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A large experimental dataset approach
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In quantum nanoelectronics, numerical simulations have become a ubiquitous tool. Yet the comparison with
experiments is often done at a qualitative level or restricted to a single device with a handful of fitting parameters.
In this work, we assess the predictive power of these simulations by comparing the results of a single model with
a large experimental dataset of 110 devices with 48 different geometries. The devices are quantum point contacts
of various shapes and sizes made with electrostatic gates deposited on top of a high mobility GaAs/AlGaAs two-
dimensional electron gas. We study the pinch-off voltages applied on the gates to deplete the two-dimensional
electron gas in various spatial positions. We argue that the pinch-off voltages are a very robust signature of
the charge distribution in the device. The large experimental dataset allows us to critically review the modeling
and arrive at a robust one-parameter model that can be calibrated in situ, a crucial step for making predictive
simulations.
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I. INTRODUCTION

As the field of quantum nanoeletronics becomes mature,
the devices developed and techniques employed gain in com-
plexity. The need for a set of predictive simulation tools
is, therefore, becoming more acute. For instance, building
a quantum computer requires a complete understanding of
how single- and multiqubit properties depend on the geometry
of the device as well as on the dynamical drives used to
operate them. In the leading solid-state technology, supercon-
ducting based qubits, predictive simulation tools are already
available. Very accurate models that involve only the elec-
tromagnetic degrees of freedom are already being used [1,2].
More importantly, the parameters of these models, i.e., capac-
itances, inductances, and critical currents can be calculated
or measured experimentally in situ. The existence of such
models has been critical in the development of superconduct-
ing based qubits. It allowed one to design several generations
of quantum bits [3], to develop optimum strategies to drive
them or entangle pairs of them, to explain quantitatively
experimental data and understand the decoherence process.
For semiconductor based quantum nanoelectronics, however,
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such predictive tools are not yet as advanced. With the work
presented in this article, we aim at contributing to their devel-
opment.

The difficulty in developing predictive simulation tools for
semiconductor devices stems, at first, from the presence of
very different length scales in the system. Indeed, the active
quantum parts in such devices are typically much smaller than
the length scales for which the electric potential is screened.
It follows that there is a delicate interplay between the elec-
trostatics of the system and the quantum mechanical response
of the active part of the device. Consequently, these devices
are much more sensitive to their microscopic environment
[4,5]. The large majority of quantum transport simulations
simply ignore this difficulty. One assumes an effective form
of the electric potential seen by the electrons and proceeds
to calculate e.g., the conductance of the system [6]. While
this is sufficient to predict qualitative features, it suffers from
severe limitations. First, the relation between the microscopic
potential and the macroscopic parameters (gate voltages, sam-
ple geometry) is unknown. Therefore one needs to introduce
various fitting parameters. Second, many effects, such as gate
cross talk, are simply ignored. Third, the comparison to ex-
perimental data is (at best) limited to a single sample. Hence
one cannot rely on such results to predict the behavior of
experimental devices. That is, the level of predictability of
the simulations is difficult to assess. Finally, in some cases,
e.g., the quantum Hall regime at high magnetic field, the
interplay between the electrostatic and the quantum problem
leads to drastic reconstructions of the electrostatic landscape
[7,8]. Self-consistent quantum-electrostatic calculations are
therefore required even for qualitative results.
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The need to improve the predictive power of the simula-
tions has lead some groups to treat the electrostatic problem
on the same level as the quantum one, see e.g., Refs. [9–13].
That is, of solving a set of equations capturing both the elec-
trostatics of the system and the quantum behavior of the active
part of the device self-consistently. Such self-consistent simu-
lations of quantum transport were for a long time confined to
a few expert groups. Only recently commercial software such
as nextnano [14] started to become available and open source
codes were developed [15–18] in an effort to popularize the
approach. More work remains, however, to be done on the
modeling itself to improve and assess the predictive power
of these simulations. Despite progress in the methods, the
predictions can be very sensitive to the details of the modeling,
such as the fraction of ionized donors, their distances to the
active part of the device or the capacity of free surfaces to
trap charges. With that many details potentially affecting the
behavior of the device, a match between the experimental
data obtained from a single sample (often in a very narrow
regime of gate voltages) and a numerical simulation of any
transport properties is insufficient. It does not guarantee that
one has properly captured the electrostatics of the device.
Hence we argue that the weak point in current approaches is
the feedback loop between experiments and simulations. That
is, single (or few) sample studies are not enough to attain and
demonstrate predictive power. The approach presented in this
paper relies on an extensive dataset to put strong constraints
on the modeling and assess its level of predictability. We
implement this idea by designing specific experiments on well
known systems for the sole purpose of validating the model
used in the simulations.

The experimental part of this work provides the extensive
dataset we use to calibrate the modeling and assess its pre-
dictive power. Indeed, as pointed out recently by Ref. [19],
there is a lack of extensive experimental measurements of
nanoelectronic, quantum devices in the literature. Again, our
objective is to assess how well we can predict quantitatively
the behavior of devices whose physics is supposed to be
already well understood. We have fabricated a large set of
quantum point contacts (QPC) on the two-dimensional elec-
tron gas (2DEG) formed in a GaAs/AlGaAs heterostructure.
We have measured the low-temperature differential conduc-
tance of a total of 110 different quantum point contacts with
48 different geometries of various shapes, widths and lengths.
The full set of experimental data is published together with
this paper [20]. Beyond the simulations presented here, such
a database could be used in subsequent work as the modeling
gets refined.

The simulation part predicts the different values of the gate
voltages where the QPC conductance vanishes, the so-called
“pinch-off” voltages. Although in this paper we restrain our-
selves to predicting pinch-off voltages, our ultimate goal is to
be able to perform parameter free simulations of electronic
interferometers such as the one discussed in Refs. [21,22].
In fact, when modeling nanoelectronic devices such as the
latter, an important aspect is the separation of energy scales
in the system. In such samples, the relevant quantum physics
takes place at energies of a few tens of μeV. In contrast, the
Fermi energy lies at much higher energies, i.e., a few meV.
At the same time, the macroscopic (gate voltages) or mate-

rial (band offsets) parameters lie in the 1 eV range. Making
predictive simulations is thus not straightforward. One must
predict μeV physics starting from a model that is only defined
at much higher energies. The pinch-off values are unaffected
by the low energy physics. Understanding them amounts to
understanding the charge distribution in the device. That is,
the physics in the meV–eV range. Only when one is confident
that this physics is taken care correctly, it makes sense to try
to predict the physics taking place at lower energies. That is,
only when one can correctly predict the pinch-off voltage for
any QPC among the 110 devices fabricated to generate the
dataset, one can hope to develop a model precise enough such
that it can correctly capture the relevant quantum physics.
Hence, the simulations performed in this paper aim at giving
a quantitative answer to the question: “where are the charges
in the device?”

The paper is organized the following way. Section II sum-
marizes our main findings: We show that the experimental
pinch-off voltages match the predictions of the simulations
within a ±5% accuracy. Section III describes our experi-
mental protocol. Section IV explains the model used in the
simulations. In Sec. V, we present the comparison between the
experimental data and the simulations. We end this paper with
Sec. VI, which contains a critical discussion of the modeling.

II. SUMMARY OF THE APPROACH AND MAIN RESULTS

We have fabricated and measured a large set of quan-
tum point contacts of various shapes and sizes. Quantum
point contacts are one of the simplest devices used in quan-
tum nanoelectronics. Introduced in the seminal experiment
demonstrating conductance quantization in a constriction
[23], they became a standard tool to make tunable beam
splitters [21]. Despite their simplicity, there remain open ques-
tions about their behavior in the regime called 0.7 anomaly
[24]. Here, we do not focus on the 0.7 anomaly, nor on the
quantization of conductance, but we rather establish, on firm
grounds, the electrostatic potential seen by the conducting
electrons. This amounts to understanding the charge distribu-
tion in the device. To reach this goal, we perform a systematic
comparison between the simulated and measured “pinch-off”
voltages.

Experimentally, the pinch-off voltage is the value of the
voltage that needs to be applied to the electrostatic gates in
order for the conductance to vanish or present a cusp—an
indication that the 2DEG gets fully depleted in some part of
the system.

