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We discuss the semiclassical transverse trapping of waves by means of an inhomogeneous gauge field. In the
proposed scheme a temporally periodic perturbation is shifted in time, the imparted delay being dependent on the
transverse direction. We show that, due to the Kapitza effect, an effective potential proportional to the square of
the transverse derivative of the delay arises. On a more physical ground, the delay induces a transversely varying
periodic force acting on the wave, in turn providing a phase delay owing to the local modulation of the kinetic
energy. Our results are quite generic and can find application in several fields, ranging from cold atoms to optics:
accordingly, an experimental proof-of-principle is provided using an optical setup based upon fiber loops.
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I. INTRODUCTION: GAUGE FIELDS IN TIME-SHIFTED
POTENTIALS

Gauge theories are a fundamental pillar in physical
sciences. In classical electromagnetism, different gauges man-
ifest themselves as different values for the scalar V and
vectorial potential A, although the physically measurable elec-
tromagnetic field remains unvaried, the latter being commonly
referred to as gauge invariance [1]. Historically, the con-
cept of gauge invariance has been explicitly formalized by
Weyl while searching for a unified theory accounting for both
general relativity and electromagnetism [2]. The concept of
gauge is strictly related to local symmetries: for example, in
quantum electrodynamics the electromagnetic field emerges
as the correct interaction between electrons by imposing in-
variance with respect to an arbitrary spatiotemporal phase
delay, the latter transformation corresponding to the Lie group
U(1). This idea has been then extended by Yang-Mills to
different symmetry groups including the non-Abelian case, in
turn permitting the elaboration of the Standard Model and its
components, such as the quantum chromodynamics.

In the past few decades, a great deal of attention has been
directed to the generation of gauge fields for neutral particles,
including cold atoms and photons [3-20], but also including
mechanical systems [21] and polariton BEC [22,23]. Stated
in simpler terms, the idea is to find effective interactions
capable to mimic the action of a gauge field, emblemati-
cally represented by the presence of a magnetic field. In
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fact, systems subject to a magnetic-like interaction present a
plethora of exotic effects with various applications, including
the quantum spin Hall effect and related topological phenom-
ena [10,24,25]. As is well known, a magnetic field acts only on
charged particles. To overcome this intrinsic limitation, some
tricks need to be used, often involving the modulation of the
system in time [6,26,27]. Indeed, several works showed how
periodically driven systems (the so-called Floquet systems
[28,29]) can be tailored to achieve time-averaged Hamiltoni-
ans featuring topological effects [30-33].

In this article we discuss the propagation of waves in a
potential [dubbed V (x, ¢)] periodic in time ¢ [i.e., V(x,t) =
V(x,t 4+ T)] and inhomogeneous across the spatial dimen-
sion(s) [0V (x,t)/dx # 0]. The idea is to control the wave
propagation by imposing a space-dependent temporal delay
[local transformation ¢t — t — t(x)] on the periodic potential,
that is, to introduce a point-dependent gauge transformation
corresponding to a shift in time. Our idea closely resembles
and indeed generalizes the theoretical proposal for optical
waveguiding based upon an inhomogeneous gauge field due
to dispersion shifting [34], recently experimentally demon-
strated in a waveguide array [35]. The framework we are
introducing here also provides a deeper understanding for
the existence of waveguides based upon geometric phase in
inhomogeneously rotated liquid crystals [36,37].

To focus on real physical systems, we use the Schrodinger
equation, the latter apt to describe both the evolution in time
of massive particles and the evolution in space of photons in
the monochromatic regime [38]. For homogeneous distribu-
tion of the delay [V (x,7) = U(x)f(t)] (see the top panel in
Fig. 1), it has been already shown in several papers that, even
if the average potential is vanishing, an effective potential
proportional to the square of the space derivative of the po-
tential [i.e., o« (dU/dx)?] arises due to the local modulation
of the kinetic energy, an effect named after its discoverer
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FIG. 1. Sketch of the periodic time-dependent potentials corre-
sponding to the standard Kapitza case (top panel) and the case with
a transverse-dependent delay (bottom panel), the new case discussed
in this paper. The average potential along the propagation coordinate
is null in both the cases.

Kapitza [39-43]. Here we generalize the Kapitza model to the
presence of an inhomogeneous delay (see the bottom panel
in Fig. 1), showing that a straightforward generalization of
the effective time-independent potential predicts the presence
of a new term dependent on the spatial derivative of the lo-
cal phase shift [i.e., o (d7/dx)?]. We confirm the accuracy
and the limit of applicability of this effective model by us-
ing numerical simulations of the time-dependent Schrodinger
equation in one transverse dimension. We also show how
the different contributions to the Kapitza potential interact
with each other, in particular how parity strongly affects the
wave behavior. Our theoretical results are experimentally ver-
ified in fiber loops, where a discrete set of optical pulses
follows the Schrodinger equation with very good accuracy
[43]. Owing to the generality of the employed mathematical
model, the impact of this paper can potentially span several
fields, ranging from photonics to optical tweezers and the
reciprocal interaction between charge particles and electro-
magnetic fields. Potential applications include the realization
of infinitely extended dielectric waveguides mimicking an
infinitely extended waveguide or beam shaping to improve
high harmonic generation in nonperturbative nonlinear optics.

