topo-
logical edge states for 1D Floquet topological insulators in the
symmetry class CII. Next, for the spin-1/2 PQL, the relation
between the numbers of { = 1/2 eigenmodes (Ny, N;) and the
winding numbers (W}, W;) in Eq. (49) now takes the form

N =4Wi|, N, =4W,|, (56)

as verified by the data reported in Fig. 5. The prefactor 4
comes from the fact that the { = 1/2 eigenmodes are fourfold
degenerate. Equation (56) describes the bulk-edge correspon-

dence of ES in the two symmetric time frames. It is generic
for CII class Floquet topological phases in one dimension. Fi-
nally, the combination of Egs. (48) and (56) yields the relation
between the topology of Floquet entanglement Hamiltonian
under the PBC and the zero and 7 Floquet edge modes of the
spin-1/2 PQL under the OBC following Eq. (50), or explicitly
expressed as
ng =2\Wy + Wal,  nz =2|W; — W,|. (57)
Equation (57) allows us to know the exact numbers of
Floquet zero and 7w quasienergy edge modes under the OBC
from the topology of ES under the PBC. We regard it as
an entanglement bulk-edge correspondence for 1D Floquet
systems in the CII symmetry class. We have tested these
equations in other parameter regions of the spin-1/2 PQL and
confirmed their correctness. They are therefore general for CII
class 1D Floquet topological matter. Egs. (48), (56), and (57)
form another set of key results in this work. In the next sec-
tion, we discuss the universality of the topology-entanglement
connection in 2D Floquet topological insulators.

B. Entanglement spectrum and entanglement entropy
in two-dimensional Floquet systems

1. Periodically quenched Chern insulator

We now investigate 2D Floquet Chern insulators,
which could possess topological phases with large Chern
numbers. We start with spinless noninteracting fermions
in a periodically quenched generalized Haldane model
(PQGHM) with third neighbor hopping [12,76-78]. In
the absence of quenches and under the PBC along two
spatial dimensions, the momentum-space Hamiltonian of
the system takes the form H =Y, _p, & H(k)é&. Here
k=(k,k) e[—nm,m)x[-m,m) is the quasimomentum.
& = (ks ék,b)T, where Cx, (Ckp) annihilates a fermion
with quasimomentum Kk on the sublattice a (b) of the
honeycomb lattice. The Bloch Hamiltonian is H(k) =
oy + hoy + hio., where Iy =t,(14 cosk; + cosks) +
13[2 cos(ky — ky) + cos(ky + k), by, = ti(sinky + sinky) +
t3sin(k; + k»), and ki = 21, sin ¢[sink; — sink, — sin(k; —
k)] [12]. The Pauli matrices oy , . act on the sublattice degrees
of freedom. The quench is applied by decomposing each driv-
ing period T into two episodes 7} and T, (T =T} + 1) and
setting the parameters (#3, @) = (t31, $1) [(13, @) = (132, 2)]
in the time duration 77 (73). We denote the system’s Bloch
Hamiltonians during 77 and 7, as H;(k) and H,(k). The
Floquet operator then takes the form U = Y, 5., élT(U (k)cx,
where U (k) = e~ 0D~ iHiOTi T Ref. [12], it was found
that the U (k) possesses quasienergy bands with large Chern
numbers and rich topological phase diagrams due to the Flo-
quet driving, even though the energy bands of underlying
static Hamiltonians H;(k) and H,(k) only carry relatively
small Chern numbers. The experimental simulation of U (k)
and the detection of its Floquet-band Chern numbers were also
conducted recently in a setup containing a nitrogen-vacancy
center in diamond [79].

Performing a Fourier transformation

Ly

| —ikang -
J_Ljanle ¢, » from momentum to position repre-

& =
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(a) (T1,T») = (0.3,0.3)

- 0 T
k1

FIG. 6. Quasienergy spectrum of the PQGHM versus the quasi-
momentum k;. The PBC (OBC) is taken along the direction 1 (2)
of the lattice. Other system parameters are set as ¢, = 1, r, = 0.8,
t31 = 0.75, 13, = —0.75, ¢y = —1 /6, p» = —m /2, and the length of
lattice along the direction 2 is L = 200 for all panels. Blue stars (red
circles) denote states localized around the left (right) edge of the
lattice.

sentation along the k, direction, we obtain the Hamiltonian
H=73, (o + th oy + hj 0.), where

2

AT A
~ ¢, ¢&,..+1 +Hc.
A A ki, 1.1
;{‘] = E I8 |:(1 + cos kl)czl,nckl,n SN ELL et
n

313 A
+ E > cos k; (CZI,anl,nJr] + H.c.)
3. AT A
+ § :Zsmkl(c,ihnckl,,,+1 — H.c.), (58)

~y " i
y . A A AT A
l’lk] = E n [sm k]C;(l,anl,n — E(ckl,nckl’”‘*‘] — HC)1|

n

13 . AT A
+ Z ) sin ky (CZhanhth] + H.c.)

