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Variational dynamics as a ground-state problem on a quantum computer

Stefano Barison ,1,2,* Filippo Vicentini ,1 Ignacio Cirac ,3 and Giuseppe Carleo 1,2

1Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2National Centre for Computational Design and Discovery of Novel Materials MARVEL, EPFL, Lausanne, Switzerland

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

(Received 22 April 2022; accepted 24 October 2022; published 5 December 2022)

We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground-
state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register
of auxiliary qubits. We prepare the Feynman-Kitaev Hamiltonian acting on the composed system as a qubit
operator and find an approximate ground state using the variational quantum eigensolver. We apply the algorithm
to the study of the dynamics of a transverse-field Ising chain with an increasing number of spins and time steps,
proving a favorable scaling in terms of the number of two-qubit gates. Through numerical experiments, we
investigate its robustness against noise, showing that the method can be used to evaluate dynamical properties
of quantum systems and detect the presence of dynamical quantum phase transitions by measuring Loschmidt
echoes.
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I. INTRODUCTION

Recent years have seen tremendous developments in the
fabrication, control, and deployment of quantum computing
systems, and it is now possible to access quantum computing
platforms with up to a hundred qubits on the cloud [1–4].
These devices are expected to surpass the capabilities of clas-
sical computers in specific tasks such as factorization [5],
database search [6], and quantum simulation [7–9].

Among these tasks, quantum simulation was the first en-
visioned application of quantum computers [10] and has
been proven to be of polynomial complexity (bounded-error
quantum polynomial time, BQP) on devices making use of
quantum resources [11,12]. Due to its potential impact on
many different areas of physics [13,14], chemistry [15,16],
and materials science [17,18], a significant amount of research
has been devoted to such application.

However, the realization of an universal quantum simulator
remains far in the future due to the combined effect of lim-
ited connectivity and noisy gates: the noise sets a maximum
number of operations that can be performed without affecting
the fidelity, and the sparse connection graph among qubits
increases the total number of physical operations that must be
performed to implement an algorithm. As an example, several
recent works describing optimized algorithms for quantum
dynamics require a number of quantum operations (gates)
well beyond the possibility of current hardware to surpass
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classical capabilities [19–22]. A computational strategy that
works around the constraints of the hardware is the use of hy-
brid quantum-classical algorithms [23–31]. In this approach,
the quantum computer is used to perform a subroutine of
limited depth, while the whole algorithm is governed by a
classical computer. In the context of quantum dynamics, sev-
eral hybrid algorithms approximating the real-time evolution
of a physical quantum system have been proposed [24,27,29–
36]. Those algorithms rely on a variational trial state (ansatz)
whose parameters θ are optimized classically in order to ap-
proximate the desired state.

A remarkably different approach, which has not yet been
thoroughly investigated on quantum computers, treats time
as a quantum degree of freedom by encoding it into an
auxiliary system called the clock. In that picture, the state
|ψ (t )〉 at a certain time t is represented as the composite state
|ψ (t )〉 ⊗ |t〉. This approach is of interest because it allows to
encode the dynamics of a system into a static superposition of
such states,

∑
t |ψ (t )〉 ⊗ |t〉, and each state |ψ (t )〉 can be ob-

tained by projecting the clock into the corresponding state |t〉.
Given a time-dependent system, it is possible to construct a
Hamiltonian for the joint physical-clock system whose ground
state encodes the whole evolution of the original system. Such
construction, originally proposed by Feynman and Kitaev
[37–40] in the case of a discrete clock and later extended to
continuous time [41], is effectively recasting the problem of
quantum dynamics into a ground-state problem. This perspec-
tive leads to a different classical variational principle [42–44]
that allows the application of ground-state techniques from
quantum chemistry and condensed-matter physics to quantum
dynamics. A similar construction was also recently proposed
to address the simulation of time-dependent Hamiltonians
[45].

In this work we extend the original idea to perform the vari-
ational optimization of the ground state with a hybrid quantum
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algorithm. First, we show how to prepare the Feynman-Kitaev
Hamiltonian efficiently as a qubit operator. Then, we consider
a variational ansatz for the ground state and optimize the
circuit parameters using the variational quantum eigensolver
(VQE) [23,46,47]. We reiterate that this approach allows us to
study quantum dynamics using a wide number of techniques
originally developed for ground-state problems. Moreover, it
is related to McLachlan’s variational principle [42,48], which
is suggested to be the most consistent variational principle
for quantum simulation [27,29]. Finally, once a variational
approximation of the ground state is obtained, we propose
to use it to evaluate the dynamical properties of the physical
system and detect dynamical quantum phase transitions [49].

The structure of this paper is as follows: In Sec. II we
present the Feynman-Kitaev Hamiltonian and its efficient
mapping onto a series of qubit operators, while in Sec. III
we apply the method to the study of a transverse-field Ising
chain, comparing the results to both exact and noisy Trotter
simulations. Section IV concludes the paper with some con-
siderations and outlooks on the proposed algorithm.