The paper is organized as follows. In Sec. II the type
of time-periodic potential used in this paper is depicted. In
Sec. III we show how the action of the transverse-dependent
delay can be modelled like a time-independent potential
by adapting the Kapitza approach to this specific case. In
Sec. IV the transverse confinement of light is theoretically
demonstrated for the simplest case of an even delay and
super-Gaussian potential. In Sec. V we discuss the wave con-
finement when the potential is odd symmetric, whereas the
delay is kept even. In Sec. VI we prove that, for an even
potential, an odd profile for the delay can be designed to pro-
vide full confinement of the wave in a given spatial region. In
Sec. VII an experimental verification of the wave confinement
due to the inhomogeneous delay is reported. In Sec. VIII we
discuss the potential impact of our results, providing a short
survey of the physical systems where our results can be of
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FIG. 2. Left side: Local amplitude of the oscillating field U (x)
(blue curve) and of the local delay ¢(x)/m = 27(x)/T (red curve)
versus the transverse coordinate x. Right side: periodic modulation
of the potential along the normalized propagation coordinate 7 /7T at
three different values of the transverse position x. The black dashed
line is the longitudinal modulation f(¢) (defined in Sec. III) for t =
0. The curves are plotted for the special case f(¢) = cos(2nt/T),
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interest. Sec. IX contains a compact summary of our work
and its potential role in future research.

II. WAVE PROPAGATION IN THE PRESENCE
OF NONUNIFORM DELAY

We suppose that the complex wave i obeys a standard

Schrddinger (1 + 1)D equation

L Oy ’y

ih o = D Y +Vix, 0Oy, @)
where D = /%/(2m) in the case of quantum particles of mass
m. The correspondence with the optical case is described in
Appendix D. Variable x (spatial dimension both for matter
and optical waves) and ¢ (time for matter, propagation dis-
tance for optical waves) correspond to the fransverse and the
longitudinal coordinates, respectively. We suppose the exter-
nal semiclassical potential to be periodic with period T by
assuming V(x,t) =V (x,t + T). In terms of Fourier series,
itisVx,t) =), V,(x)e™ 27T In agreement with the main
purpose of this paper, hereafter the average potential is set to
vanish, yielding Vy(x) = 0. The existence of steady states in
the presence of a periodic perturbation superposed to a time-
independent bounding potential has been formally addressed
in Ref. [44].

We are interested in the design of a potential capable
of supporting transverse confinement by inducing an inho-
mogeneous gauge field A. Our core idea is to consider an
x-dependent temporal delay t(x) by setting (see Fig. 2)

Vix,t) =U@)f[r — t()], @

the latter corresponding in the Fourier domain to V,(x) =
U(x)f,e 27 where f, are the Fourier coefficients for
T(x) =0, f(t) = Y, fre >™"7 . The important physical point
is that now the spatial and temporal dependence of the
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external potential cannot be factorized. Application of the
gauge transformation provided by the indefinite integral ¥ =
pe i JVrnd 1 Eq. (1) shows that ¢ evolves according to [34]

d 1
A L
ot 2m ax

where we introduced the effective potential vector

AX:/<&f— dfdr)dt. (4)
0x

dt d

Interpreted in terms of synthetic electromagnetic interactions,
Eq. (4) demonstrates that the wave behaves like a charged par-
ticle under the action of an effective electromagnetic field, the
magnetic component being null and the electric field being ex-
pressed by E. = —[f0,U — U(df /dt)(dt /dx)]X, where X
is the unit vector along the x direction [18,45]. In fact, we find
the same expression for E . by computing directly the spatial
gradient of Eq. (2), confirming the invariance of the synthetic
electromagnetic field with respect to gauge transformations.
When the delay of the potential is constant across x, Eq. (4)
confirms that the Kapitza potential stems from the modu-
lation of the kinetic momentum. Even when 0,U = 0, E
is not vanishing: in fact, it is proportional to the transverse
derivative of the delay t(x). The physical interpretation is
straightforward: when the amplitude of the oscillating poten-
tial is constant, the inhomogeneous delay generates locally a
gradient in the potential energy, the latter in turn modulating
the local momentum, as in the original Kapitza effect.

2
- Ax) Y, (3)

III. EFFECTIVE TIME-INDEPENDENT POTENTIAL

We first consider the family of real and factorizable poten-
tials V(x,1) = f(t)U (x). In this case, Kapitza [39] was the
first to show that the x-dependent modulation of the kinetic
energy yields an effective potential [41]

|fn|2
2m 471'2112 < dx ) ©)

It has been proven theoretically [40,41] and experimentally
[43] that this class of potentials can induce transverse trapping
of waves.

Next step is to find another gauge transformation capable
to enlighten how the modulation of the kinetic energy impacts
the wave profile [46,47]. Given that for nonuniform delay
0V, = fulo:U — 2mwin/T)Ud, 1], Eq. (5) can be recast as

R

where we defined ¢(x) = 2w t(x)/T. Equation (6) accurately
models the wave propagation in a periodic potential, if the
longitudinal period T is not too long with respect to the disper-
sion length of the wave (see Appendix B for further details).
The effective potential now depends both on the gradient of
the oscillation amplitude and on the gradient of the delay. The
main difference is the absence of the term n~2 in the term
depending on the delay, thus making the contribution of higher
harmonics more important in the latter case.

v T2 1
eff = 2.2
2m i 4%n

v, I
0x
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the normalized transverse coordinate x// (a) as the phase delay con-
tribution is increased for a fixed U(x/!), and (b) as the contribution
from U (x/!) is decreased for a fixed delay distribution ¢(x/!). The
red areas represent the effective potential for ¢ = 0. In panel (a)
U(x) = Viaxe /"0 with wper/l = 10, and ¢ = Gpaxe ™" with
wy /I = 20; in panel (b) ¢ has the same functional form but with
Omax = 7 and wy /I = 4, whereas U (x) = Vipuxe ™ /g with N = 4.
In both the panels we fixed f(t) = cos(2nt/T).