U AT A
+ Z 2_31 cos ky (czlanqun_f] —H.c.), 59)

B, =) nsing2sink&] &, .+ i@ &, .11 —He)l
n

— Z tysin ¢ sinky (&) & n1 + He)

n

— Y itysing coski (€] &, 41 — He). (60)

n

Following the above-mentioned quench protocol, we ob-
tain the quasienergy spectrum of Floquet operator U=
e~ p=ihTi ynder the PBC (OBC) along the direction 1 (2)
of the lattice, as shown in Fig. 6. For all considered cases,
we find two Floquet bulk bands connected by gap-traversing
chiral edge states. In the first quasienergy Brillouin zone, the

y (a) (T3, T3) = (0.3,0.3)

~(b) (T, T3) = (0.9,0.8)

(d) (11,T3) = (1.3,1.2)

FIG. 7. Correlation matrix spectra of the PQGHM versus the
quasimomentum k;. PBCs are taken along both directions of the
lattice. Other system parameters and the length of lattice are chosen
to be the same as in Fig. 6. Blue stars (red circles) denote eigenmodes
localized around the left (right) entanglement cuts between the sub-
systems A and B.

lower and upper bands have Chern numbers +1, 2, +4 and
+7 in Figs. 6(a)-6(d), which are equal to the net difference
between the numbers of chiral edge states above and below a
band while residing at the same edge. This is consistent with
the bulk-edge correspondence of 2D Floquet Chern insula-
tors revealed at the spectral level [12]. The emerging Floquet
bands with large Chern numbers £4 and +7 are unreachable
in the static limit of the model [79]. It reflects one key advan-
tage of Floquet engineering, i.e., to create phases with large
topological invariants and many edge states by simply tuning
the time durations of the drive.

‘We now uncover the topology, phase transitions and bulk-
edge correspondence of the PQGHM from its ES, EE, and
the related topological numbers. We first take the PBC along
direction 2 by setting &, n+1, = €,.n, Where L, is the number
of unit cells along the second dimension of the lattice. Then
we decompose the system into two equal segments A and B,
and obtain the ES of reduced density matrix ps following
the Egs. (12)—-(28) in Sec. II. Here the state |¥) in Eq. (12)
describes the uniformly filled lower Floquet band in the first
quasienergy Brillouin zone. The resulting ES is presented in
Figs. 7(a)-7(d), with the same system parameters as those
used in Figs. 6(a)-6(d). We observe that large amounts of
the correlation matrix eigenvalues ¢; [Eq. (27)] reside near
¢ = 0and ¢ = 1, making vanishing contributions to the EE in
Eqg. (32). In the meantime, chiral ES flows across the ES gap
are observed in each panel of Fig. 7. These chiral bands are
formed by eigenstates of the Floquet entanglement Hamilto-
nian Ha [Eq. (15)] that are localized around the entanglement
cuts between subsystems A and B. Furthermore, the number
of chiral edge bands 7. at the same edge in the ES is found to
be equal to the Chern number Cy of the Floquet band used in
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FIG. 8. (a), (b) Quasienergy spectra, (c), (d) EE, and (e), (f)
real-space Chern numbers of the PQGHM versus the driving time
durations 77 and 7>. The size of lattice is L; = L, = 60. PBCs are
taken along both directions of the lattice. We set 7, = 1.2 for panels
(a), (c), (e) and T} = 0.9 for panels (b), (d), (f). Other system param-
eters are chosen to be the same as those used in Fig. 6.

the construction of the initial density matrix p [Eq. (12)], i.e.,
ne = |Col. (61)

This relation establishes the correspondence between the
Chern topology of Floquet bands and the number of chiral
edge modes in the ES for 2D Floquet Chern insulators with
two bands. As demonstrated in Sec. III B 2, it is also valid for
systems with multiple bands.