II. METHODS

In this section we will describe how to construct the
Feynman-Kitaev Hamiltonian given a time-evolving physical
system and how to apply it in a hybrid quantum algorithm.

A. Feynman-Kitaev Hamiltonian

We consider a quantum system governed by a Hamiltonian
Ĥ acting on the physical Hilbert space Hp. To simplify the dis-
cussion, we assume that Ĥ is time independent, but that is not
a requirement. Given the initial state of the system |ψ (t = 0)〉,
the state at every time t is e−iĤt |ψ (0)〉 = Û (t, 0)|ψ (0)〉, the
formal solution of the time-dependent Schrödinger equation.

The unitary transformations Û (t, t ′) = Û (t − t ′) form a
one-parameter group, therefore we can use the group com-
position property to write

Û (t, 0)|ψ (0)〉 = Û (t, tn−1) . . . Û (t2, t1)Û (t1, 0)|ψ (0)〉, (1)

where we suppose t = tn > tn−1 > . . . > t1 > t0 = 0. By tak-
ing ti − ti−1 = dt ∀i ∈ {1, . . . , n}, the expression in Eq. (1)
becomes Û n(dt )|ψ (0)〉, namely, we have discretized the time
evolution of the system in n equal substeps of length dt .

We then consider an auxiliary clock system Hc =
span{|0〉, |1〉, . . . |n〉} with 〈i| j〉 = δi j ∀i, j ∈ {0, . . . , n}.
They correspond to the different times {t0, t1, . . . tn}. We
then define the history state to be the coherent superposition
of the physical states |ψ (t )〉 at different times in the joint
physical-clock system H = Hp ⊗ Hc,

|�〉 = 1√
n + 1

n∑
i=0

Û i(dt )|ψ (0)〉|i〉 = 1√
n + 1

n∑
i=0

|ψi〉|i〉,
(2)

where we defined for simplicity Û i(dt )|ψ (0)〉 = |ψi〉. From
the history state it is possible to extract the physical state at
any time t by projecting on the auxiliary qubits

|ψi〉 = √
n + 1〈i|�〉. (3)

We now define the Feynman-Kitaev Hamiltonian Ĉ as the
operator whose ground state corresponds to the history state
with energy 0 [10,38]. Similarly to Ref. [42], we present it in
a form amenable to implementation on quantum computers.
The Hamiltonian can be split into three terms:

Ĉ = Ĉ0 + 1
2 (Ĉ1 − Ĉ2), (4)

where

Ĉ0 = [Î − |ψ (0)〉〈ψ (0)|] ⊗ |0〉〈0|,

Ĉ1 =
n−1∑
i=0

Î ⊗ |i〉〈i| + Î ⊗ |i + 1〉〈i + 1|, (5)

Ĉ2 =
n−1∑
i=0

Û (dt ) ⊗ |i + 1〉〈i| + Û †(dt ) ⊗ |i〉〈i + 1|.

Ĉ0 favors the initial state |ψ (0)〉 by giving a positive contri-
bution to the energy for any other state. Ĉ1 and Ĉ2 encode for
the evolution of the physical and auxiliary quantum system
through time, by giving a positive contribution to the energy
when the state at different times does not evolve according
to the unitary operator Û (dt ). We will call Û (dt ) ⊗ |i + 1〉〈i|
the forward unitary and its adjoint the backward unitary. By
construction, we have that the energy E (|ψ〉) = 〈ψ |Ĉ|ψ〉 � 0
for every state |ψ〉 and the equality holds only for |ψ〉 = |�〉.

Considering a state |φ〉 = √
1 − ε2|�〉 + ε|δ〉 with ε ≈

0, 〈�|δ〉 = 0 so that it is close to the target state, it is possible
to show that the infidelity between |φ〉 and the target |�〉
is 1 − F (φ,�) = ε2, where we defined F (φ,�) = |〈φ|�〉|2,
given |φ〉 and |�〉 pure states. Meanwhile, the energy is
given by E (|φ〉) ≈ kε2 for some constant k � E1, where E1

is the energy of the first excited state of the Feynman-Kitaev
Hamiltonian. The computationally costly infidelity is there-
fore upper-bounded by the normalized energy 1 − F (φ,�) �
E (|φ〉)/E1, that can thus be used as a convergence metric in
variational optimization.

B. Efficient mapping on quantum hardware

We want to encode the history state on the qubits of a
quantum computer, therefore we need to find an efficient
mapping for the Feynman-Kitaev Hamiltonian onto qubit op-
erators. The physical and auxiliary subsystems are encoded
into a different partition of qubits. For the physical system, we
will resort to one of the many established mappings [50,51].
The auxiliary register, instead, is a n + 1-level system, and
there are in principle combinatorially many ways to map it
to qubits [52]. In this work we considered both the standard
binary and the Gray mapping [53] to encode every state |i〉
into a bit string state. Since na binary digits have 2na different
values, encoding n different time steps requires na = log2(n)
auxiliary qubits using those mappings. The main difference
among binary and Gray encoding is how many (qu-)bits must
be flipped when going from one time step |i〉 to the next. Un-
der binary encoding one will eventually need to flip all qubits,
such as when going from |i = 3〉 ↔ |011〉 to |i = 4〉 ↔ |100〉
in the case of na = 3. Gray code, instead, is built in order to
flip only one bit at every step, and therefore the time-step
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FIG. 1. Sketch of the VFK method. Coupling the physical system to an auxiliary clock system, we can encode an entire time evolution into
a time-independent state. We prepare a variational approximation of the history state by measuring the expectation value of the Feynman-Kitaev
Hamiltonian and its derivatives on a quantum computer.

operator |i〉〈i + 1| can be implemented with a single qubit
rotation on one qubit.