FIG. 3. The normalized effective potential

Hereafter, we will focus on the sinusoidal case f[t —
T(x)] = cos[2x(t — t(x))/T + ¢in] to simplify the math, de-
spite the physical phenomena of interest remains substantially
untouched when more complicated periodic functions are
assumed. Quantity ¢, is a uniform (along x) initial phase
delay, which correspond physically to a shift of the temporal
axis. The quasimode is then given by (see Ref. [48] and
Appendix B)

F()I

UWT T2 B
I//(.x, t) ~ g(x)e_l 2k Sln[ 7 +¢in ¢(X)]e i ) (7)

where g(x) is the eigenfunction of a time-invariant
Schrodinger equation with the potential given by Eq. (6),
and E; the corresponding eigenvalue. Whereas for vanish-
ing transverse gradient of the delay (i.e., d¢/dx = 0) there
are instants where the wavefront is planar, in the presence
of inhomogeneous delay the wavefront of the quasimode is
never planar, even at the lowest order of approximation in the
modulation period T'.

In Fig. 3 the general behavior of Eq. (6), driven by the
interplay between the x-derivatives of U and t, is described.
Hereafter our results will be presented versus the transverse
normalized coordinate x/I, where [ is an arbitrary length
(see Appendix A for more details). From Eq. (6), the effec-
tive potential V. then scales with the inverse of 2. If the
same functional form for the two quantities U (x) and ¢(x) is
chosen [Fig. 3(a)], no strong deformations of the potential are
observed when the maximum delay ¢, is increased. Clearly,
the term stemming from the delay becomes dominant for large
enough delays. On the other side, the contribution from 9, U
can be made negligible by choosing a flat-top profile for U (x),
see Fig. 3(b). In fact, Eq. (6) then provides

T2V2, (3¢
Vr ~ 4—Veen (—"’) , ®)

1672m \ 9x

where Ve, = U(x = 0) is the amplitude of the potential os-
cillation in correspondence to the time-shifted zone. Thus,
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FIG. 4. Propagation of the quasimode given by Eq. (7) in a delayed potential featuring U (x) = 0.5¢"/"so and P(x) = w ™/ wi, with
Wpor/I = 200 and wy /I = 20. In panel (a) |y|* on the propagation plane is plotted for increasing period T /fy from left to right, when in the
input condition the phase front curvature is accounted for (top row) and when a planar wavefront is assumed (bottom row). In panel (b) the
modulus of the wave || calculated in 7/fy = 30 A [section corresponding to red dashed lines in panel (a)] is plotted versus x// for periods

T /ty ranging from A to 6 A. Here ¢, = 0.

for a given 7(x), the height of the effective potential can be
increased by using larger amplitude oscillations.

In the following sections we will concentrate on numerical
simulations of the Schrodinger equation to demonstrate the
relationship between the local delay and the effective poten-
tial (6). Hereafter, we will show only simulations of the full
system given by Eq. (1), that is, including the time-periodic
potential. The comparison with the analytical results will be
carried out in Sec. IV by using Eq. (7) as the input field. For
the sake of concreteness, we will take D = 1.27 x 1074 Jm?
and [ = 1 um [49]. The propagation coordinate is then nor-
malized with respect to the time #, = /i/>/D. To get rounded
numbers for the propagation coordinate in the simulations
(originally run in the optical domain), we also define the
normalized time A = 0.8 (in the real time thus corresponding
to T = 0.8fy), corresponding to a length of 10 um for the
optical values described in Appendix D. The generalization to
other dispersion values can be found by using the normalized
equation discussed in Appendix A.

IV. PROPAGATION IN THE CASE
OF A GAUSSIAN-DISTRIBUTED DELAY

To focus on the role played by t(x), let us suppose that
the oscillation amplitude of the periodic potential is constant
along x, thus yielding 0,U = 0 and A, = —(dt/dx)U(x)f ().
Figure 4 depicts the numerical solution of Eq. (1) when the
phase delay is Gaussian shaped. Consequently, the effective
potential is M-shaped, as in Fig. 3, thus supporting only leaky
modes, i.e., the eigenvalues are imaginary [41,50]. As input
condition in t = 0, we took the quasimode expression pro-
vided by Eq. (7). As predicted, the wave undergoes transverse
confinement when the quasimode is spatially bounded to the
central lobe of the effective potential. When this condition is

not satisfied, a significant portion of the wave is eventually
coupled to the external regions, where the potential is van-
ishing as in the center [50]. In agreement with the theory of
the Kapitza effect, the mode gets narrower as the modula-
tion period is increased, but at the same time the oscillating
components of the quasimode get larger and larger. Thus, a
shape-preserving wave is observed for short periods (see, e.g.,
T /to = A), with increasing periodic oscillations as the period
T /1y gets larger [50]. For T /t) = 5 A higher order components
become relevant, and transverse trapping is almost lost, with
appreciable radiation losses at each half-period where the
instantaneous potential is repulsive. The wave is then fully
delocalized for T'/fy = 6 A. Additionally, the simulations (bot-
tom row in Fig. 4) confirm the fundamental role played by
the wavefront in accordance with Eq. (7): when the phase
term is not accounted for at the initial time, the confine-
ment is severely hindered. Noticeably, the detrimental effect
is stronger at the shortest period, given that in this condition
the mode is wider across x, thus overlapping more with the
phase variations given by ¢(x).