Figure 1(c) shows a schematic of a typical device (see
Fig. 5 for a SEM picture with the scales). The device (zoomed-
in inset) has a transistorlike geometry with source and drain
Ohmic contacts and electrostatic split gates. Applying a neg-
ative voltage Vg on the gates depletes the 2DEG underneath.
As we indicate in Fig. 1(c), each gate is further divided into
three regions of different width. The region closest to the
border of the 2DEG is very wide (several μm) and is called
the “gated region.” A second region of intermediary width
(50 nm) is noted “narrow gate” region. Finally, the “QPC”
region is located at the middle of the device where the gates
split. A sketch of the full stack, a standard high mobility
GaAs/AlGaAs heterostructure, is shown in Fig. 1(a).
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FIG. 1. (a) Schematic of the 3D stack with GaAs (dark gray), AlGaAs (light gray), top QPC gate (yellow), and the 2DEG region (blue).
(b) Typical experimental curve for gate voltage measurements. The three different points, V1, V2, and V3, correspond to values of the gate
voltage where the gas is depleted underneath the different gate regions. V1 depletes the gas in the gated region, V2 in the narrow gate region
and V3 in the QPC region. (c) Simplified top view of a device with a transistorlike geometry. The Ohmic contacts (source and drain) and the
electrostatic gates (situated ≈110 nm above the 2DEG) are indicated in yellow. For the simulations, the system is broken into four different
subregions tagged ungated, gated, narrow gate, and QPC region, see text.

We measure the current I versus gate voltage Vg character-
istic for each device; see Fig. 1(b) for a typical experimental
trace. As one decreases Vg from zero towards negative values,
one first depletes the 2DEG underneath the “gated” region.
Indeed, the large width of the gates (several μm) on this
region compared to the rest of the split gate means the 2DEG
will first be depleted underneath it. The value for which the
2DEG is depleted underneath the “gated” region is denoted V1.
There, one observes a cusp in the current–gate voltage curve,
as indicated on Fig. 1(b).

In the simplest model for V1, accurate within a few percent
(see the discussion in Sec. VI), the 2DEG and the electrostatic
gate form a simple plane capacitor. The electron density in the
gated region is given by n(Vg) = ng − εVg/(ed ) (ng: electronic
density in the gated region with zero volts applied to the
gate, ε ≈ 12ε0: dielectric constant, d = 110 nm: total distance
between the 2DEG and the gate). It follows that V1 is an almost
direct measure of the electronic density in the gated region,

ng ≈ εV1

ed
. (1)

As one further decreases the gate voltage, one eventually
depletes the gas below the “narrow gate” region. This region is
tens of micron long along the y direction, but only 50 nm wide.
A second cusp in the conductance versus Vg curve is observed
at the voltage V2 where this region is fully depleted. Finally, as
one continues to decrease Vg towards strongly negative values,
the gas is depleted in the central QPC region. At that moment,
the conductance between the left and right Ohmic contact
vanishes entirely. We denote the gate voltage at which this
depletion is observed as V3. The set of voltages V1, V2, and V3

reflect the initial density at various parts of the sample and the
interplay between the field effect of the gate and the screening
of the 2DEG. These are the main data studied in this paper.
The full set of current-gate voltage characteristics is provided
as a zenodo archive [20]. They could be further used to study,
e.g., conductance quantization.

In order to predict the different values V1, V2, and V3, we
perform a different type of calculation for each of the three
gate regions. The dimensions of the “gated” and “narrow gate”
regions have been kept constant for all QPCs. Hence we ex-
pect very little sample to sample variation of the experimental
value for V1 and V2. The value of V3, however, corresponds to
the “QPC” region that has been varied in different devices.

(1) To calculate V1, one simulates the “gated” region. It can
be approximated as infinite along x and y directions due to
the large dimensions of the gates. Therefore one only needs
to perform 1D simulations along the z direction. Additional
1D simulations were performed for the “ungated” region, i.e.,
without top gate. It allows one to calculate the 2DEG bulk
density ns far away from the gates. Such a value can be com-
pared to the experimental bulk density nbulk = 2.8 × 1015 m−2

obtained by Hall measurements.
(2) To calculate the value of V2, we simulate the narrow

gate region. The latter is very long along the y direction (up
to 50 μm), but very narrow (50 nm in most samples) along
x. Hence we consider a system infinite along y and need only
to perform 2D simulations in the (x, z) plane. We decrease Vg

until the density vanishes underneath the middle of the narrow
gate. Then we record the associated value of Vg as V2.

(3) To calculate the value V3 we perform a full 3D simu-
lation of the “QPC” region. The V3 value is then extracted by
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FIG. 2. Comparison between simulation (small black symbols and dashed line) and experiment (color symbols and solid line). The QPCs
are grouped according to design: A (top), B (middle), and C (bottom). The results have been color-coded according to the width of the QPC,
WQPC (Fig. 4): blue for 250 nm, orange for 300 nm and green for 500 nm. The different symbols correspond to different devices with identical
nominal characteristics but at different locations in the wafer, cf. Fig. 6. A letter is attributed to each symbol: “a” (rectangles), “b” (circles),
“c” (up triangles), and “d” (down triangles) so that a given QPC is uniquely identified by its geometry (A, B, C, or equivalently upper, middle
and down panel), its rank (1–8 from left to right in the figure) and the letter a–d. For instance QPC “A5b” corresponds to the fifth circle in the
top panel. Arrows point to outliers that we attribute to lithography problems or structural damage during cooldown or initial measurements,
see text.

decreasing Vg until the density vanishes underneath the middle
of the gap between the two gates. At Vg � V3, the 2DEG is
split into two disconnected left and right parts.

The model we used to simulate the devices has two a
priori independent input parameters: the dopant density nd

and surface charges density nsc (see Sec. IV). With this model
we do not attempt to predict the experimental bulk 2DEG
density in the ungated (nbulk) or gated (∝ V1) regions. Instead,
we calibrate the model values of nd and nsc by fitting the model
to the experimental values of V1 and nbulk. This calibration
sets the value of the electronic density in the model in the
ungated (ns) and in the gated (ng) regions. While ns = nbulk

after calibration, we keep two different letters for the model
and experimental values, respectively, for clarity. Predicting
ns and ng would imply having a precise knowledge of many
microscopic parameters. Accurate values of the dopant ion-
ization energy, dopant concentration, surface states energy,
band alignment, dielectric layers thickness, etc. would have
to be obtained either from theoretical arguments or from ex-
periments. This is a hard task, and also not necessary for the
physics we seek to understand, the transport properties. At the
end of this paper, we should argue that nd and nsc are in fact

not independent and that a single effective input parameter
may be used (see the discussion of Fermi level pinning in
Sec. VI). This further increases the predictive power of our
model. However, the relation between nd and nsc has not
been assumed in the simulations and is considered here as a
prediction of the modeling.

Once nd and nsc have been calibrated, we then proceed
to predict the V2 and V3 pinch-off voltages. The main result
of this paper is shown in Fig. 2 where we compare the ex-
perimental (color symbols) to the simulated (black symbols)
values of V3 for the different QPC designs; see Fig. 4 for
the latter. It shows a systematic agreement of the theoretical
prediction for V3 with that obtained experimentally within
a precision of 10% or better. Figure 2 implies that we can
reliably predict the spatial variations of the electronic density
in devices of arbitrary geometries. This opens the path for
making quantitative calculations at smaller energy scales and
predict genuine quantum effects quantitatively and without
fitting parameters.

Beyond the overall agreement between experiments and
simulations, Fig. 2 further shows significant sample to sam-
ple variations for nominally identical samples as well as
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FIG. 3. (a) Side view of the experimental heterostructure stack.
The widths of the different layers are respectively d1 = 25 nm, d2 =
65 nm, d3 = 10 nm, and d4 = 10 nm. The central AlGaAs layer of
width d2 is doped. (a), (b), and (c) correspond, respectively, to the
ungated, gated, and narrow gate regions as indicated in Fig. 1(c). In
the simulations, (a) and (b) correspond to 1D models without and
with a top gate, respectively, while (c) corresponds to a 2D model
with a gate of finite width (50 nm) at its surface.

systematic deviations (the simulation curves being systemati-
cally above the experimental ones). These features, which we
attribute to disorder, will be discussed later in this paper.