Consider the time step |i〉 and its Gray binary mapping
|xna . . . x2x1〉, xi ∈ {0, 1} ∀i. Let x j be the difference in bits
between |i〉 and |i + 1〉. Then, the auxiliary forward operator
has the form

|i + 1〉〈i| = ∣∣xna

〉〈
xna

∣∣ ⊗ · · · ⊗ |¬x j〉〈x j | ⊗ · · · ⊗ |x1〉〈x1|,
(6)

where ¬ indicates the negation of the bit value. This is a tensor
product of operators acting on single qubits. Then, each term
is mapped onto qubit operators using the following equalities:

|x〉〈x| = 1
2 [Î + (−1)xσ̂ z],

|¬x〉〈x| = 1
2 [σ̂ x + (−1)xiσ̂ y], (7)

where σ̂ x, σ̂ y, and σ̂ z indicate the Pauli operators. The same
considerations apply to the backward auxiliary operator and
the projectors.

The last term to consider is the time evolution operator
U (dt ). In general, it is not possible to prepare Û (dt ) exactly
in an efficient way if the Hamiltonian contains noncommuting
terms. For this reason we will consider the Trotter-Suzuki
approximation of the time evolution operator [54,55].

Having shown how to prepare the Feynamn-Kitaev as
a qubit operator, we can now use the variational quantum
eigensolver (VQE) [23] with such Hamiltonians to optimize
the variational parameters of a quantum circuit in order to
obtain an approximation of the history state. Considering a
unitary variational circuit ansatz |�θ 〉 = V̂ (θ )|0〉, we will use
the quantum computer to measure Eθ = 〈�θ |Ĉ|�θ 〉 and its
derivatives. Iteratively, a classical processor will determine
new values of θ to minimize Eθ . We remark that minimiz-
ing Eθ has been proved to be equivalent to the application
of McLachlan’s variational principle [42,48]. In the follow-
ing, we will refer to the whole procedure as the variational
Feynman-Kitaev (VFK) method.

Once a variational approximation of the history state is
obtained, we measure expectation values of observables Ô on

the system at time step t using the following equality:

〈Ô(t )〉 = 〈ψt |Ô|ψt 〉 ∼ 〈�θ |[Ô ⊗ |t〉〈t |]|�θ 〉. (8)

An sketch of the method is shown in Fig. 1, while example
applications of the final variational history state can be found
in Sec. III.

C. Computational cost on quantum hardware of the
Feynman-Kitaev Hamiltonian

In this section we analyze the computational cost of mea-
suring the Feynman-Kitaev Hamiltonian in Eq. (4) on a
quantum device. First, we estimate the number of Pauli strings
acting on the clock nc

Pauli and on the physical system np
Pauli.

Then, the total number of Pauli strings will be ntot
Pauli � np

Pauli ∗
nc

Pauli.
Given a number of time steps n, or na = log2 n auxiliary

qubits to encode them, we can determine how many Pauli
strings will make up the operators acting on the auxiliary
system. The terms in C0 and C1 are projectors |i〉〈i| with
i ∈ {0, . . . , n}, and can be expressed as 2na combinations of
Î and σ̂ z, as indicated in Eq. (7), that can be measured all at
once. On the contrary, C2 contains the forward and backward
unitaries, resulting in n log2 n = na2na different Pauli strings.

For the physical system, we approximated the time evolu-
tion operator with a single Trotter-Suzuki step of size dt . The
unitary operation corresponding to a Trotter step is not local if
the terms of the physical Hamiltonian do not commute, giving
a final number of different Pauli strings exponential in the
physical qubits, a behavior that may hinder scalability of the
proposed method. For this reason, we have to resort to a differ-
ent strategy. Consider the m sets of noncommuting operators
Hm that constitute the physical Hamiltonian H = ∑

m Hm. We
can rewrite the operator C2 as

Ĉ2 =
n′−1∑
i=0

m−1∑
j=0

Ûj (dt ) ⊗ |i j + 1〉〈i j| + Û †
j (dt ) ⊗ |i j〉〈i j + 1|,

(9)
where Uj (dt ) = e−iHj dt is the jth set of commuting operators,
which can be exactly Trotterized, and n′ = 
 n

m �. The physical
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part of the Feynman-Kitaev Hamiltonian will have m sets of
commuting Pauli strings, since all the strings inside the same
set can be measured at once. This strategy reduces the number
of Trotter steps we can encode into na auxiliary qubits from
n to n′, but reduces the computational cost from exponential
to polynomial in the number of physical spins. In Sec. III we
show how to implement this strategy for the physical system
under consideration.