We next consider topological phase transitions in the sys-
tem. In Figs. 8(a) and 8(b), we show the Floquet spectra
under the PBC versus the quench time spans 77 and 75.
The gaps between the two quasienergy bands close when
Ty =T, and T, = T, in Figs. 8(a) and 8(b), respectively.
The critical values Tj. and T, can be obtained by solving
the equations of gapless condition, i.e., h;//h;| = h;y/|h;|
and Ti|h||+ T|hy| = ¢w (£ € Z). Here h; and h, are k-
dependent vectors formed by the three components in front of
the Pauli matrices in H; (k) and H,(k), respectively [79]. With
the increase of Ty (1) from T, — 0" (T, — 07) to T3 +0F
(T» + 07%), the PQGHM undergoes a topological phase tran-
sition accompanied by the quantized change of Floquet band
Chern numbers from +4 (£2) to =7 (£4) [79]. The EE curves
in Figs. 8(c) and 8(d) are obtained following Eqgs. (27)-(32).
We find that the derivatives 97,5 and 97,5 become discon-
tinuous at 71 = Ty, and T, = Ty, signifying the transitions
between different Floquet Chern insulator phases from the
perspective of EE.

Finally, we characterize the topology of Floquet entangle-
ment Hamiltonian Hx [Eq. (15)] and relate it to the edge
states observed in the quasienergy spectrum. To this end, we
consider the real-space Chern number Ch defined through
Egs. (35)—(37). In Figs. 8(e) and 8(f), we show the Ch thus
computed at different values of quenching time intervals T;
and 7, for the PQGHM. Quantized jumps are observed in

the Ch around 7; = Tj. and T, = Tp, i.e., at the expected
transition points between different Floquet Chern insulator
phases. Away from the transition points, the real-space Chern
numbers are found to take quantized values, which are further
equal to the Chern numbers Cy of the occupied Floquet bands
employed in the construction of the reduced density matrix
Pa. Therefore, we arrive at the relationship between the Chern
numbers of entanglement Hamiltonian and the chiral edge
modes in the quasienergy spectrum, i.e.,

In. — ny | = |Chl, (62)

where n;, and n; denote the net number of chiral edge bands
leaving and entering the occupied Floquet band at the left
edge in the lattice (see Fig. 6). We refer to this relation as an
entanglement bulk-edge correspondence of 2D Floquet Chern
insulators. As one key result of this work, it establishes the
connection between the Chern topology of Floquet entangle-
ment Hamiltonian under the PBC and Floquet chiral edge
states under the OBC. All the topological information of a Flo-
quet Chern band can thus be extracted from the entanglement
nature of its related reduced density matrix. Equation (62) can
be further generalized to Floquet Chern insulators with multi-
ple quasienergy bands, as shown in the following subsection.

2. Kicked quantum Hall insulator

We finally consider fermions hopping in a square lattice
with perpendicular magnetic fluxes. The system Hamiltonian
is made time dependent by adding periodic 6 kicks to the hop-
ping amplitudes along the y direction of the lattice, yielding

A J ’\T A
H@) = 3 ;(cﬂrl’ycx.y + H.c.)

Vv irx At A
+E;@%MﬁﬁHM§W—U(@

Here ¢, , (éi,y) annihilates (creates) a fermion on the lattice
site (x,y). J and V are hopping amplitudes along x and y
directions. A determines the magnetic flux over each cell of
the lattice. The driving period is set to T = 1. The Floquet
operator of the system then takes the form

0= e_% PINN CLaloT NS ¢ 1) e—% DI (EIH.}_{-X,,-FH.C‘). (64)
It is usually called the kicked Harper model (KHM) or kicked
quantum Hall system [8—10]. For A = 2w p/q, with p and g
being coprime integers, the Floquet spectrum of U groups
into g quasienergy bands under the PBC. In this work, we
focus on the case with p/q = 1/3, so that there are three
Floquet bands in the quasienergy spectrum. The topology of
each Floquet band is characterized by an integer-quantized
Chern number [8]. With the change of J and/or V, the KHM
can undergo topological phase transitions between different
Floquet Chern insulator phases, which are accompanied by
quantized changes of band Chern numbers [8]. Floquet bands
with large Chern numbers were found at large hopping am-
plitudes J and/or V [8], showing the advantage of Floquet
engineering in creating phases with strong topological signals.