III. EXPERIMENTS: DETAILS OF THE SET OF QUANTUM
POINT CONTACT DEVICES

Our samples were fabricated on a Si-modulation-doped
GaAs/Al0.34Ga0.66As heterostructure grown by molecular
beam epitaxy (MBE). The high mobility two-dimensional
electron gas (2DEG) lies at the GaAs/AlGaAs interface,
located 110 nm below the surface. Performing Hall mea-
surements at 4.2 K under dark conditions, we find a bulk
2DEG density of nbulk ≈ 2.79 × 1015 m−2 and a mobility of
μ ≈ 9.1 × 105 cm2 V−1 s−1. The corresponding Fermi wave-
length is λF = √

2π/ns ≈ 47 nm. The surface electrodes that

FIG. 4. Schematic of QPC designs: Rectangular (A), round
(B), and smooth (C). The characteristic geometrical parameters L
(length), W (width), and R (radius) are indicated by arrows.

define the quantum point contacts are made out of a metal
stack of 4 nm titanium and 13 nm gold, deposited by succes-
sive thin-film evaporation. The composition of the stack of the
heterostructure is shown in Fig. 3(a) together with the widths
of the different layers.

In order to investigate the geometrical influence of QPCs,
we designed three kinds of shapes: rectangular (A), round
(B), and smooth (C) (see Fig. 4). Rectangular (A) designs
correspond to a wire of length L defined by two parallel
gates separated by width W . Round (B) designs consist on
two semicircular gates with radius R that define the point
contact. At last, smooth (C) designs belong to an intermediate
design between A and B, combining the linear constriction
with adiabatic entrances.

For each design (A,B,C), 16 different combinations of ge-
ometrical parameters L, R, and W are investigated, from the
smallest (A1, B1, C1) to the largest (A16, B16, C16) sizes.

Figure 5 shows scanning electron microscopy (SEM) im-
ages of various fabricated designs; see Appendix for exact
parameters. To account for statistical variability, devices with
the exact same design are repeated across the chip. We label
them with an additional Latin letter (“a” to “d”) in the device
name. For example, A2a and A2b are different QPCs with
identical nominal characteristics.

In order to maximize the number of measured devices in a
same cooldown, a set of eight QPCs is placed in series sharing
a common pair of Ohmic contacts (see top panel in Fig. 5).
With a separation more than 40 μm, we ensure that no mutual
effect occurs between the neighboring QPCs. We call such a
set of eight QPCs, a sample. We draw attention to the fact
that we follow this notation throughout the text, as different
such sets of QPCs (samples) present larger deviation in their
measured characteristics than QPCs within the same sample.

We fabricated and measured a total of 110 QPCs with 48
unique designs that are distributed in 16 sets on a chip of
10 mm × 8 mm. A schematic layout is shown in Fig. 6. The
sample that contains a given QPC can be identified by the a
column index X and a row index Y . For example, the device
A2a is located in the set X = 1 and Y = 2.

The conductance characterization was performed at two
temperatures T ≈ 4.2 K and 50 mK. Unless stated explicitly,
all the data shown below have been taken at 4.2 K as only
a limited number of samples have been measured at 50 mK.
While the temperature strongly affects features like conduc-
tance quantization, the temperature variations of the pinch-off
voltages can be ignored, as one can observe in Fig. 1(b). We
note, however, that there is a small decrease of �25 mV of the
V3 pinch-off voltages between 4.2 K and 50 mK. This small
variation is irrelevant here considering the level of accuracy
of the simulations and the sample to sample experimental
variations. We apply a bias voltage VB = 500 μV between the
Ohmic contact to induce the current I. To characterize the
transport properties, we measured the current I as a function
of surface-gate voltage Vg for each device. The full dataset of
these transport measurements, can be found in Ref. [20].

Figure 7 shows conductance versus Vg measurements for
various QPCs at 50 mK, which have more pronounced quanti-
zation features than those at 4.2 K. Three distinct regions can
be identified separated by the pinch-off voltages V1, V2, and
V3. In the first two regions (Vg � V2 ≈ −0.75 V), different
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FIG. 5. Scanning electron microscopy (SEM) images of quantum point contacts. (Top) Overview of a set of eight QPCs in series sharing
a pair of Ohmic contacts (a sample). (Bottom) Examples of investigated shapes (A, B, C).

devices share the same conductance behavior. This is ex-
pected as in this regime the current is dominated by the
electron flow in the large “gated” or the “narrow gate” regions,
which is identical for all QPCs (see Fig. 1). In the third
region (Vg � V2), the transport properties are only affected
by the narrow constriction formed between the gates. Clear
conductance quantization steps are observed for numerous
QPCs with wide-ranging pinch-off voltages V3. Note that
the pinch-off voltages V1 and V2 are also visible when one
biases only one of the two gates (e.g., top or bottom). Also
note that we show the raw data without substraction of the
series resistance due to the Ohmic contacts and measuring
apparatus.

A few samples deviated significantly from the theoretical
predictions, as indicated by the grey arrows in Fig. 2. We have

performed a visual inspection of the SEM image of some of
these samples which did not reveal any particular problem.
We attribute these outliers to fluctuations of the density in the
QPC region due to, e.g., a fluctuation of the concentration of
dopants above.

This paper focuses on the proper level of modelization
to capture spatial variations of the electronic density. We
leave to future work the analysis of more subtle features
such as the shapes and positions of conductance plateaus.
As a general trend, we find, in accordance with common
knowledge, that the plateaus get quickly washed out upon
increasing the temperature to 4.2 K or making the sample too
long (only the ones with L � 250 nm showed clear plateaus).
Type C samples showed the least pronounced plateaus
features.
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FIG. 6. Repartition of the QPCs in the GaAs dice. A set of eight
QPCs (a sample) is represented as a rectangular box identified by its
X and Y indices. Gray areas have not been used. The dimensions of
one sample are ≈ 1.6 × 2.3 mm2.

IV. SIMULATIONS: DETAILS OF THE MODELING

The simulations performed in this paper are done within
the Thomas-Fermi approximation at zero temperature using
the commercial software NEXTNANO++ [14,25]. We model
the device using the self-consistent Poisson equation:

�∇.[ε(�r) �∇U (�r)] = eN[μ = EF + eU (�r)] − eNd(�r) + eNsc(�r),
(2)

where U (�r) is the electrostatic potential, ε(�r) the dielectric
constant, Nd(�r) is the ionized dopant density in the doped
layer, EF = 0 the Fermi level (electrochemical potential) of
the 2DEG and Nsc(�r) the frozen surface charge density at the
surfaces not covered by metallic gates and μ is the chem-
ical potential of the 2DEG. We use the uppercase letter N
to indicate volume densities (e.g., density of dopants Nd)
in m−3 and the lowercase letter n to indicate surface den-
sities in m−2 (e.g., ns the bulk 2DEG electronic density).
Whenever possible, we will convert the volume densities to
effective surface densities. For instance, the dopant density
Nd over a layer of thickness d2 is equivalent to an effective
2D dopant density of nd = Ndd2. We use Dirichlet conditions
U (�r) = Vg − Vw at the gate-semiconductor interface. Vg is
the applied voltage with respect to the grounded 2DEG. Vw

is the work function of the gold/GaAs interface which for
definiteness we take as Vw ≈ 0.75 V. However, the actual
value of Vw is irrelevant since any change of Vw will be
compensated by a change in nd to keep V1 calibrated to the
experiments.

To complete the theoretical model, we must provide the
relation between the density N of the 2DEG and the chemical
potential μ. This relation is defined by the integral up to μ

of the system local density of states which in general must be
calculated by solving the quantum problem self-consistently
with the Poisson equation [12]. Here, we approximate the
local density of states to be equal to the bulk density of states
of GaAs, ignoring the quantum fluctuations (Thomas-Fermi
approximation). The integrated DOS equation for N thus

reads:

N (μ) = (2m∗)3/2

3π2h̄3 (μ − Eb)3/2 for μ > Eb,

N (μ) = 0 for μ � Eb, (3)

where Eb is the position of the bottom of the conduction band
in GaAs and m∗ its effective mass. As discussed for Vw above,
the actual value of Eb is irrelevant in this paper. Note that for
the purpose of pinch-off voltage calculations, we could have
used the constant density of state of a 2DEG, n = m∗μ/(π h̄2),
instead of the three-dimensional Eq. (3) and obtained the same
results within our accuracy.