D. Dynamical quantum phase transitions

Given a quantum system governed by the Hamiltonian Ĥ
with initial state |ψ (0)〉, the Loschmidt echo is defined by

L(t ) ≡ |〈ψ (0)|e−iĤt |ψ (0)〉|2 = |〈ψ (0)|ψ (t )〉|2. (10)

Loschmidt echoes are important quantities in many-body
theory and appear in various contexts such as quantum
chaos [56,57] or Schwinger’s particle production mechanism
[58,59]. In particular, we will consider the measurement of
Loschmidt echoes for the identification of dynamical quantum
phase transitions (DQPT) [49,60]. Because the variational
history state encodes the superposition of all different time-
evolved physical states |ψ (t )〉, we will show in the following
that it is computationally cheap to evaluate the Loschmidt
echo on it.

Dynamical phase transitions can be identified by a nonan-
alytic behavior of the Loschmidt echo and of its rate function
λ(t ),

λ(t ) = − lim
D→∞

1

D
log [L(t )], (11)

where D is the number of degrees of freedom in our quantum
system. Such phase transitions have been identified in many
quantum systems [49] and also observed in experiments per-
formed on analog quantum simulators [61–63].

In the following, we will show how to use the VFK method
to study these phenomena. Assuming that the variational
parameters of a circuit approximating the history state are
obtained, we use an additional qubit to perform a Hadamard
test [64] and measure the real and the imaginary part of
〈ψ (ti )|ψ (t j )〉 in order to calculate the Loschmidt echo. This
only requires an additional qubit, and the gate overhead re-
quired to calculate the Loschmidt echo with VFK state is
negligible with respect to the total number of gates of the
variational state.

A more detailed explanation of the Hadamard test, as well
as the complete circuit, can be found in Appendix D, while an
application of this method is reported in Sec. III.

III. RESULTS

To demonstrate the viability of the VFK method, we
consider the transverse-field Ising model on an open one-
dimensional chain,

Ĥ = J
ns−1∑
i=0

σ̂ z
i σ̂ z

i+1 + h
ns∑

i=0

σ̂ x
i . (12)

The first term accounts for interaction between spins while
the latter represents a local and uniform magnetic field along
the transverse direction x. For our simulations, we considered

J = 1
4 , h = 1. We use a classical computer to simulate the

quantum hardware in an ideal case, without noise sources and
with full access to the state vector produced by the quantum
circuit (state-vector simulations). The simulations have been
performed both in PYTHON, using IBM’s open-source library
for quantum computing, Qiskit [65], and in JULIA [66], with
the Yao.jl [67] and PastaQ [68] frameworks. The code can be
found in Refs. [69,70].

We considered a variational ansatz of the form

V̂ (θ ) =
d∏

l=1

⎡
⎢⎢⎣

∏
a∈A

⎛
⎜⎜⎝

∏
i �= j

i, j∈P

Ĝi j,l

∏
p∈P

Ĝap,l

⎞
⎟⎟⎠

⎤
⎥⎥⎦, (13)

where we denoted the set of qubits encoding the physical
system P and the set of auxiliary qubits A, while Gi j,l is a
parameterized gate of the form

The total number of blocks, or depth, is d . The total number
of variational parameters is then given by

npars = 2dna
(
n2

s + ns
)
, (14)

where ns and na indicate the number of spin and auxiliary
qubits, respectively.

The Ising Hamiltonian in Eq. (12) has two sets of noncom-
muting operators HX = ∑ns

i=0 σ̂ x
i and HZZ = ∑ns−1

i=0 σ̂ z
i σ̂ z

i+1.
We make use of the strategy presented in Sec. II C in order to
have a polynomial cost. We build the Feynman-Kitaev Hamil-
tonian by applying UX (dt ) = exp[−iHX dt] at even clock
values and UZZ (dt ) = exp[−iHZZdt] at odd ones. The new
amount of Trotter step that can be encoded in na auxiliary
qubits will be n′ = n

2 .
First, we considered a system with ns = 6 spins and up

to na = 6 auxiliary qubits for a total simulation time Te = 3.
We used the variational wave functions obtained with VFK to
estimate expectation values of physical quantities as indicated
in Eq. (8). In particular, we evaluated the total magnetization
along the z axis,

σ z = 1

ns

ns∑
i=1

σ z
i , (15)

through the entire time evolution. To assess the accuracy
of these variational history states obtained with the VFK
method, we measured the infidelity 1 − FVFK with respect to
Trotter-Suzuki wave functions. For every simulated time ti,
we prepared the Trotter-Suzuki state |ψT S

i 〉 = Û i
T S (dt )|ψ (0)〉

with dt = Te
2na−1 and evaluated the infidelity with the VFK

history state projected onto the |i〉 subspace. The results are
reported in Fig. 2.