Taking the OBC (PBC) along the x (y) direction and per-
forming the Fourier transformation ¢y, = N Zk)_ eke, k
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FIG. 9. Quasienergy spectrum E and correlation matrix spectrum
¢ of the KHM versus the quasimomentum k,. The length of lattice
is chosen to be L = 300 along the x direction for all panels. Sys-
tem parameters are set as (J, V) = (2w /3, ) for panels (a)—(c) and
(J,V)=(2n/3,2m) for panels (d)—(f). The OBC (PBC) is taken
along the x direction in the calculation of E (¢). Blue stars (red
circles) denote states localized around the left (right) edges in panels
(a), (d), and states localized around the left (right) entanglement
cuts between the subsystems A and B in panels (b), (c), (e), (f),
respectively. For panels (b) and (e), the states |¥) correspond to the
uniform filling of the bottom Floquet bands in panels (a) and (d). For
panels (c) and (f), the states |\W) correspond to the uniform filling of
the middle Floquet bands in panels (a) and (d).

along the y direction, we can express the Floquet operator of
the KHM as U = } ; U (ky), where

N s kAt s N At oA
U(ky) —e V'3, cos ()"C k})cx,k)-‘X-kye 2 Z.x(‘wl.kyc»v/‘y"'H'c')_ (65)

ky, € [=m, ) is the quasimomentum along y. Typical exam-
ples of the Floquet spectrum of U (k) are shown in Figs. 9(a)
and 9(d). The Chern numbers of the three Floquet bands from
bottom to above in Figs. 9(a) and 9(d) are (1, —2,1) and
(=2, 4, —2) [8]. This is coincide with the difference between
the number of chiral edge bands at the same edge and with
the same chirality leaving and entering a given Floquet band,
which verifies the bulk-edge correspondence of Floquet Chern
insulators from the aspect of quasienergy spectrum [8].

We now unveil the topological nature and bulk-edge cor-
respondence of the KHM by investigating its ES and EE.
Starting with the Floquet operator U (ky) in Eq. (65), we take
the PBC along the x direction and let the density matrix in
Eq. (13) describe the many-particle Floquet state that fills
the bottom or the middle Floquet band of U (ky) uniformly.
Bisecting the system into two equal parts and following the
steps in Egs. (14)—(28), we obtain the ES of KHM as shown in
Figs. 9(b), 9(c), 9(e), and 9(f). In each case, we find that most
of the correlation matrix eigenvalues are pinned around ¢ =
0 and ¢ = 1, yielding vanishing contributions to the EE in
Eq. (32). Meanwhile, eigenmodes traversing the gap of ES are
found and they are localized at the entanglement cuts between

Chl‘z

T \% 21 T \% 2

FIG. 10. The EE and real-space Chern numbers of the entan-
glement Hamiltonian for the KHM. The hopping amplitude along x
direction is set to J = 27 /3. The size of lattice is L, = L, = 72 with
PBCs taken along both the x and y directions. In panels (a) and (b),
S1 (S2) and Ch; (Chy) refer to the EE and the real-space Chern num-
ber of the entanglement Hamiltonian H, when the bottom (middle)
quasienergy band is filled in the construction of pa.

the subsystems A and B. Moreover, the ES of these eigen-
modes are chiral, and the number of such chiral entanglement
bands at each edge is equal to the Chern number of the filled
Floquet band, which verifies the Eq. (61). This observation
allows us to inspect the Chern topology of a Floquet band and
the related edge states from its ES. It also demonstrates that
our approach to the ES of Floquet Chern bands are not limited
to two-band models, but works for Floquet Chern insulators
with any number of gapped quasienergy bands.

The difference between the band Chern numbers in
Figs. 9(a) and 9(d) suggests that there is at least a transition
from one Floquet Chern insulator phase to another when the
hopping amplitude V goes from m to 2m. In Fig. 10(a), we
show the EE of the bottom and middle filled Floquet band
of the KHM versus V under the PBC along both two spa-
tial dimensions [Eq. (32)]. We indeed observe nonanalytic
cusps in S; and S, near V = V., which is coincident with
the topological phase transition point of the KHM [80]. To
characterize the topology of this transition and the bulk-edge
correspondence directly at the level of Floquet entanglement
Hamiltonian [Eq. (15)], we compute the real-space Chern
number of Hy at half filling under the PBC from the local
Chern marker following Eqs. (35)—-(37). The results for the
cases of filled bottom and middle Floquet bands of the KHM
are displayed by Ch; (stars) and Ch;, (circles) in Fig. 10(b).
We find that both the Chern numbers show quantized jumps
at the transition point V = V,, implying that they can cor-
rectly capture the topological phase transition in the system.
Moreover, away from the transition point, Ch; and Ch, take
quantized values (up to fluctuations due to finite-size effects)
that are equal to the Chern numbers of the bottom and middle
Floquet bands in Figs. 9(a) and 9(d). Therefore, we arrive
at the following entanglement bulk-edge correspondence for
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Floquet Chern insulators
In,. — ny | = |Ch;l. (66)