Figures 3(a) and 3(b) show a side view of the geometry
used in the simulations of the “ungated” and “gated” QPC
regions respectively [see Fig. 1(c)]. We define ns as the 2DEG
density underneath the ungated region, and ng the 2DEG
density underneath the gated region for Vg = 0. The stack
is made of several layers of widths di. The models for the
gated and ungated regions are translationally invariant along
the (x, y) plane, hence the problem reduces to a 1D simulation
along the z direction. Figure 3(c) shows a side view of the
geometry of the “narrow gate” region. Since it is invariant
only along y, the problem reduces to a 2D simulation of
the (x, z) plane. Finally, Fig. 1(a) shows the geometry used
for a QPC region. The simulations of the QPC regions are
performed in 3D. A single set of parameters nd, nsc and
the thicknesses d1 = 25 nm, d2 = 65 nm, d3 = 10 nm, and
d4 = 10 nm is used in the simulations of all the different
regions.

The values of ns and ng at Vg = 0 is a complex function
of the model parameters nd, nsc, Vw, Eb, and di. However,
once these parameters are set (in our case, calibrated to the
experiments), the density profile and the electric potential in
the 2DEG are simply a function of ns, ng, Vg, and the total
distance d = ∑4

i=1 di = 110 nm between the 2DEG and the
gates. The point of view taken in this paper is to use ns

and ng as effective parameters and ignore the large set of
microscopic parameter. We do not attempt to describe the
detailed microscopic physics that would allow one to predict
their values. Note that in a typical 2DEG, nd is roughly equal
to 10 times ns, i.e., 90% of the dopant electrons go to the top
surface and only 10% to the 2DEG [26]. Furthermore, not all
dopants necessarily get ionized. Hence a precise calculation
of ns (idem for ng) requires a very precise knowledge of the
dopant density and of the various energies level of the dopants
and at the surface.

In the simulations, we used a mesh with a discretization
step smaller than 1 nm. We explicitly checked that the results
are unaffected by the discretization within a precision better
than 10 mV by performing several simulations with higher
accuracy.

Figure 8(a) shows a typical 3D simulation of a QPC region
(here device B6) at different gate voltages. The color map
shows the electronic density around the central part of the
device. At Vg � V3, the density is only slightly decreased
below the gates. At Vg = −1.8 V < V3, the region in be-
tween the two gates is fully depleted. Figure 8(b) shows the
density versus Vg at two different points of interest. As ex-
pected, we find that the pinch-off, i.e., cutting the system into
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FIG. 7. G = I/VB vs Vg measurements for three sets of QPCs (A1-8a, B1-8a, C1-8b) with an Ohmic bias VB = 500 μV at T ≈ 50 mK. The
arrows indicate the characteristic voltage drops V1, V2, and V3. Note that the current I0(Vg = 0) is the same for all QPCs in a given set. This is
because of the common contribution from the Ohmic contact.

disconnected left and right parts, occurs when the central
point x = y = 0 is depleted. Hence we take the corresponding
Vg value as our calculated V3. The typical potential profile
observed in the simulations is almost flat in the 2DEG and

abruptly rises in regions where the 2DEG has been depleted
and cannot screen the gates. Plots of the behavior of the
potential (at zero field but also in the quantum Hall regime)
can be found in Ref. [12].

FIG. 8. (a) Simulation of the electron density distribution in the 2DEG for QPC B6 at different voltages. (Left) Vg = −1.0 and (right)
−1.8 V. (b) Density vs Vg at the two different points indicated in the right (a) panel. V3 is identified as the value for which n(x = 0, y =
0, Vg = V3) vanished.
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V. COMPARISON BETWEEN EXPERIMENTAL
AND SIMULATION PINCH-OFF VOLTAGES

A. Model Calibration using the V1 pinch-off of the gated regions

Our model has two free parameters. One is the dopant
density nd. It sets the 2DEG charge density underneath the
“gated” region at Vg = 0 equal to ng. The second is the surface
charge density nsc. It sets the 2DEG density underneath the
“ungated” region, ns, for a given ng. Our model allows for
a spatially varying density even in the absence of applied
voltage, i.e., ns 	= ng. As we shall see in Sec. VI, there
are multiple experimental evidences that point towards the
fact that these two densities are in fact equal (ns = ng)
due to “Fermi level pinning” and the model could be further
simplified. Our calibration always leads to ns ≈ ng within
10% which is consistent with Fermi level pinning.

To calibrate our model, we use a two step process and
two experimental values, V1 and nbulk. First, we vary nd and
calculate the pinch-off voltage V1 in the “gated” region. We
set nd so that the simulated V1 matches the experimental
value. This sets ng. In the second step, we vary nsc and cal-
culate the density ns in the ungated region. We set nsc so
that ns matches the experimental 2DEG bulk charge density
nbulk = 2.79 × 1015 m−2. The calibration process is illustrated
in Fig. 9(a) (first step) and 9(b) (second step). It is repeated for
each QPC.

Figure 10(a) shows the variations of V1 for all the devices
that have been measured. We find that the variations for QPCs
within the same set are small, on the order of 0.5% (±2
mV). Therefore, using a unique average value of nd to model,
a given set would give identical result with respect to the
QPC per QPC calibration. However, the variations of V1 for
QPCs of different sets are larger—of the order of 10% (40
mV). They are of the same order of magnitude as typical
variations observed between different cooldowns. They imply
the presence of significant variations over large distances of
ng. We suspect that similar variations of ns are also present, see
the discussion in Sec. VI. In the dices X = 3 and 4 with Y = 3,
the calibration with V1 ≈ −0.49 V gives ng = ns while in the
other samples the two densities differ by less than 10%.

B. Simulations of the QPC regions pinch-off voltages V3

After calibrating the model, we performed 3D simulations
of the “QPC” region to calculate the pinch-off voltage V3.
Figure 2 shows the predicted (dashed lines) and measured
(full lines) pinch-off voltages. We compare V3 as a function of
L (top panel, A samples), R (middle panel, B samples), and
L (bottom panel, C samples). Figure 2 highlights the main
results of this paper. It shows that the simulations correctly
capture the pinch-off voltages. The main features of interest
of Fig. 2 are the following.

(P1) Overall the simulations predict the pinch-off voltages
quantitatively with a precision of the order of 10%.

(P2) There are significant experimental V3 variations in
between QPCs with the same nominal characteristics. They
are also of the order of 10%. For instance the values of V3

observed for the four A2 samples (A2a, A2b, A2c, and A2d)
range from −2.2 to −1.8 V, while the numerics predict a V3

close to −1.8 V. We also observed similar variations of the

FIG. 9. Illustration of the model calibration for sample A1a.
(a) shows the pinch-off V1 (left axis) or equivalently ng (right axis)
calculated with the gated 1D model as a function of doping density
nd. The horizontal dashed line shows a typical experimental value of
V1. (b) shows ns as a function of the surface charge density nsc using
the 1D ungated model. The value of nd is set to the intersection of the
blue and dashed lines of panel (a). The horizontal dashed line shows
the value of nbulk and its intersection with the simulation result shows
the calibrated value of nsc.

values of V3 (of the order of 0.1 V) on the same QPCs between
different cooldown. Hence, the accuracy of the predictions is
as good as the level of reproducibility of the experiments.
Getting beyond this accuracy would involve a local in situ
calibration of the model so that any spatial variations of ns,
ng within the wafer would be accounted for. One could, for
instance, include an additional QPC in the device, close to
the active part of interest, and use the associated V3 value to
calibrate the modeling with the actual local electronic density.

(P3) The V3 dependence on the QPC nominal characteris-
tics L, R, and W are correctly reproduced qualitatively.

(P4) The predicted V3 is almost always smaller (in absolute
value) than the experimental one by an offset of the order of
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FIG. 10. Color maps of the variation of the experimental pinch-off values over the die. (a) ungated region values V exp
1 ; (b) and (c) narrow

gate region values V exp
2 with Wg = 50 and 80 nm, respectively. Each thin stripe corresponds to a different sample. For each set of QPCs,

the average value and the standard deviation between the different samples of the set is also shown. The top scale indicates the positions of the
samples on the wafer in millimeters. The scale is not linear as consecutive pairs of samples are separated by 2 mm. No data are available in the
gray regions [unmeasured or distributed between (b) and (c)].

0.1–0.2 V. This indicates that our calibration slightly underes-
timates the value of the electronic density by 5% –10%. We
attribute this fact to disorder as explained in Sec. VI C.