Increasing the number of auxiliary qubits while keeping
the total simulation time Te fixed decreases the size of a single
Trotter step, decreasing also the error with respect to the
exact state. We remark that, if the variational ansatz is able
to reproduce exactly the history state, the variational history
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FIG. 2. Magnetization (top) and infidelities (bottom) measured
on the VFK history state. We considered a system of ns = 6 spins
initialized in |0〉⊗6 and different auxiliary qubits na for a simulation
time Te = 3.0. FVFK at time ti indicates the fidelity measured between
the Trotter-Suzuki state with i steps and the VFK state projected on
the |i〉 subspace.

state can be as accurate as the corresponding Trotter-Suzuki
approximation.

We run multiple simulations for varying system and clock
sizes ns, na ∈ [2, 3, 4, 5, 6]. The ground-state optimization is
performed using the variational quantum eigensolver (VQE)
algorithm and the Adam optimizer [71]. The time evolu-
tion unitaries in the target Feynman-Kitaev Hamiltonian are
smoothly varied from Û (dt = 0) to Û (dt = Te/2na−1) in or-
der to help the convergence of the method (see Appendix B
for additional details).

During the optimization we monitor the energy of the
state, which we showed to bound the infidelity with respect
to the target state. Once it gets below a certain threshold,
we stop the optimization and consider that we have reached
convergence. Since the energy of the first excited states of
the Feynman-Kitaev Hamiltonian decreases as the number
of auxiliary qubits increases, the threshold is chosen to be
10−2 × E1, where E1 indicates the energy of the first excited
state. As indicated in Ref. [38], E1 can be derived analyti-
cally from a unitarily equivalent Hamiltonian and its value is

E1 = 1 − cos(π/2na ). For this reason, we are able to use E1

as convergence threshold.
The complexity of the optimization procedure increases

with the number of auxiliary qubits, however we are able to
reach convergence by increasing the ansatz depth d . This is
consistent with the fact that preparing the exact history state
would require an exponentially deep circuit with the clock
system size. In Fig. 3 we report the final energies obtained as
a function of the ansatz depth. For comparison, in Appendix C
we report the infidelities with respect to the exact ground state
for the same calculations.

Then, we considered the smallest depth necessary to reach
convergence and compared the number of two-qubit gates
needed by the variational circuit with the number of two-qubit
gates needed by a standard Trotter-Suzuki circuit with the
same number of time steps. The results are indicated in Fig. 4.
We only report the comparison for two-qubit gates and not for
one-qubit gates because the latter are usually not a bottleneck
in noisy intermediate-scale quantum (NISQ) devices.

In Fig. 4 we show that the VFK history state has an over-
head compared to Trotter if few time steps are considered, but
as the number of time steps is increased, the VFK method has
a favorable scaling. Moreover, the VFK history state contains
more information than the state obtained at the end of the
Trotter evolution, which can be used, for example, to compute
Loschmidt echoes.

In this regard, we show that the VFK variational wave
function can be used to study dynamical quantum phase
transitions. We still consider the transverse-field Ising model
with J = 1/4 and h = 1. As the equilibrium model exhibits
a quantum phase transition in the ground state when going
from h < J to h > J , a dynamical quantum phase transition is
known to appear if the system is quenched from one region to
the other [49].

We consider a system initialized at |ψ (0)〉 = |0〉⊗ns , the
ground state of the Hamiltonian for h = 0, and we then com-
pute the VFK history state using the same procedure described
before for Te = 3, h = 1, and varying system sizes. After
determining the optimal parameters, we used the Hadamard
test to evaluate the rate function of the Loschmidt echo as
described in Appendix D. In Fig. 5 we show that a nonana-
lytic behavior appears as the system size grows. We are able
to improve the time resolution by increasing the number of
auxiliary qubits. As the number of spins approaches the ther-
modynamic limit, the qubit overhead required to characterize
the cusp becomes negligible.

Finally, we investigate the algorithm performance in the
presence of noise. We follow the noise model proposed by
Kandala et al. in Ref. [47], where the effects of decoherence
are approximated by an amplitude damping and dephasing
channel acting after each fundamental gate on the system
density matrix ρ as

ρ → Ea
0 ρEa†

0 + Ea
1 ρEa†

1 ,

ρ → Ed
0 ρEd†

0 + Ed
1 ρEd†

1 (16)

with

Ea
0 =

[
1 0
0

√
1 − pa

]
, Ea

1 =
[

0
√

pa

0 0

]
(17)

043161-5



BARISON, VICENTINI, CIRAC, AND CARLEO PHYSICAL REVIEW RESEARCH 4, 043161 (2022)

1 2 3 4

100

10−2

10−4

10−8

10−12

10−16

E
V

F
K
/E

1

na = 2

1 2 3 4

na = 3

1 2 3 4

na = 4

1 2 3 4

na = 5

1 2 3 4

na = 6

Req. energy

2 spins

3 spins

4 spins

5 spins

6 spins

Ansatz depth

FIG. 3. Final energy obtained with the VFK algorithm (EVFK) over the energy of the first excited state (E1) obtained using a classical
simulator. The plot shows the final energy obtained for a system of ns spins and 2na−1 time steps as a function of the depth of ansatz in Eq. (13).
The gray, dashed lines indicate the energies we require to consider the VFK converged. We fixed the simulation time Te = 3.0. In this case,
increasing the number of auxiliary qubits will reduce the time step and the Trotter-Suzuki approximation error, accordingly. The corresponding
fidelities can be found in Appendix C.