Here ny. and n; represent the net number of chiral edge bands
leaving and entering the jth Floquet quasienergy band at the
left edge of the lattice. Ch; denotes the real-space Chern
number of the Floquet entanglement Hamiltonian, which orig-
inates from the reduced density operator of the jth Floquet
band. Equation (66) generalizes Eq. (62) to Floquet Chern
insulators with more than two bands. We have explored other
parameter regions of the KHM and obtain results that are
consistent with those reported in Figs. 9 and 10 and by
Eq. (66). Therefore, we conclude that the entanglement tools
introduced in this work could characterize the topology, edge
states and bulk-edge correspondence of 2D Floquet Chern
insulators with an arbitrary number of quasienergy bands.

IV. DISCUSSION AND CONCLUSION

It is interesting to discuss the connections and differences
between our work and some previous studies. First, in 1D Flo-
quet topological insulators, both the zero and w quasienergy
edge modes show their signatures in the ES. The = modes
do not exist in usual static topological systems. Their en-
tanglement signatures are thus unique to Floquet systems
showcased by the first and second models in Sec. III. Second,
in some former studies [49-54], the ES of usual Chern and
quantum Hall insulators were investigated. The connection
between the chiral edge states in the ES and that in the en-
ergy spectrum was demonstrated. Topological invariants were
also introduced to characterize the ES in momentum space.
In our work, we considered the ES and EE of periodically
driven Chern and quantum Hall insulators, whose topolog-
ical properties are carried by the underlying Floquet states
instead of a ground state in usual static topological systems.
Even though the chiral edge states observed in the Floquet
ES are similar to those found in static topological models,
we have introduced topological invariants to characterize the
bulk-edge correspondence between these edge modes and
the topology of Floquet entanglement Hamiltonian directly
in real space, which is different from previous approaches.
Third, nonanalytical properties of EE across quantum phase
transitions have been identified in early studies [34]. The
behavior of EE around the transition points between different
topological phases were also explored in usual static systems
[81-84]. There, nonanalytic signatures in the EE were ob-
served and the scaling properties of EE were investigated. In
our study, we also observed nonanalytic signatures in the EE
of Floquet states when the underlying system goes from one
Floquet topological insulator phase to another. Compared with
previous results, we tend to believe that in general, the EE pos-
sesses similar features around a transition point between two
topological insulator or superconductor phases either in the
usual static systems or in Floquet driven systems. In our case
studies, we focus more on the topological characterization of
ES and its related bulk-edge correspondence in Floquet sys-
tems. The EE are presented mainly to provide complementary
information for the signatures of Floquet topological phase
transitions. We have supplemented our results with further
details about EE in the Appendix.

In Ref. [58], the ES and EE of a graphene lattice under
different Floquet driving protocols were explored with a theo-
retical formalism tailored to two-band models and a focus on
the time-dependent properties of the entanglement measures.
Signatures of chiral edge states in the ES were also identified
there. In our work, we instead focus on the ES and EE of filled
Floquet bands and present a framework that is applicable to
study them in noninteracting fermionic systems with more
than two quasienergy bands and large Chern numbers, as
illustrated by the case studies in Sec. III B. Moreover, we
characterized the changes of ES, EE and topological prop-
erty of entanglement Hamiltonian when the system undergoes
transitions between different Floquet Chern or quantum Hall
insulator phases, which were not considered in Ref. [58]. In
Refs. [59,60], the ES, EE, and central charge of a 1D two-band
Floquet topological superconductor were investigated by a
theory presented in terms of Majorana operators. Nonanalytic
behavior in EE when the system undergoes transitions be-
tween different Floquet superconducting phases were studied.
In our work, we formalized our theory in terms of normal
fermions and demonstrated it in two 1D Floquet topological
insulator models with different numbers of quasienergy bands
and belonging to symmetry classes that are different from
those explored in Refs. [59,60]. We also clarified the bulk-
edge correspondence by comparing the ES and the winding
numbers of Floquet entanglement Hamiltonians in different
time frames. Furthermore, the real-space Chern and wind-
ing numbers employed in our work allows us to directly
characterize the topology, phase transitions and bulk-edge cor-
respondence residing in the bulk Floquet ES, which were not
considered in Refs. [58—60]. Besides helping us to build the
connection between the topological properties of quasienergy
and entanglement spectra, these invariants are also robust
to the change of boundary conditions and the presence of
symmetry-preserving impurities, making them generalizable
to the characterization of Floquet entanglement topology in
more complicated situations.