V. EVEN-SYMMETRIC DELAY FOR AN ODD
INSTANTANEOUS POTENTIAL

The overall effective potential given by Eq. (6) yields
a plethora of exotic and counter-intuitive behavior for the
wave propagation when the parity of the potential U (x) and
¢(x) is changed. In this section we will start with the case
of a Gaussian-shaped distribution for the delay t(x) as in
Sec. 1V, but the shape of the potential U (x) will be taken
odd-symmetric with respect to x; specifically, we pick up a
hyperbolic tangent shape

U=05 tanh( ) 9)

Wwell
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To address the differences with respect to the absence of any
potential (stated otherwise, how the periodic potential coun-
teracts the diffractive/dispersive spreading), in the remainder
of this section and in the following ones we will take a
Gaussian-shaped input

22

Y1 =0) = Yoe ", (10)

with normalized width wg/l =5 and flat phase profile in
every shown simulation. For reference, the corresponding
Rayleigh distance for a free particle is ~8 A. Hereafter, we
will also fix the modulation period T /t; equal to A, where we
know from the previous discussion that the effective potential
model is more accurate than for longer periods.

Figure 5 shows the numerical results for a fixed width of
the potential wye/! = 10 and increasing values (from top
to bottom) of the maximum phase delay ¢n.x. For a flat
distribution of delay, the effective potential is bell-shaped but
repelling, yielding a symmetric splitting of the input wave
into two branches propagating in opposite transverse direc-
tions [Fig. 5(a)]. For small enough ¢n.x, the value of the
effective potential remains positive around the origin x = 0,
see Fig. 5(b). Repulsion is even increased with respect to the
previous case of vanishing phase delay [plotted in Fig. 5(a)],
in turn yielding a faster and a parity-broken deflection of the
wave. For further increase in ¢, the contribution due to
the delay in V. becomes dominant, with the wave now, on
average, being trapped around the origin, see Figs. 5(c) and
5(d). The odd potential U (x) is manifested as a continuous
oscillation on the x direction on the fast scale. This fast wig-
gling motion is periodic for intermediate values of the delay
[Fig. 5(c)], whereas it becomes aperiodic for large enough
delays ¢ [Fig. 5(d)].

Next, we investigate how the wave evolution depends on
the width wye of the potential shape. Results for a large
value of ¢max (specifically ¢pmax = 27) are plotted in Fig. 6,
where the amplitude of the potential U (x) is kept constant
and only the normalized width wyey /I is varied. In this case
the contribution proportional to (3¢ /dx)? in the definition of
the effective potential V. [see Eq. (6)] is dominant (at lower
¢max an interplay is occurring, see Fig. 5). Nonetheless, the
shape of the potential U (x) is still affecting Ve by directly
modulating (d¢/dx)? via a factor U?(x). Thus, for narrow po-
tentials (small wyey) the confinement due to the transversely
dependent delay improves (compare the variations in ampli-
tude of Vg in Fig. 6 from top to bottom panels). While the
wave is trapped in the central lobe of the effective potential,
the odd symmetry of the underlying instantaneous potential
U (x) is manifesting as a local wiggling inside the central
lobe itself [Figs. 6(a) and 6(b)]. As the potential widens,
both the transverse confinement and the fast transverse motion
decreases, yielding a long-period (with respect to the period
T) breathing, including a slight left-right asymmetry in the
wave profile. For even wider potentials, the trapping effect
keeps decreasing, resulting first in wider beams and longer
breathing period [Fig. 6(c)], and finally in the lack of trapping
around the origin [Fig. 6(d)].

FIG. 5. Propagation for a Gaussian phase delay ¢(x) of nor-
malized width 20 and for an odd-symmetric potential U(x) =
0.5 tanh(x/wyen) when the maximum phase delay ¢n.x is 0 (a),
/2 (b), 2w (c), and 47 (d). On the left column blue solid lines
correspond to the delay distribution (left axis), whereas dashed red
lines and shaded gray area correspond to the effective potential with
and without the delay contribution, respectively (right axis). In the
right column the intensity distribution on the plane xt is plotted. Here
@in = 0.

VI. ODD-SYMMETRIC DELAY FOR AN EVEN
INSTANTANEOUS POTENTIAL

Last, we analyze the case when the delay ¢(x) is odd
symmetric. We also consider a flat-top profile much larger
than the support of the delay ¢(x), so that Eq. (8) can be
safely applied. Despite that, the effective potential Veg(x) is
even symmetric. For shapes of the delay presenting larger
absolute values of the derivatives |d¢/dx| in the center than
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FIG. 6. Propagation for a Gaussian phase delay ¢(x) of nor-
malized width 20 and maximum phase ¢m.x = 27. The underlying
potential is U(x) = 0.5 tanh(x/wyey) With wye/l equal to 5 (a),
10 (b), 50 (c), and 200 (d). On the left column blue solid lines
correspond to U (x) (left axis), whereas dashed red lines and shaded
gray area correspond to the effective potential with and without the
delay contribution, respectively (right axis). In the right column the
intensity distribution on the plane xt is plotted. Here ¢;, = 0.

in the edges (for example, a hyperbolic tangent), the effective
potential becomes repelling. Much more interesting is the
opposite case. As a matter of fact, when the absolute value
of the derivative |d¢/dx| in the center is smaller than in
the edges, the effective potential features a global minimum
around x = 0, that is, localized quasimodes can exist. To in-
vestigate the wave trapping in this case, we take for the delay
a hyperbolic sine function

d(x) = o sinh (wi¢) (11)

From Eq. (11), ¢(x = wg) = sinh(1) ¢y ~ 1.17 ¢y. Applying
Eq. (8), the effective potential reads