and

Ed
0 =

[
1 0
0

√
1 − pd

]
, Ed

1 =
[

0 0
0

√
pd

]
. (18)

The fundamental gates are taken to be CNOT, R̂x, R̂y, and R̂z;
all other gates, such as the R̂zz used in the Trotter circuit,
are decomposed into a sequence of those gates. The one-
and two-qubit error rates pa,d

1 and pa,d
2 are estimated from

quantum processing unit (QPU) data such as the relaxation
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FIG. 4. Comparison between two-qubit gates required by the
Trotter-Suzuki circuit (NTS

CX) and by the variational ansatz (NVFK
CX ),

given the same system size and Trotter steps. NVFK
CX corresponds to

the minimal circuit required to make VFK converge and depends on
ansatz type and depth. NTS

CX is fixed, given the system size and number
of steps. We considered the ansatz in Eq. (13) and a simulation time
Te = 3.0.

and dephasing time available in Refs. [1,4]. More details on
the estimation of error rates can be found in Appendix E.

In Fig. 6 we compare the mean fidelity FVFK obtained from
the VFK calculation on the noisy system of ns = 2 spins and
different na against the mean fidelity of the Trotter evolution
FTS [we take the fidelity to be F (ρ, σ ) = [Tr(

√√
ρσ

√
ρ)]2,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t

0.0

0.5

1.0

1.5

2.0

λ
( t

)

Exact

VFK

Exact

VFK

Exact

VFK

2 spins: 4 spins: 6 spins:

FIG. 5. Rate function of the Loschmidt echo in the transverse-
field Ising model measured using the VFK variational state. The plot
shows a dynamical phase transition for an open chain initialized in
the |0〉⊗ns state and evolved under the Hamiltonian in Eq. (12). The
nonanalyticity appears when the number of spins is increased. We
considered a number of auxiliary qubits na = 6 for ns = 2, 4 and
na = 7 for ns = 6.
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FIG. 6. Comparison between the mean infidelity of noisy VFK
and Trotter-Suzuki circuits through a time evolution to Te = 3.0.
Markers indicate the mean value, while the bars show the standard
deviation over a time evolution. We fixed the error probability for
single-qubit gates p1 = 2 × 10−4. We considered a system with ns =
2 and a different number of auxiliary qubits na, and Trotter steps are
varied accordingly. The horizontal line indicates equal mean fidelity
between VFK and Trotter-Suzuki circuits. Vertical lines indicate the
mean p2 error probability for reference devices.

where ρ, σ are two density matrices]. We study how their
ratio FVFK/FTS varies as a function of different two-qubit
error rates pa

2 = pd
2 = p2, while keeping the single-qubit error

rate constant to an average value pa
1 = pd

1 = p1 = 2 × 10−4

that is consistent with real-world devices. This approach is
motivated by the fact that today’s devices are mainly limited
in the fidelity they can achieve when performing two-qubit
operations.

The plot indicates comparable performances between the
two methods, with an advantage of VFK for na = 2, 3. As
the number of auxiliary qubits is increased to na = 4, 5, the
VFK optimization must converge towards smaller values of
the energy in order to give sensible results. However, at higher
error rates we were not able to successfully optimize the
variational parameters, which can be seen in the figure by the
fact that the performance of the VFK method then degrades.
To give a better idea of where today’s QPUs stand, some ver-
tical lines represent the mean values of p2 for commercially
available devices, which shows that ion-based setups have
a low-enough error rate and could be able to use the VFK
algorithm efficiently already today.

IV. CONCLUSIONS AND OUTLOOK

In this work we showed a strategy to study dynamical
properties of a quantum system using variational ground-state
quantum algorithms. Our method, which we called varia-
tional Feynman-Kitaev (VFK), combines the Feynman-Kitaev
Hamiltonian together with existing variational ground-state
methods in order to study dynamical systems with the limited
resources available on today’s NISQ devices.

First, we showed how the Feynman-Kitaev Hamiltonian
can be efficiently implemented on a quantum computer using

a binary encoding for the auxiliary system and the Trotter-
Suzuki approximation for the time evolution operator. Then,
we demonstrated our method studying the transverse-field
Ising model and showing that it scales favorably compared
to a Trotter-Suzuki evolution when many time steps are
needed. We investigated the convergence of the algorithm
as the number of spins and auxiliary qubits increases and
compared the final circuits with the corresponding Trotter-
Suzuki approximation. Considering a noise model accounting
for decoherence, we assessed that our algorithm yields slightly
better results than a plain Trotter evolution when the two-qubit
error rate is not too detrimental. As analyzed in Ref. [46], vari-
ational methods are robust against certain types of quantum
errors, a promising feature for future hardware demonstra-
tions. Finally, we showed that it is possible to exploit the
structure of the VFK history state to measure dynamical quan-
tities such as the Loschmidt echo efficiently, and gave an
example of how to detect dynamical quantum phase transi-
tions in the transverse-field Ising model.