In summary, we propose a framework to describe the ES
and EE of noninteracting fermions in Floquet systems. The
theory is applicable to Floquet lattice models with an arbi-
trary number of quasienergy bands and at arbitrary fillings for
each band. Open-bulk winding numbers and real-space Chern
numbers are further constructed to characterize the topology
of Floquet entanglement Hamiltonians directly for 1D and
2D systems. In one dimension, the correspondences between
the topology of bulk ES and the Floquet edge states are es-
tablished for Floquet topological insulators in the symmetry
classes BDI and CII. In two dimensions, the total Chern num-
ber of filled Floquet bands determines the number of chiral
edge modes traversing the gap of ES with the same chirality,
which is also consistent with the real-space Chern number of
the Floquet entanglement Hamiltonian. The EE further shows
nonanalytic behavior around the transition points between dif-
ferent Floquet topological phases. Our work thus revealed the
topological phase transition and bulk-edge correspondence
of Floquet topological matter from quantum entanglement
perspectives and provides efficient means to characterize
the topological nature of Floquet entanglement Hamiltonians
(or reduced density matrices of Floquet states). It further
demonstrates the generality and usefulness of quantum in-
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formation measures in characterizing Floquet topological
phases.

In future work, the extensions of our entanglement frame-
work to Floquet systems with disorder, in high spatial
dimensions, with other symmetry constraints and in gapless
systems (e.g., the Floquet Weyl semimetal [85,86]) deserve
to be investigated. For example, beyond the on-resonance
condition, the kicked rotor considered in Sec. III A 1 does not
possess the translational symmetry in momentum space, and
its topological properties may have distinct and deeper physi-
cal origins [87,88], such as the emergence of integer quantum
Hall effect from chaos [89,90]. Meanwhile, the application of
our entanglement approach should be relatively straightfor-
ward. One can first express the Floquet operator of the kicked
rotor in a given basis and diagonalize it upon appropriate
truncations. One may then pick up a set of Floquet eigenstates
of the kicked rotor to form its many-particle density matrix.
By decomposing the momentum space of the rotor into two
parts A, B and tracing out the degrees of freedom belonging
to B, one would obtain a reduced density matrix for which the
ES and EE can be computed by the formulas presented in this
work. Moreover, the open-bulk winding number is directly
defined in the discrete lattice or momentum space, and it is
applicable to systems with disorder or other types of trans-
lational symmetry breaking so long as the chiral symmetry
is preserved. When the chiral symmetry is also broken, other
topological invariants might be needed to characterize the Flo-
quet entanglement Hamiltonian of the kicked rotor. Finding
such an invariant should constitute an interesting future study.
As our theory is tailored to deal with many-particle Floquet
states, we can further incorporate interparticle interactions and
decode the entanglement nature of the emerging correlated
phases in Floquet systems with potential topological features,
such as the coupled or mean-field interacting kicked rotor
[91,92]. For the coupled kicked rotor [92], one may treat
the coordinates of two rotors as the coordinates along two
different spatial dimensions. The interaction term in the Lieb-
Liniger form can then be interpreted as an onsite potential
along the diagonal direction of the effective 2D lattice. We
are now left with a noninteracting problem in a 2D kicked
lattice. The quasienergy eigenstates of the system may then be
obtained by diagonalizing the Floquet operator of the effective
2D model. Following these treatments, our entanglement ap-
proach might be implemented in parallel with what we have
done for the 2D models in this work. Finally, it deserves to
mention that similar to the work of Peschel [37], our approach
of obtaining the ES and EE from the single-particle correlation
matrix is restricted to many-body states in Gaussian form.
Finding a clear path to extend this approach to non-Gaussian
states or other more complicated situations is a challenging
yet very intriguing topic for future explorations.
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calculation of EE.