T2v2 2
Vi A 16;% cosh? (i) (12)
mimwg W

Figure 7 shows the wave propagation for two different Gaus-
sian inputs (wg/l = 5 and wg/l = 10 on the top and bottom
row respectively) when wy /I = 5 and for various values of ¢,
(labeled at the top of each panel). The shape of the potential is
very similar to a parabolic one, with the important feature to
be infinitely extended (and therefore infinitely deep) along x.
Therefore, in the range of validity of the model discussed here,
the structure confines on the transverse plane the impinging
wave, regardless of its profile. This behavior is similar to a
metallic waveguide in the optical case. Such a behavior is
confirmed by the numerical simulations, plotted in Fig. 7. For
different widths of the Gaussian input, the wave keeps being
localized around x = 0, in a region determined by the am-
plitude ¢§ / wé. Noteworthy, complicated interference patterns
emerge in time due to the simultaneous excitation of several
spatial quasimodes, in accordance with the potential (12).

As pointed out by Eq. (7), the wavefronts of the quasi-
modes are nonplanar and varying continuously in propaga-
tion: as a matter of fact, a strong dependence on the initial
phase ¢, of the longitudinal variation of the potential is
expected [50]. The numerical simulations for different ¢;,
are shown in Fig. 8. The initial condition for the wave is
kept fixed, whereas the function f(z) is shifted in time. By
specializing Eq. (7) to our case, the quasimode in ¢ = O reads

Y, 1 = 0) & glx)e™ b=, (13)
The parity of the mode then depends on the potential shift ¢;,:
when @i, = 7 /2 4k (k € Z), the quasimode is even, albeit
with a nonflat phase front; for other values of ¢y,, there is an
odd component in the phase profile, yielding a quasiperiodic
transverse oscillation of the wave in propagation. The pre-
dicted dynamics is confirmed by the results shown in Fig. 8.
The wave dynamics in time strongly changes with the initial
phase: intensity profiles range from transverse oscillations
(odd symmetric) to straight trajectories (even symmetric) for
¢in = 0.57 and 1.57. Regardless of the temporal shift, the
wave being confined always in the same region of space
determined by the effective potential V.

VII. EXPERIMENTAL VERIFICATION

To experimentally verify the theoretical results presented in
the above sections, we refer to discrete optical lattices based
upon fiber loops [51]. The basic idea of the setup is to discrim-
inate different pulses according to their positions in time [52].
Beyond being used for the demonstration of the Kapitza effect
[43], fiber loops have been employed for investigating several
basic physical phenomena, such as PT symmetry breaking
[53,54], diametric drive [55], Berry curvature in periodic
systems [56], topological effects [57-59], superfluidity [60],
machine learning [61], and so on. The experimental setup and
the basic principle are shown in Fig. 9. The setup essentially
consists of two fibers of slightly different lengths (4.23 km
and 4.30 km) configured in closed loops and interacting with
each other via a standard directional coupler (DC). Initially, a
single pulse (wavelength 1554.94 nm) is inserted into the long
loop u, which is transferred to the DC. Without any external
modulation, the pulses are split into two copies at each round
trip, with the relative weight determined by the DC. Here, a
DC of 3 dB is applied, meaning that the same power is carried
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FIG. 7. Intensity distribution for a sine hyperbolic delay ¢(x) given by Eq. (11). The incident wave is Gaussian shaped, with wg/I = 5 and

U)G/l =

10 on the top and bottom row, respectively. Each column corresponds to a different depth of the potential as dictated by the parameter

¢o (reported in units of 7 on the top of each panel): the confinement is thus enhanced from left to right. The longitudinal period is fixed to A,
whereas the spatial profile U (x) is a flat-top of normalized width 2000 and amplitude 0.5. Here ¢, = 7 /2.

by each copy. The different length of each loop results in a
different arrival time for each of the copies at the following
passage through the DC. In essence, each round plays the role
of a discrete evolution coordinate (time ¢ above), while the
time interval between each delayed replica in a single loop
plays the role of the transverse coordinate x. In this way, we
create a one-dimensional synthetic lattice evolving in time,
leading to a quantum walk. Accordingly, the lengths of the
two fibers are chosen such that the pulses from different round
trips (i.e., different synthetic times #) do not overlap within our
observation window (about 300 loops, see below).

By adding phase modulators along the fibers, an external
electromagnetic field effectively acts on the propagation of
the discrete pulse train. The DC and phase modulators are
precisely controlled by arbitrary function generators (AFGs).
A detector is placed in each loop to monitor the propagation
of the pulses in the loop in real time. Along with these compo-
nents, EDFAs are used to compensate for losses and maintain
the same power for a large number of loops. The entire system
is triggered by the first pulse generated by the laser system.

Calling u and v the field amplitude in the long and short
loop respectively, the evolution can be written as [43,55]

M'V:H—l — (unm71 + l‘UZLI)eiq)”(m’n),
14

m+1 __ (v'rln+1 4 iur_’_l)etd)v(m,n).

SRR

In Eq. (14) the indices m and n represent the longitudinal
and transverse coordinates, respectively. The phase modula-
tors inserted in the loop u(v) impart a phase delay ®,,). To
make Eq. (14) similar to a Schrédinger equation, we set &, =
®, = ®(n, m). In the continuous limit, we define the two-
component variable ¢ = (#; v). We further introduce ¢, =
(u; £v)/+/2 as the pseudodiagonal and antidiagonal polariza-
tions, respectively. After setting ¢ = ¥ (n, m)p., Eq. (14) in
the limit of small transverse momenta can be recast as a pair
of independent Schrédinger equations [43,60]

i-——m—)w+QMmW (15)

In Eq. (15) the £ sign corresponds to a different sign of the
mass due to the presence of bands of different curvatures in
the original discrete system [55,62]. Finally, from Eq. (15) it
is evident that the imparted phase ® plays the role of the scalar
potential V (x, ¢) in Eq. (1).