As a future research direction, we believe that it would be
of interest to investigate the application of the VFK method
to other physical systems, as well as its application to es-
timate quantities that are not easily accessible via standard
Trotterization. Similarly to all other variational algorithms,
the choice of the right ansatz is fundamental for the algorithm
to succeed. In the ansatz we proposed, the gates required
between auxiliary and system qubits currently limit the imple-
mentation on hardware. However, we envision application of
the method in devices with high qubit connectivity. Moreover,
we showed that once the variational history state is obtained,
it has applications beyond the evaluation of expectation values
of time-dependent observables.

The code used to run the simulations is open source and
can be found in Refs. [69,70].
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APPENDIX A: COMPARISON WITH PROJECTED
VARIATIONAL QUANTUM DYNAMICS

In this Appendix we compare the VFK method to the p-
VQD method presented in Ref. [29]. We consider the same
transverse-field Ising model (TFIM) in Eq. (12) and the same
parameters. The p-VQD variational state is prepared using the
ansatz presented in Ref. [29]. We define the mean integrated
infidelity

δF (Te) = 1

Te

∫ Te

t=0
(1 − |〈ψT S (t )|ψθt 〉|2)dt = �F (Te)

Te
, (A1)

where |ψT S (t )〉 is the Trotter-Suzuki state prepared at time t ,
while |ψθt 〉 indicates the variational state that approximates it.
In the VFK method, the variational history state |�θ 〉 is pre-
pared and projected onto the |t〉 subspace before calculating
the fidelity. We fix a total simulation time Te, and the number
of auxiliary qubits in the VFK method determine the number
of time steps for both methods. Given that, differently from
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FIG. 7. Mean infidelity over an entire time evolution as a function of the number of spins and auxiliary qubits. The plot compares the mean
infidelity between the variational state obtained with VFK (after projecting to |t〉 subspace) or p-VQD and the exact state. For the VQE we used
the ansatz in Eq. (13), while for p-VQD we use the alternating rotations ansatz presented in Ref. [29]. We considered a total simulation time
Te = 3.0 and a number of optimization steps comparable between the two methods. The analysis is performed using a state-vector simulator
and the Adam optimizer for both methods.

VFK, the variational wave function prepared by the p-VQD
algorithm encodes the evolution of the quantum state only at a
certain time t , the ansatze used in the two methods are differ-
ent. For VFK, the ansatz is the same one presented in Eq. (13),
with depth of converged calculations in Fig. 3. For p-VQD, we
use the same ansatz presented in Ref. [29] with depth d = 3,
resulting in a total number of d[ns + (ns − 1)] + ns = 7ns − 3
free parameters.

We use the Adam optimizer and a comparable number of
optimization steps. Results of this comparison are shown in
Fig. 7.

When the number of time steps is small, the infidelity of
the VFK method is lower. If we choose a time step small
enough, we are able to improve the accuracy of the p-VQD
method, thanks to parameter optimization at every time step.
Provided a converged optimization is used, they are expected
to converge to the same mean integrated infidelity in the limit
of infinite time steps.

APPENDIX B: OPTIMIZATION STRATEGY

As a variational algorithm, optimization of the wave func-
tion using VQE can be hindered by local minima or the
presence of barren plateaus [72–74]. In particular, the defini-
tion of the cost function in terms of global observables leads to
the emergence of such plateaus even when V (θ ) is a shallow
circuit [74]. To improve the optimization procedure, we devise
a specific strategy. Consider dt = 0: in this case the history
state has the form

|�0〉 = 1√
n + 1

n∑
i=0

|ψ (0)〉|i〉. (B1)

When dt is infinitesimal, the history state |�〉 is infinites-
imally close to |�0〉. Assuming |ψ (0)〉 is a simple state to
prepare or, equivalently, that we have an efficient approxi-
mation to it, we start with the circuit in the state |�0〉 and
initialize the variational gates as identity operators. Then, we

substitute every Û (dt ) in the Feynman-Kitaev Hamiltonian
with its k-root k

√
Û (dt ) = Û (dt/k). Considering large-enough

k, we can start the optimization close to the optimum. Finally,
we optimize the wave function for decreasing k until k = 1
and the targeted clock Hamiltonian is obtained. In general,
every function f (dt, k) can be considered and the Feynman-
Kitaev Hamiltonian built upon Û [ f (dt, k)], e.g., f (dt, k) =
dt k

k0
with k ∈ {1, . . . , k0} and k0 an arbitrary large number.

APPENDIX C: FIDELITY OF THE VQE CALCULATIONS

In this Appendix we show the fidelity between the vari-
ational state obtained with the VFK algorithm and the
corresponding exact history state. As explained in Sec. II A,
the fidelity is upper bounded by the normalized energy. In-
deed, given a state |φ〉 = √

1 − ε2|�〉 + ε|δ〉 close to the
target state |�〉, where ε ≈ 0, 〈�|δ〉 = 0, we can calculate
its fidelity and energy as a function of ε.