Figure 11 shows the V3 data on samples with lengths 1
μm � L � 50 μm. For such long samples, the simulations
predict that V3 should not depend on L. This trend is already

FIG. 11. Experimental results of V3 for the large A designs. The
dashed lines correspond to the simulation for an infinitely long sam-
ple. The different symbols correspond to sample a: (X1Y2, squares)
and b (X5Y2, circles). Two different calibrations have been used in
the simulations: the one described in Sec. IV (black dashed line) and
a secondary calibration that enforces ns = ng (gray dashed line).

observed in Fig. 2 for lengths exceeding 1 μm. Indeed, the
largest length scale in the problem is the distance between
the 2DEG and the gate, i.e., d ≈ 110 nm. When L � d ,
V3 no longer depends on L. In practice, we have found that
for L � 5d, one has already reached the infinite L limit in
the simulations. Hence, the simulations for devices with L �
5d are done by supposing L = ∞, i.e., a system invariant by
translation along the y direction. We have used two different
calibrations of the model: the same one as described in the
preceding section (black) and a different one where we cali-
brate ng with the experimental V1 and then set ns = ng. Both
simulations give similar results and fail to capture the main
experimental observation of Fig. 11 which is (P5) V3(L) has a
large variation of ≈ +600 mV as the sample length goes from
L = 1 to 50 μm (from −3.34 V at L = 1 μm to −2.72 V at L
= 50 μm for WQPC = 750 nm).

Property (P5) cannot be explained by the model that we
have used so far. In order to account for (P5), one must take
into account the smooth density fluctuations that take place on
long scales. Indeed, in the presence of spatial variations of the
density along the x direction, the pinch-off V3 is determined
by the position in x where the density is smallest. A model
analyzing semiquantitatively the role of the disorder will be
presented in Sec. VI C.
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FIG. 12. (a) Simulated electronic density profile as a function of
x at Vg = 0, in the narrow gate region with Wg = 50 nm. The orange
and green 2DEG profiles are the simulation results obtained from
the standard calibration for QPC B2a and B2b. The blue line uses a
calibration where ns = ng = nbulk. (b) V2 as a function of ns =
ng for two different gate widths W = 50 nm (dashed blue line) and
W = 40 nm (full blue lines). The vertical line shows ns = nbulk and
horizontal line shows the experimental value of V2.

C. Simulations of the narrow gate region pinch-off voltages V2

We now turn to the simulations of the “narrow gate” region.
They correspond to the very long (>20 μm) but thin (50 nm
wide) gate. Figure 12(a) shows a typical simulation of the
electronic density versus x at zero applied gate voltage. The
different curves correspond to different densities of surface
charge and dopants. Specifically, we have used different cal-
ibrations for the density ns far away from the gate and the
density ng under a (wide) gate. While the simulated 2DEG
density varies below the gate, this variation is smaller than
5% which corresponds to the variation of V1 that we have
observed on different samples. It follows that our findings are
fully compatible with a uniform density at zero voltage.

TABLE I. Comparison between experimental (exp) and simu-
lated (sim) values of V2 for the two different widths Wg. σV2 is
the standard deviation of V2 between different QPC. We observe a
systematic deviation of ≈ 0.15 V (20%) between the simulation and
the experiments.

V2 exp. σV2 exp. V2 sim. mean

50 nm −0.90 0.032 −0.73
80 nm −0.77 0.010 −0.63

The main observation we make for the voltage V2 is that our
predictions are significantly lower than the experimental data
for both values of width Wg, see Table I. More precisely, (P6)
the simulations systematically underestimate the magnitude of
V2 by ≈0.15 V (20%).

The error in (P6) is the largest discrepancy we have ob-
served between the simulations and the experiments. We
identify four possible origins for this discrepancy. (1) The bulk
value ns is higher than the one we used. (2) The width Wg is
narrower than what is drawn in the design. Gate fabrication
uses standard lithographic technique with e-beam writing on
a resist, chemical lift-off of the resist followed by metal depo-
sition and chemical lift-off of the residual resist. This process
should have an accuracy better than 10 nm in the width of
the gates. (3) The width Wg fluctuates along the gate due to
lithography accidents. (4) There are density fluctuations of the
2DEG due to disorder.

Figure 12(b) shows the predicted value of V2 as a function
of the 2DEG density ns assuming a uniform 2DEG density
at Vg = 0 (ns = ng). The vertical line corresponds to the
nominal value ns = 2.8 × 1015 m−2. The horizontal line is the
measured value of V2. We see that to obtain the experimental
value of V2 for Wg = 50 nm, one needs ns = 3.4 × 1015 m−2

which is unreasonably high (This is 21.5% higher than the
nominal value while typical density variations inside a wafer
are in the 5%–10% range). Hence, we can rule out (1) as the
origin of (P6). The straight blue line in Fig. 12(b) shows the
value of V2 obtained when one reduces the width of the gate
by 20%, i.e., Wg = 40 nm. We see that this is not sufficient to
reproduce the experimental data and larger variations of Wg

would be visible on the SEM images. In contrast the SEM
images indicate a width that is slightly larger than 50 nm.
Hence, we rule out (2). Finally, we do not observe sample
to sample variations of V2 and the SEM pictures do not show
fluctuations of the width Wg along the gate. Hence we rule
out (3).

The last scenario (4) corresponds to smooth spatial fluc-
tuations of the density inside the sample. This could be due
to e.g., doping density or background doping fluctuations
[27–29]. Indeed, if the electronic density varies underneath
the 20 μm long gate, the corresponding V2 pinch-off will be
given by the region of the largest density. This interpretation is
fully consistent with the observation of the significantly large
sample to sample fluctuations of V3. In Sec. VI C, we perform
a systematic analysis of the effect of long range disorder on
V1, V2, and V3. We find that a 5%–10% density fluctuation
consistently explain (P2), (P5), and (P6).
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VI. CRITICAL DISCUSSION OF THE MODELING

In this section, we discuss various aspects of the modeling
in more detail. We emphasize again that we refrained from the
particularly difficult goal of trying to predict the bulk density
of the device. That is, to develop a model capturing the micro-
scopic details along the 1D z direction of our samples. While
the corresponding physics is well understood and has been
studied rather extensively, the resulting electronic density de-
pends on many parameters which are often poorly known.
These microscopic parameters include the density of dopants,
the fraction of dopants that are ionized (or equivalently the
precise dopant ionization energies—including the so called
DX centers), the residual doping in the bulk of the wafer, the
density of surface charges (or equivalently the precise value
of the binding energy of the surface states), the work function
of the metals used in the electrostatic gate with respect to
GaAs, the values of the band offsets, the effective masses, the
relative dielectric constants of the different materials [30–33],
etc. Making quantitative predictive simulations with so many
unknown parameters that depend on the growth condition of
the wafer is very challenging. It also serves a very different
purpose, more related to wafer characterization than to the
understanding of the devices made out of it.

Our goal instead is to be able to predict the spatial varia-
tions along the 2D x and y directions. We use experimental
measurements to tabulate the result of the interplay between
all the above mentioned parameters. Indeed, and this is a
very important point, while this interplay is quite subtle at
room temperature, at sub-Kelvin temperatures on the other
hand all the possible source of charges (surface, dopants)
are essentially frozen. Hence, while they do contribute to the
electronic density, their effect boils down to a contribution
to the 2DEG electronic density that can be measured inde-
pendently through, e.g., Hall measurements. The fact that the
charge sources are frozen, a well established experimental
fact, coupled to the linearity of the Poisson equation, means
that to predict the effect of the gate voltages on the 2DEG
density one only needs: (i) the distance of the 2DEG with
respect to the gates and (ii) the low temperature 2DEG density
profile in the xy plane at zero applied gate voltage. This is
precisely what we are trying to capture in our simulations.
Below we discuss how the choices of (i) and (ii) made in our
modeling affect the results.