Experimentally speaking, a Gaussian-shaped train of co-
herent pulses with the diagonal pseudopolarization ¢, in the
form ¢ = exp (— n2/ wj,) [see Eq. (10)] is prepared from a
single initial pulse by a proper choice of the phase modula-
tion [55]; in our experiments it is wi, = 12.5 £ 0.5. Whereas
ideally the input should be fully polarized along ¢, in our
setup there is a spurious component ¢_ carrying about 10%
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20

FIG. 8. Intensity distribution for a sine hyperbolic delay ¢(x)
given by Eq. (11). The incident wave is Gaussian shaped featur-
ing wg/l = 5. Each row corresponds to a different temporal shift
¢n =0, 0.57, 0.757, 7, 1.257, 1.5, from top to bottom. The
longitudinal period is A and ¢ = 5 x 10727, whereas the spatial
profile U (x) is a flat-top of width 2000/ and amplitude 0.5.

of the overall injected energy. Experimental results are plot-
ted in the top row of Fig. 10. The corresponding theoretical
results, shown in the bottom row of Fig. 10, are calculated
using Eq. (14) with the input used in the experiment, thus
accounting for the presence of noise generated during the
initial selection of the Gaussian train. First, in Fig. 10(a) we
verify the dispersive spreading of the beam in the absence
of any phase modulation. Direct comparison with the theo-
retical predictions shows a good agreement, with the wave
widening being very similar. From the distribution of the other
component (not shown), we can evince a slight asymmetry
between positive and negative n due to a small imbalance in
the two fiber loops employed in the experiments, thus explain-
ing the observed small differences. We then demonstrate the
wave confinement by comparing the diffracting case plotted
in Fig. 10(a) with the pulse distribution acquired when a
retarded potential is applied via the phase modulators. For
all the different symmetries presented in the previous sec-
tions (the title of each column provides the corresponding
section of the paper where the given type of potential and
delay is investigated), a clear transverse trapping of the wave

C)) u

0

P

PD

(b)
n=0 I I I
z p 11 1 202 |
ML amdy
= | m=1 : m=2 : m=3 : time

FIG. 9. (a) Simplified schematic of the experimental setup: Two
fiber loops of different lengths are interlaced via a 3 dB directional
coupler (DC). A phase modulator (PM) is placed in each loop. Two
additional DCs extract a portion of the circling energy for real time
measurement of u and v via two photo-detectors (PDs). Amplifiers
(not shown) are inserted to compensate for the losses. (b) The mod-
ulation scheme: a single initial pulse is injected into the the loop u
(represented by the red curves) at m = 1; after a round trip, at m = 2
the 3 dB coupler splits the pulse into two halves, one per loop (pulses
in v are plotted in blue). The duplication repeats at each additional
round trip (see m = 3 in the figure). Now, at the same time n = 0 (in
the plot the two pulses are slightly shifted for the sake of clarity) two
pulses of same amplitude but different phases are propagating, one
per loop.

is observed. Multiple repetition of the experiments demon-
strate that the confinement is robust to the input noise. The
theoretical results agree well with the experiments. We stress
that, owing to the asymmetry in two fiber loops discussed
above, in the experiments a small but net increase of power
is occurring versus m. To compensate for this drifting of the
setup, the experimental results plotted in Figs. 10(a)-10(d) are
normalized with respect to the power transported at each cross
section m = constant.

For the sake of completeness, we investigate the evolution
of the wave trapping as the delay is increased for the case
of an even potential and even delay distribution discussed
in Sec. IV. We thus chose ¢(12) = ¢max exp (—n*/w;) as the
delay profile applied on the super-Gaussian potential and
selected a fixed Gaussian input of width 13.5 £ 0.5 at the
entrance, the uncertainty on the input width being ascribed to
the experimental noise. We investigate the light propagation
as ¢max increases: Figure 11 compares the experimental (solid
blue line) and the calculated width (black dashed line) of the
beam at m = 380 for a Gaussian input of width 13.5. The
confinement of the wave due to the gauge field is clear, with a
gradual transition from diffraction to localization. The insets
display the field distribution for some particular cases, show-
ing how the effective guide becomes multimodal for large
dmax,» as proved by the appearance of a breathing dynamics
in the intensity distribution.
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FIG. 10. Experimental verification in fiber loop for a modulation period of 20. Experimental (top row) and simulated (bottom row)
intensity distribution of the diagonal component o ¢_ on the plane nm. [(a), (¢)] Propagation without phase modulation. [(b), (f)] Con-
finement for U(n) = —m exp [—(n/wg)*] with wg = 100, ¢ = —0.57 exp[—n*/w;] with wy = 30. [(c), (2)] Confinement for U(n) =
0.27 tanh [(n/wg)] with wg = 30, ¢ = 47 exp [—nz/wé] with wg = 30. [(d), (h)] Confinement for U(n) = 0.2 exp [—(n/wg)*] with
wg = 50, ¢ = 0.0257 sinh (n/wg) with w, = 5. The same diagonally polarized input ¢__ is taken both for the experiments and the simulated

profiles.