In particular, we obtain that 1 − F (φ,�) = ε2 and
E (|φ〉) = ε2E (|δ〉), where we defined F (φ,�) = |〈φ|�〉|2
and to calculate E (|φ〉) we considered that E (|�〉) = 0 by
construction. Given that |δ〉 is orthogonal to |�〉, E (|δ〉) � E1,
where E1 is the energy of the first excited state. For this
reason, we can conclude that the infidelity is upper bounded
by the energy normalized by E1, which can be calculated
analytically, as shown in Ref. [38]. In Fig. 8 we report the
infidelities for states whose energy is shown in Fig. 3

APPENDIX D: MEASURING LOSCHMIDT ECHOES

In this Appendix, we illustrate how to extend the VFK
circuit in order to measure Loschmidt echoes. Consider the
overlap between the system quantum state evolved at two
different times ti and t j , namely, 〈ψ (ti )|ψ (t j )〉. In general, this
quantity is complex, therefore we have to perform a Hadamard
test to evaluate its real and imaginary part. In the following,
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FIG. 8. Final infidelities of the states obtained with the VFK algorithm (1 − FVFK) using a classical simulator with respect to the exact
history state. The plot reports the infidelities corresponding to the calculations presented in Fig. 3.

we describe how to measure the real part; the same procedure
applies for the imaginary part, with a slight modification.

First, we define the time-swap operator as

T̂SWAP(ti, t j ) =
⊗
k∈Ti j

σ̂ x
k , (D1)

where Ti j indicates the set of bits that differs in the bit string
encoding of ti and t j . We use the set of parameters obtained
with the VFK method to initialize the variational circuit V (θ ).
We control the action of the time-swap operator over the clock
system using an additional auxiliary qubit initialized in |+〉 =
|0〉+|1〉√

2
= H |0〉. In the following, we will refer to the qubits of

the auxiliary clock system as the clock qubits, to distinguish
them from the auxiliary qubit added to perform the Hadamard
test. Then, we apply again a Hadamard gate to the auxiliary
qubit and we measure the auxiliary and the clock qubits. We
postselect the measurements in which the measurement of
the clock system returns the binary string corresponding to ti
(or t j). We indicate the number of postselected measurements
with the auxiliary qubit in 0 (1) as N0 (N1).

Finally, the real part of the overlap will be

〈ψ (ti )|ψ (t j )〉 = 2na
N0 − N1

Nshots
, (D2)

where Nshots indicates the number of times the system has been
prepared and measured, while the prefactor 2na is required for
the normalization of the history state. Considered a system
with two system qubits and a single clock qubit, the final
circuit to measure the real part of 〈ψ (t0)|ψ (t1)〉 has the form

where P indicates the two system qubits and A the clock
qubit. To measure the imaginary part of the overlap, the
same procedure applies, with the auxiliary qubit initialized in
|0〉−i|1〉√

2
= HS†|0〉.

APPENDIX E: NOISE MODEL FOR THE NUMERICAL
EXPERIMENTS

In this Appendix, we describe how we included decoher-
ence effects in the numerical simulations shown in Fig. 6.
As indicated in the main text, we followed the noise model
proposed by Kandala et al. in Ref. [47], where the effects of
decoherence are approximated by the successive application
of an amplitude damping and dephasing channel acting after
each gate on the system density matrix

ρ → Ea
0 ρEa†

0 + Ea
1 ρEa†

1 ,

ρ → Ed
0 ρEd†

0 + Ed
1 ρEd†

1 (E1)

with

Ea
0 =

[
1 0
0

√
1 − pa

]
, Ea

1 =
[

0
√

pa

0 0

]
and

Ed
0 =

[
1 0
0

√
1 − pd

]
, Ed

1 =
[

0 0
0

√
pd

]
. (E2)

The error rates pa and pd can be determined from actual
device data. In particular, we have

pa = 1 − e−τ/T1 , pd
g = 1 − e−2τ/Tφ , (E3)

TABLE I. Average coherence values and gate times of the de-
vices indicated in Fig. 6, as of March 2022.

Device T1 (μs) T2 (μs) τ2 (μs) τ1 (μs)

IBMQ Peekskill 250.12 242.82 0.420571 0.0035
IBMQ Hanoi 160.64 144.7 0.318603 0.0035
IonQ 11 qubits >107 2 × 105 210 10
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where T1 is the relaxation time of the qubit, τ is the gate time,
and Tφ = 2T1T2/(2T1 − T2), given T2 as the coherence time
of the qubit. When the time of a single- or two-qubit gate
is substituted in τ , we obtain pa,d

1 and pa,d
2 , respectively. We

used data found in Refs. [1,4] to estimate an average value of
pa,d

1 and a range of pa,d
2 to analyze in our simulations. Finally,

in order to simplify the comparison in Fig. 6, we considered
pa = pd for both single- or two-qubit gates. This approxima-
tion holds when T1 ≈ T2, which is true on an average basis for
superconducting devices [1].

For completeness, we report in Table I the data of the
devices indicated in Fig. 6.
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