A. Role of quantum capacitance and quantum fluctuations
on the electronic density

Let us discuss a 1D minimum model to discuss the elec-
tronic density in the “ungated” (bulk) or “gated” regions.
These regions are sufficiently large so that the 2DEG can be
considered far from the gate boundaries. The spatial variation
of the 2DEG density in the xy plane can thus be ignored,
assuming no disorder. We are left with a, possibly complex,
1D problem along the z direction. We describe the 2DEG by
its 2D density of states ρ. We suppose the vertical distance
to the gate (at voltage Vg) to be d. Lastly, we assume there is
an arbitrary distribution of doping charges nd(z). It includes
the ionized dopants, the surface charge and any other frozen
charge that might be present in the system. The 2DEG density

ns is given by ns = ρμ, where μ is the chemical potential
of the 2DEG. Assuming without loss of generality, that the
2DEG is grounded, the electrochemical potential vanishes so
that μ − eU (z = 0) = 0. The model reduces to solving the
Poisson equation,

∂2

∂z2
U (z) = e

ε
nd(z) (4)

with the boundary conditions U (d ) = Vg and ∂zU (0) =
(e2ρ/ε)U (0). This equation being linear, its solution can
be written as a linear combination of two terms U (z) =
U (z,Vg = 0) + VgU (z,Vg = 1). We thus arrive at(

1

e2ρ
+ d

ε

)
eng = V1 − Vg, (5)

where the parameter V1 is the pinch-off voltage. It corresponds
to the contribution of nd(z) to the electronic density. In such
a simple model, V1 could be expressed explicitly in terms
of nd(z). However, we will refrain from doing so and take
it as an experimentally measurable parameter. Equation (5)
provides a direct conversion relation between 2DEG density
to voltages. For a distance of d = 100 nm and using ε = 12ε0,
the density is ng = 6.6 × 1015m−2 V1. For our stack, i.e., a
bulk density of ns = 2.8 × 1015 m−2 and d = 110 nm, we
calculate V1 = (2.8/6.6) × (110/100) = 0.46 V. The latter
is the predicted pinch-off voltage in the “gated” region. This
simple calculation actually matches the measured value of V1.

In the calculation above we have neglected the contribution
from the density of states. Indeed, the contribution of the
1/(e2ρ) term, i.e., the inverse of the quantum capacitance,
is for most devices negligible compared to the inverse of
the geometrical capacitance d/ε. For the QPCs studied in
this paper, the quantum capacitance term adds a correction
of 2% to the voltage pinch off. The latter is estimated using
the effective mass approximation and assuming only the first
sub-band as occupied when calculating ρ. That is ρ = m∗

h̄2π
with m∗ ≈ 0.067m0 for GaAs. A 2% correction is smaller
than our experimental resolution. We conclude that the var-
ious pinch-off voltages are almost entirely controlled by the
electrostatics of the problem, i.e., the geometrical capacitance.
They are enough to characterize the distribution of charges in
the 2DEG.

The value d = 110 nm is the physical distance between the
electrostatic gate and the GaAs/AlGaAs interface. In princi-
ple one should take into account the finite width of the 2DEG
which is of the order of 10 nm. This effect is partially taken
into account in the simulations at the Thomas-Fermi level, but
would be more pronounced if the quantum fluctuations along
the z direction were included. We have performed various
full self-consistent 1D Schrodinger-quantum simulations (not
shown). They show a small correction of the final width of the
2DEG of less than 1%.

B. Fermi level pinning of the dopants at room temperature

In our model we have assumed that, at Vg = 0 the den-
sity underneath a gate could be different from the density
away from a gate. This is reflected in the presence of the
two parameters ns (density in the ungated region) and ng

(density in the gated region) that can a priori take distinct
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values ns 	= ng. We have found a posteriori that the exper-
iments are best fitted by ns ≈ ng indicating that the Vg = 0
density has small spatial variations inside a given sample.
Here, we discuss the phenomena of “Fermi level pinning”
in the dopant region at room temperature, i.e., the possibility
that—at room temperature—the dopant layer behaves essen-
tially as a (metallic like) equipotential. The existence of Fermi
level pinning in an actual stack requires a sufficently high
concentration of dopant and sufficiently low disorder in the
dopant region for the dopants to remain on the matallic side
of the metal-insulator transition at room temperature (how-
ever so slightly). The presence of Fermi level pinning would
imply ns = ng. We argue that there are strong experimental
evidences for Fermi level pinning in our samples. This fact
can be used to reduce the model to a single fitting parameter.

A homogeneous dopant distribution leads naturally to ns 	=
ng unless the surface charge density accidentally matches the
contribution coming from the work function at the gate-GaAs
interface. An opposite hypothesis—Fermi level pinning—is
that, at room temperature, the electric potential (not the ion-
ized dopant density) is constant inside the dopant layer. Fermi
level pinning happens when the charges in the dopant layer
are sufficiently mobile to form a metallic-like equipotential.
The associated charge distribution (now spatially dependent)
gets frozen upon cooling the sample to low temperature. By
construction, Fermi level pinning implies ns = ng since the
sources of spatial inhomogeneities (the gates) are situated
above the dopant region, hence screened. Below, we list ex-
perimental evidences for the presence of Fermi level pinning
in GaAs/AlGaAs heterostructures. These evidences are very
strong for some heterostructures (in particular in the case of
“delta doping” where the dopant concentration is very high
hence more likely to form a band) but it is not certain that
Fermi level pinning is present in all of them.

(1) In Refs. [26,30], the field effect of HEMTs made in
these heterostructures is shown to disappear at high tempera-
ture, indicating that the dopant layer screens the effect of the
gate.

(2) Fermi level pinning is also the natural explanation for
the hysteretic effect known as “bias cooling” [26]: when one
applies a voltage on an electrostatic gate during the cooling
of the sample, one observes that the low temperature current
versus gate voltage characteristics gets shifted horizontally by
the same amount. For instance if a sample normally pinches
at −1.5 V for a regular cooling, a +1 V bias cooling will
make it pinch at −0.5 V. This is a strong indication that the
voltage applied at room temperature did not affect the elec-
tronic density. Upon cooling, the dopants get frozen and must
be considered as a fixed charge density. Hence, to deplete the
gas, what matters is the variation of the voltage with respect
to the value used during the cooling, not the absolute value of
the voltage. Bias cooling is often used by experimentalists to
reduce the pinch-off voltage and avoid leakages. It has been
observed repeatedly including in wafers nominally identical
to the one used in the experiments presented in this paper.

(3) There are multiple experimental evidences showing that
using different metals for the electrostatic gate, say gold and
aluminium, give devices with very similar properties in terms
of pinch-off voltages [34]. This is an additional experimental
evidence for Fermi level pinning. Indeed, different gate ma-

terials, such as gold and aluminium, have very different work
functions of the order of 0.8 V. In the absence of Fermi level
pinning, one would get very different pinch-off values as well
as signature of a strongly varying spatial distribution of the
2DEG density (visible in, e.g., quantum Hall effect experi-
ments). None of these effects are observed experimentally.

(4) We have found that the best fit to our model implies
ns ≈ ng within 5% which is unlikely to happen accidentally.

We conclude that Fermi level pinning of the dopants is very
likely present in our samples. This could be used to further
simplify our model to a single parameter ns = ng that can be
calibrated in situ using pinch-off voltage.

We note that the phenomena of Fermi-level pinning could
also be discussed with respect to the surface states. Our
calculations show that such an effect, if present, could not
account for phenomena such as the hysteresis observed in bias
cooling but at most to half of the observed effect. The presence
of Fermi-level pinning of the surface states would, however,
further contribute to enforce ns = ng.

C. Long-range disorder and density fluctuations.

We end this paper with a discussion of the role of dis-
order in the system. So far, all the analysis has been done
assuming a perfect 2DEG whose spatial density profile is
only affected by the electrostatic gates. Despite the very high
mobility of the 2DEG, there remains some disorder in the
system. There are several types of disorder that can be present
in the system [26,30] including inhomogeneities in the dopant
density, interface roughness or background impurities. Note
that some types of disorder such as interface roughness may
very well affect the conductance. However as interface rough-
ness varies mostly on short (atomic) scale it is unlikely to
significantly affect the electronic density unless the disorder
is very strong. This type of disorder can be ignored for the
purpose of this discussion. Indeed, the goal of this section is
to understand the effect of disorder on the pinch-off properties
of the device. Hence we focus on the slowly varying part of
the disorder on scale larger than the Fermi wave length. We
attribute this disorder mostly to variations of dopant density,
but other sources could be present as well without affecting
the discussion that follows. Recent experimental works that
explicitly study the spatial variation of the electronic density
include Refs. [27–29].