VIII. DISCUSSION OF THE RESULTS AND THEIR
APPLICABILITY

Being based on the Schrodinger equation, our mathemati-
cal results can be applied (or generalized by using the proper
Lagrangian for the light-matter interaction) to several phys-
ical settings. One potential application is the Kapitza-Dirac
effect (KDE), where a matter wave (in the original proposal
composed by charged particles such as electrons) in free prop-
agation is scattered by a stationary optical wave [63]. Whereas
such an effect can be both explained quantum mechanically
and classically [63,64], in the regime of large intensities the

Output Width
N w B (&) (2]
o o o o o

N
o

0 0.2 0.4 0.6 0.8 1
Max Delay ¢max
FIG. 11. Beam width at m = 380 versus the maximum of the
delay in the case of even potential and even delay, the latter of
Gaussian shape. Solid and dashed lines are the experimental and
theoretical results, respectively. The insets show the distribution of
the pulses on the plane nm for the cases indicated with a triangle on
the experimental curve.

KDE can be effectively modelled using the ponderomotive
force, the latter being proportional to the gradient of the local
average intensity [65]. Our model can inspire new scattering
potentials by inserting for example an inhomogeneous phase
mask in the path of the standing wave, thus generating a tem-
poral shift in the instantaneous intensity distribution. In such
a way, new modulation schemes for the impinging electron
beam could be designed [66].

In full analogy with the KDE, our results can be applied
to optical traps, i.e., properly tailored laser beams capable to
trap neutral particles with certain spatial patterns [67]. Our
findings can pave the way to a new set of optical traps based
upon the modulation of the optical phase distribution. As a
matter of fact, the seminal work of Ashkin and the previous
fundamental works on light-matter interaction showed that
an electromagnetic force induces a force proportional to the
intensity gradient, in agreement with the Kapitza potential
[68,69]. Another field where the Kapitza theory can be applied
is nonlinear optics, specifically to explain a nonperturbative
effect such as high-harmonic generation (HHG). In HHG, a
strong ultrashort optical pulse extracts electrons from a ma-
terial (via tunneling or multiphoton absorption); the excited
electrons then behave like a quasifree particle whose motion
is mainly dictated by the incident electromagnetic field [70].
In this regime the Kapitza approach can find application, as
recently addressed in Ref. [71]. As a matter of fact, our re-
sults can be generalized (i.e., using the complete Lagrangian
accounting for the light-matter interaction, see, e.g., Ref. [72]
for an approach including complex light states) to understand
how structured light beams can affect HHG, with impact in
related fields such as the generation of attosecond pulses [73].

The role between matter and light can also actually been
exchanged, that is, light being considered like the field sub-
ject to a potential dependent on the matter configuration. As
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already discussed in the introduction, it is well known that
light propagation in the harmonic regime is ruled by a
Schrodinger equation with the propagation distance playing
the role of an effective time [38], an analog massively ex-
ploited in the last decades to demonstrate general physical
effects using relatively simple optical setups [74-78]. Fol-
lowing this lead, a time-periodic potential corresponds to a
longitudinally periodic distribution of the refractive index.
These structures can be realized in several technological plat-
forms, ranging from integrated optics [79-81] to direct laser
writing in transparent materials [82,83]. In particular, our
results can be potentially applied to the realization of a new
type of 3D resonators, simultaneously ensuring longitudinal
trapping (through the Bragg reflections stemming from the
longitudinal periodicity) and transverse trapping due to the
Kapitza effect. Such kind of structures are at reach for ex-
ample using volume Bragg gratings inscribed via ultrashort
optical pulses [84].

Our results are also strictly connected to the realization
of photonic devices based upon the gauge field, in particu-
lar a novel type of wave guides. The idea to use synthetic
gauge fields for light confinement has been initially intro-
duced by Lin and Fan in Ref. [34], where a lattice made of
resonators had been proposed to realize the idea experimen-
tally. The geometry proposed in this article presents an easier
implementation by using a continuous system. Noteworthy,
gauge-induced trapping has been recently demonstrated by
Lumer and collaborators using arrays of femtosecond-written
wave guides in fused silica using two different configurations
[35]. In particular, they have demonstrated that in this discrete
system light can be spatially localized in the presence of a lon-
gitudinally periodic coupling between waveguides, the latter
being shifted on the transverse plane of the array. Our model
gives a more intuitive explanation for such effects with respect
to the Bloch band approach used by Lumer in waveguide
arrays [42]; finally, our approach provides a generalization of
the basic concept to the continuous case, the latter being of
more interest and potential impact in real world applications.

IX. CONCLUSIONS

We investigated the propagation of dispersive waves in the
presence of a periodic potential encompassing a null average,
the potential being subject to a space-dependent delay. We
framed the action of an inhomogeneous delay in the context
of gauge transformations. The influence of the local delay
on the wave evolution has been modelled by introducing
an effective time-independent potential: the effective time-
independent potential consists of a Kapitza potential featuring
an additional contribution due to the delay. With these tools in
hand, we first verified the existence of wave confinement by
a proper tailoring of the delay. We then discussed the strong
impact played by the parity symmetry of the instantaneous
potential in determining the wave propagation in time, em-
phasizing the complex interplay between the fast micromotion
and the behavior of the averaged field on the slow scale. We
finally verified our predictions in fiber optical loops, where a
gauge-dependent confinement is demonstrated for each case
discussed above.