Research Project of Postdoctoral Fellows in Qingdao (Grant
No. 861905040009).

APPENDIX: ENTANGLEMENT ENTROPY AROUND
FLOQUET TOPOLOGICAL PHASE TRANSITION POINTS

In this Appendix, we elaborate a bit more on the EE of the
spin-1/2 ORDKR in Sec. II A 1. Taking the PBC and per-
forming the Fourier transformations &" = \/LZ >, eOkng®
with the quasiposition k € [—m, ), we find the Floquet op-
erator Eq. (38) in k space to be U (k) = e~ /K>sinkoy o=iKi cosko,
[71]. Solving the eigenvalue equation U (k)|yr) = e E®|yr),
we find two Floquet quasienergy bands with the dispersions

H 10 H
@ ® ]
i 9 N
6
@ 8
5
7
0.95 1 1.05 1.95 2 2.05
1 15
N 14
@ 11
13
10
12
9
2.95 3 3.05 3.95 4 4.05

Ky/m Ky/m

FIG. 12. EE of the spin-1/2 ORDKR § versus K, at different
lattice sizes L. The size of subsystem A is L/2. We set K; = 0.57 for
all cases. In each panel, the blue solid, red dashed and black dotted
lines represent the EE at the lattice sizes L = 1000, 2000, and 4000,
respectively.
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FIG. 13. EE of the spin-1/2 ORDKR § versus the lattice size L.
The size of subsystem A is L/2. We set K; = 0.5z for all cases and
let L goes from 200 up to 4000 for each data set. In panel (a), ¢ refers
to the central charge extracted from the linear fitting of each data set
of § at different K. In panel (b), the data sets from bottom to top
have the values of K, = 0.95x, 1.057, 1.957, 2.057, 2.957, 3.057,
3.95m, and 4.057.

E (k) = £ arccos[cos(K; cos k) cos(K; sink)]. These bands
are defined modulus 27 and symmetric with respect to
E =0. So they can only meet with each other at Ey =
0 or EL = +m. We thus find the gapless condition of
the Floquet spectrum to be cos(Kj cos k) cos(K; sink) = £1.
In the main text, we focus on the case with the kicking
strength K; = 0.57. In this case, the gapless condition can
be satisfied only if K;cosk =0, i.e., k = £r /2, enforcing
K, to be integer multiples of m. More specifically, when

K, =0.57 and K, = 2Z)7 [K, = (2Z — 1)m], the two Flo-
quet bands touch at Eyx(k = £7/2) =0 [EL(k = £ /2) =
4]. In both cases, the quasienergy gap closes at two points
k = +m /2 in k space when a transition happens. The Floquet
spectra of the spin-1/2 ORDKR for K; = 0.57 and K, =
7, 2w, 3w, 4n are presented in Fig. 11 in order to verify our
analysis.

‘We now discuss the properties of EE around these topolog-
ical phase transition points. Let us first consider the change
of EE with system size. In Fig. 12, we show the EE around
the four topological transition points in Fig. 11. We observe
that away from these transition points, the EE almost has no
changes with the increase of lattice size. Meanwhile, right at
each transition point, the EE raises with the increase of the
length of lattice. These observations suggest that the EE has
different scaling behavior versus the system size away from
and right at each topological phase transition point. To further
clarify these scaling properties, we report the EE at different
lattice sizes together with their fitting curves in Fig. 13. Away
from the transition points, we observe that indeed the EE is
almost invariant with the increase of lattice size L. Right at
each transition point, the leading term in EE is found to scale
linearly with In L. The gradient has the form of ¢/3, with ¢
usually being called the central charge. For the transition with
a gap-closing at either E = 0 or E = £, we find ¢ = 2 from
Fig. 13(a). This is consistent with what one may expect in a
usual static system with a gapless spectrum [93-95], since at
half filling there are only two occupied states at the two band-
touching points for all the cases shown in Fig. 11. A similar
result for the finite-size scaling of EE was reported before
in a 1D Floquet topological superconductor [60]. The scaling
relation of EE observed here for our 1D Floquet topological
insulator coincides with that found in the superconducting
setup, where the topological edge states exhibit themselves as
Majorana modes [60] instead of normal fermionic zero and
modes in our case.
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