We construct a simple percolation model to discuss the
effect of long range disorder on the three thresholds V1, V2,
and V3. A schematic of the model is shown in Fig. 13. We
will see that this simple model can account for all the sys-
tematic discrepancies observed between the simulations and
the experiments, at least qualitatively. Let’s consider a Lx × Ly

2DEG sample. We suppose that the density is slowly varying
on a typical length scale ξ , the disorder correlation length. The
2DEG can thus be considered as made of Lx/ξ × Ly/ξ small
samples (the circles in Fig. 13), hereafter referred to as “cells.”
Typically, we expect ξ to be of the order of a few hundred
nanometers for a disorder due to dopant density fluctuations.
Each cell has a constant density ni j with i ∈ {1, . . . , Lx/ξ} and
j ∈ {1, . . . , Ly/ξ}. The value of the density ni j in cell (i, j) is
a random variable of mean ng and variance σ 2

g , independent
from the density in other cells. For definiteness, we suppose
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TABLE II. Experimental pinch-off voltages for the short designs.

QPC W (nm) L (nm) V3a V2a V1a V3b V2b V1b V3c V2c V1c

A1 250 50 −2.10 −0.86 −0.44 −1.95 −0.86 −0.45 −2.20 −0.89 −0.46
A2 300 100 −2.09 −0.88 −0.44 −1.87 −0.88 −0.45 −2.02 −0.90 −0.46
A3 300 250 −1.41 −0.88 −0.45 −1.29 −0.87 −0.45 −1.52 −0.89 −0.46
A4 300 500 −1.22 −0.89 −0.45 −1.17 −0.87 −0.45 −1.22 −0.89 −0.46
A5 500 1000 −1.96 −0.88 −0.45 −1.84 −0.88 −0.45 −2.05 −0.90 −0.46
A6 500 2500 −1.46 −0.86 −0.45 −1.82 −0.86 −0.45 −1.97 −0.91 −0.46
A7 500 5000 −1.83 −0.88 −0.44 − − − − − −
A8 500 1e4 −1.79 −0.88 −0.45 − − − − − −
QPC W (nm) L (nm) V3d V2d V1d

A1 250 50 −2.00 −0.93 −0.47
A2 300 100 −2.13 −0.95 −0.47
A3 300 250 −1.47 −0.94 −0.47
A4 300 500 −1.24 −0.93 −0.46
A5 500 1000 −1.97 −0.94 −0.46
A6 500 2500 −1.90 −0.90 −0.46

QPC W (nm) R (nm) V3a V2a V1a V3b V2b V1b V3c V2c V1c

B1 250 25 −1.94 −0.88 −0.43 −2.43 −0.95 −0.48 − − −
B2 300 50 −2.35 −0.88 −0.44 −2.42 −0.95 −0.48 − − −
B3 300 125 −1.71 −0.88 −0.44 −1.77 −0.96 −0.48 −1.59 −0.94 −0.47
B4 300 250 −1.51 −0.86 −0.44 −1.57 −0.96 −0.49 − − −
B5 500 500 −2.31 −0.88 −0.44 −2.49 −0.98 −0.50 − − −
B6 500 1250 −1.98 −0.87 −0.44 −2.20 −0.97 −0.49 − − −
B7 500 2500 −1.97 −0.86 −0.45 −2.08 −0.97 −0.50 −2.00 −0.91 −0.47
B8 500 5000 −1.93 −0.87 −0.44 −2.00 −0.98 −0.50 − − −
QPC W (nm) R (nm) L (nm) V3a V2a V1a V3b V2b V1b V3c V2c V1c

C1 250 1000 50 −1.0 −0.98 −0.49 −0.96 −0.87 −0.44 −1.05 −0.92 −0.46
C2 300 1000 100 −1.64 −0.90 −0.48 −1.09 −0.87 −0.45 − − −
C3 300 1000 250 −1.21 −0.98 −0.49 −1.09 −0.88 −0.45 −1.21 −0.94 −0.46
C4 300 1000 500 −1.18 −0.97 −0.48 −1.08 −0.86 −0.45 −1.15 −0.92 −0.46
C5 500 1000 1000 −1.98 −0.93 −0.48 −2.02 −0.89 −0.46
C6 500 1000 2500 −1.94 −0.95 −0.48 −1.79 −0.89 −0.45 −1.93 −0.92 −0.47
C7 500 1000 5000 −1.91 −0.95 −0.48 −1.68 −0.88 −0.45 −1.92 −0.91 −0.48
C8 500 1000 10000 −1.85 −0.94 −0.48 −1.70 −0.88 −0.45 −1.87 −0.92 −0.48

that the associated probability density is flat,

P(n < ni j < n + dn)

= 1

2
√

3σg

θ (n − ng −
√

3σg)θ (ng +
√

3σg − n)dn, (6)

where θ (x) is the Heaviside function. Last, we suppose that
the pinch-off voltage on each cell (i, j) is simply proportional
to ni j as found in the minimal model of Sec. VI A.

Let us first examine the implication of this model for
the threshold V1. In the absence of density fluctuations, the
conductance through the gated region vanishes when the gate
voltage depletes the 2DEG entirely. In presence of fluctua-
tions, however, depleting only a fraction of the 2DEG cells
suffice. That is, if the fraction p of remaining cells with non
zero density is bellow the percolation threshold pc ≈ 0.6 of
the 2D square lattice of cells, then the conductance vanishes.
We introduce the probability P(ni j � n) for a cell to have a

density larger than n = ng + δn,

P(ni j � ng + δn) = 1

2
− δn

2
√

3σg

(7)

for |δn| � √
3σg. The percolation threshold corresponds to

P(ni j � ng + δn) = pc. From the latter, we obtain the varia-
tion δV1 induced by the density fluctuations,

δV1

|V1(σg = 0)| = (2pc − 1)
√

3
σg

ng
≈ 0.34

σg

ng
. (8)

Equation (8) leads to a positive variation of V1. Since V1 <

0, it leads to a decrease of V1 in absolute value. Conversely, not
taking the density fluctuations into account when estimating
V1 leads us to underestimate the density ng.

Next, we examine the implications of the disorder model
for the threshold V2. In the narrow gate region, Lx is smaller
than the correlation length ξ . Therefore the current travels
through Ly/ξ cells in parallel. The pinch-off is reached when
the voltage is sufficiently negative to deplete all the cells.
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TABLE III. Experimental pinch-off voltages for the long designs. Designs that have Wg = 80 nm in the narrow gate region are highlighted
in blue. The rest have Wg = 50 nm like the short designs.

QPC W (nm) R (nm) L (nm) V3a V2a V1a V3b V2b V1b

A9 750 0 1000 −3.37 −0.90 −0.45 −3.34 −0.87 −0.44
A10 750 0 2500 −3.17 −0.89 −0.45 −3.10 −0.88 −0.44
A11 750 0 5000 −3.03 −0.90 −0.45 −3.00 −0.88 −0.44
A12 750 0 10000 −2.99 −0.78 −0.44 −2.92 −0.78 −0.43
A13 750 0 25000 −2.89 −0.78 −0.44 −2.85 −0.77 −0.43
A14 750 0 50000 −1.96 −0.77 −0.44 −2.72 −0.78 −0.43
A15 1000 0 10000 −4.1 −0.90 −0.44 −4.18 −0.91 −0.44
A16 1000 0 50000 −3.92 −0.78 −0.42 − − −
B9 750 500 0 −3.81 −0.86 −0.44 −4.00 −0.90 −0.47
B10 750 1250 0 −3.50 −0.89 −0.44 −3.40 −0.86 −0.46
B11 750 2500 0 −3.25 −0.89 −0.44 −3.18 −0.88 −0.45
B12 750 5000 0 −3.21 −0.77 −0.43 −3.10 −0.75 −0.45
B13 750 12500 0 −3.11 −0.78 −0.44 −3.02 −0.77 −0.44
B14 750 25000 0 −3.08 −0.78 −0.44 −3.04 −0.78 −0.44
B15 1000 5000 0 −4.00 −0.90 −0.45 −7.0 −0.90 −0.46
B16 1000 25000 0 −3.47 −0.80 −0.44 − − −
C9 750 1000 1000 −3.07 −0.87 −0.45 −3.20 −0.89 −0.45
C10 750 1000 2500 −2.96 −0.90 −0.45 −3.02 −0.89 −0.45
C11 750 1000 5000 −2.92 −0.89 −0.45 −1.10 −0.89 −0.45
C12 750 1000 10000 −1.73 −0.77 −0.44 −2.93 −0.77 −0.45
C13 750 1000 25000 −0.78 −0.76 −0.44 −2.82 −0.77 −0.45
C14 750 1000 50000 −1.91 −0.76 −0.43 − − −
C15 1000 1000 10000 −4.13 −0.91 −0.46 −4.17 −0.93 −0.47
C16 1000 1000 50000 −3.88 −0.79 −0.45 −3.55 −0.78 −0.44