Due to the generality of our model, our results can find
application in several fields, including cold atoms, optical
traps, high harmonic generation, and photonics, among the
others. Future generalizations include the possibility to induce
an effective magnetic field when two transverse dimensions
are accounted for, and the exploration of more sophisticated
spatiotemporal modulations of the potential and the corre-
sponding relationship with apparent forces [85-87].
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APPENDIX A: NORMALIZATION
Setting £ = x/I Eq. (1) reads

RI% 3 a2 V(& 1)
JE Py VEn?
D ot 982 D
Defining the normalized quantities ¢ =¢D/(hl*) and
W, £) =V (&, ¢)I*/D, Eq. (Al) provides
oy 0%y
i— =——+W(, .
2c = e tWEOY
Equation (Al) is adimensional. By the definition of the
normalized potential W (€, ¢), in the case of longitudinally in-
variant potentials the profiles of the bound modes are dictated
by the ratio between the potential and the diffraction coeffi-
cient. The normalized dispersion coefficient D/I? provides a
scaling coefficient with respect to the phase in propagation:
the higher the dispersion, the larger the propagation constants
are. The effective Kapitza potential then reads

(AD)

v, |*

k3

where we set T, =TD/ (hl?). Thus, unlike the case of
time-independent potentials, the Kapitza effective potential
depends on the normalized dispersion D/I>. For a given po-
tential V (x/1), the Kapitza effect is greater for larger D: the
mass of the particle is smaller and it is easier (with respect to
heavier particles) to accumulate kinetic energy. Analogously,
the effective potential is stronger for smaller /, the latter cor-
responding to stronger forces acting on the waves for a fixed
potential drop. Finally, we notice that the dependence from D
and / disappears once W, is used in Eq. (A2), in accordance
with Eq. (A1).

(A2)

DT} 1
_ ¢ 2 :
Weff (5) - lz 47_[2”2
n#0

APPENDIX B: HIGHER-ORDER TERMS IN THE KAPITZA
MODEL

The formula for the effective potential holds valid only up
to the order O(T?), as explained in detail in Ref. [48]. Here we
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FIG. 12. Propagation of the quasimode in the case of full confinement for a potential given by Eq. (C1) with xy// =40, N = 16, and

al®> = 9.8 x 1073, The potential in propagation is sinusoidal with U (x) = 0.5e

—x /w

pot and wpe /I = 2800. In panel (a) ||? on the propagation

plane is plotted for increasing periods T'/ty from left to right, when in the input condition the phase front curvature is accounted for. In panel
(b) the modulus of the wave || calculated in 7 /fy = 104 A [slice corresponding to the red dashed line in panel (a)] is plotted versus x// for

periods T /t, ranging from A to 6A. Here ¢;, = 0.

briefly revise the basic method to find the higher order terms.
The complete expansion of the field reads [48]
dt:| , (B1)

¥ (@) = h(x)exp [—% Y en) / e
n=0 lin

where f;, is the initial instant and e, (x) are point-dependent
pseudoenergies. To obtain the function g(x) used in the main
text, we need to eliminate the dependence from the initial time
tin using the additional transformation

fin:|

h(x) = g(x) exp [—— > ealx) f exp (
(B2)

2mint
win )dt
T

n=0

We then make the expansion e,(x) = ¢ (x) + eV (x)T +
O(T?). The terms e can be found by direct substitution into
the Schrddinger equation; at the leading order, it is ¢ (x) =

U (x)e’zj”” 7 . The main difference with respect to the stan-
dard Kapitza case (i.e., an x-independent delay) is that the
functions e, (x) are now featuring a nonflat wavefront along
x at any level of approximation. In the case of a sinusoidal
modulation, we find Eq. (7). The complete formula for the
Kapitza potential reads [48]

T? 1 (e, de_,
872m zn: n? ( dx dx ) ®3)
Once the perturbative series for e, (x) is inserted into Eq. (B3),
the effective potential can be then expressed in a power series
of the period T, thus generalizing Eq. (5) to the case of long
periods with respect to the Rayleigh distance. The behavior
of the quasimode in one period can eventually be calculated

by direct substitution of e,(x) into the initial ansatz given by
Eq. (B1).

Verr (x) =

APPENDIX C: DESIGNING A V-SHAPED EFFECTIVE
POTENTIAL

A full confinement of the quasimode can be achieved also
by using a V-shape distribution for the local delay. We use the
following ansatz for ¢ (x) [37]:

o I (s ()
= 5ax My % axplx Zaxo N %

(ChH
where My (x) = e™"/% is the super-Gaussian function of or-
der N. The effective potential V. corresponding to Eq. (C1)
in the limit N — oo is parabolic for |x| < xyp and constant
elsewhere. Thus, fully localized modes (with reference to
the Kapitza model) are supported given that lim|,_, | Verr >
Vegr (x = 0). Numerical results are shown in Fig. 12, show-
ing a good degree of spatial localization up to 7 /tg = 6A,
thus showing better performances than obtained for Gaussian
delay (compare with Fig. 4). For longer periods confinement
disappears due to the failure of the Kapitza model due to the
significant contribution of the higher harmonics.

APPENDIX D: THE OPTICAL CASE

In the optical case Eq. (1) corresponds to the
paraxial Helmholtz equation after the substitution ¢ — gz,
h— 1, D— 1/Qnoky), and —V — koAn(x, z)/(2ng) =
koln?(x, z) — n31/(2no) ~ koAn are made. Above ko is the
vacuum wavenumber and nj the unmodified refractive index
of the material. The value D = 1.27 x 107'#Jm? used in
the numerical simulations thus corresponds to a vacuum
wavelength of 1 um, / = 1 um, a refractive index profile An
equal to the potential V provided in the text, and a normalized
propagation length #y &~ 12.5 um. Thus, when the modulation
period T /to = A = 0.8 corresponds to a longitudinal spatial
modulation of 10 um.
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