Hence V2 corresponds to the voltage needed to deplete the
cell with largest density. The probability for the cell with
highest density to have a density smaller than ng + δn is given
by [1/2 + δn/(2

√
3σg)]Ly/ξ . It corresponds to the probabil-

ity that all cells have a density smaller than ng + δn. For
Ly ≈ 50 μm � ξ , this probability is strongly peaked around
δn = √

3σg, from which we obtain the variation δV2 induced
by the density fluctuations,

δV2

|V2(σg = 0)| = −
√

3
σg

ng
≈ −1.7

σg

ng
. (9)

The effect of disorder on V2 is around 5 times larger than
on V1. It is also of opposite sign. We can calculate the standard
deviation σV2 of V2 due to sample to sample variations. We find

σV2

|V2(σg = 0)| = 2
√

3
ξ

Ly

σg

ng
. (10)

Last, we look at the influence of disorder on V3 in two
different limits. For the small samples L � 2 μm, the QPC
region corresponds essentially to a single cell. In that limit,
the fluctuations σV3 of the threshold V3 are simply given by the
density fluctuations of a single cell and

σV3

|V3(σg = 0)| = σg

ng
. (11)

A second interesting limit corresponds to the very long
samples 10 μm � L � 50 μm. These samples correspond to
the dual situation to V2: the different Lx/ξ cells are in parallel
instead of being in series. Therefore the pinch-off is limited

by the cell that has the smallest density. The probability for
the smallest density to be larger than ng + δn is given by
[1/2 − δn/(2

√
3σg)]Ly/ξ . For Lx � ξ , we get

δV3

|V3(σg = 0)| =
√

3
σg

ng
≈ 1.7

σg

ng
, (12)

i.e., the fluctuations make it easier to pinch-off a long wire.
This ends our analysis. Note that the precise value of the pref-
actors in Eqs. (8)–(11) depend on the choice of distribution
Eq. (6) so that the percolation model should be used for trends,
not precise comparisons.

D. Comparison between the experiments
and the percolation model

Let’s now go back to the experimental data and show that
the above percolation model accounts for all the imperfections
of the no-disorder model at a semiquantitative level. The
largest discrepancy between our predictions and the experi-
ments is the one of V2 (property P6). Indeed, the simulations
for perfect systems systematically show values of V2 that are
around 20% smaller (in absolute value) than what is observed
experimentally. To account for this δV2/|V2| ≈ 0.2, Eq. (9)
implies that density fluctuations with σg/ng ≈ 0.12 occur in
the system. Density fluctuations of 12% is compatible with
what is commonly believed by the community for this system
if somewhat large [27–29]. It is also compatible with what we
have observed on larger scales on the fluctuations of V1 (see
Fig. 10). Equation (11) then implies that the sample to sample
variations of V3 are also of the order of 12%. While we do not
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FIG. 13. Schematic of the percolation model used to explain the
effect of the smooth long range disorder. Each circle corresponds to
a region of size ξ with a random electronic density (symbolized by
different colors). As one increases the gate voltage towards negative
values, the density decreases everywhere. The pinch-off is obtained
when there is no path left with finite density to go from left to
right. The fluctuations of density manifest themselves differently for
the different pinch-off: 2D percolation problem for V1 (upper left),
many regions in parallel for V2 (upper right) or in series for V3 of
long samples (lower left) while the fluctuations of density induce
fluctuations of V3 for short samples (lower right).

have enough statistics to properly estimate the variance of V3,
a rough estimate from our data is of the order of 6% (property
P2, see Fig. 2).

Equation (8) then predicts a correction to V1 of 4%. Taking
that correction into account in our calibration would bring
all our predictions in Fig. 2 down by 4% (80 mV). This
would significantly improve the match between experiments
and simulations, see the discussion of property (P4). Another
possible source of error in V1 stems from an imprecision

FIG. 14. Color map of the current vs the top (Vt) and bottom (Vb)
gates that were biased separately for QPC A1a. Green (blue) lines
show the experimental (simulated) pinch-off voltage. V3 ≈ −2.1 V
corresponds to Vt = Vb and is used to calibrate the simulations in a
single parameter model ng = ns ≈ nbulk + 5%.

when extracting the experimental value from the conductance
curve. Near V1 the “gated” region contribution to the overall
conductance is much smaller than that of the “narrow gate”
region. The latter contribution thus obscures the conductance
due to the “gated” region. This adds an error to the extracted
value of V1 that is not accounted by our theoretical model.

Using Eq. (10), the small observed fluctuations σV2 ≈ 5
mV imply a correlation length ξ ≈ 1–2 μm. This is fully
compatible with our expectations.

Last, equation (12) predicts that when going from small
to large values of L (with respect to ξ ), V3 must increase
by 0.6 V (δV3/|V3| ≈ 0.2) which is indeed what is observed
experimentally (see property P5).

Overall, the above analysis is fully consistent with smooth
density variations being the current bottleneck in our quan-
titative predictions of pinch-off voltages. To go beyond this
limitation, one needs to incorporate information about the
local electronic density within the model. An example of such
a procedure is shown in Fig. 14 where we use the experimental
value of V3 to calibrate a single parameter model with ns = ng

(see the discussion of Sec. VI B). Figure 14 shows the pinch-
off “phase diagram” as a function of the bottom Vb and top Vt

gate voltages when these two gates are biased independently.
We find that the case Vb 	= Vt is quantitatively predicted with
an accuracy better than 1%, i.e., significantly improved with
respect to a global calibration.

VII. CONCLUSION

This paper presents a step in the direction of building a pre-
cise modeling stack for quantum nanoelectronics. Eventually,
one aims at high predictive power, so that the simulation tools
could be used at the design level of the experiments. A large
dataset of 110 different quantum point contacts with 48 dif-
ferent designs has been measured. This dataset has allowed us
to perform robust comparisons with the simulations, evaluate
the current limitations and improve the modeling and its cal-
ibration protocol. At the moment, we have only exploited the
pinch-off voltages of the current-gate voltage characteristics.
However, the full experimental dataset is published together
with this paper, so that more analysis and more refined simu-
lations may be done later. In particular, it would be interesting
to analyze how the conductance plateaus depend on the QPC
geometry.

Focusing on the electrostatics, i.e., at reconstructing the
charge distribution inside the device, we achieved a prediction
of the pinch-off voltages with a 5%–10% accuracy when using
a single global calibration of the modeling. Multiple aspects in
the experiments point to disorder—slow spatial variations of
the electronic density of ±5%–10%—to be the limiting factor
of our accuracy. This variation is probably due the presence
of inhomogeneities in the dopant layers that leads to spatial
variation on a μm scale.

To move forward and obtain more predictive simulations,
several strategies can be used. The simplest is to design
samples small enough (�2 μm) so that the calibration of
the model can be done in situ using, e.g., the value of V3.
For larger samples, one may design them so that the density
in different parts of the device may be calibrated separately
using independent gates. An even more advanced approach
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FIG. 15. Cumulative distribution of V1 (top), V2 with Wg =
50 nm (middle), and V2 with Wg = 80 nm (bottom) for the entire set
of measured samples. The N vs x plots show the number of samples
N (x) whose pinch-off voltage (V1 or V2) is smaller than x.

would use machine learning in order to account for the dis-
order. Steps in this direction have already been taken in
Ref. [5] where the authors used deep learning and scanning
gate microscopy images to reconstruct an underlying disorder
potential.

Being in possession of a reliable model for the electrostat-
ics of the system opens the possibility for accurate quantum

transport simulations. They could then be used for optimizing
various figures of merit at the design level of the experi-
ment. Such approaches will become increasingly important
in quantum nanoelectronics, in particular as one scales up to
increasingly more complex devices [35,36].
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APPENDIX: TABLES OF EXTRACTED PINCH-OFF

We collect the values of the different pinch-off voltages
V1, V2, and V3 that have been extracted from the experimental
I (Vg) curves in Tables II and III). Figure 15 shows the corre-
sponding data in the form of cumulative distributions for the
observed values of V1 (top panel) and V2 (middle and bottom
panel respectively for Wg = 50 nm and Wg = 80 nm).
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