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Disorder stabilized breached-pair phase in an s-wave superconductor
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The breached-pair state wherein superconductivity coexists with magnetic polarization is known to exist as
a ground state of an imbalanced Fermi system only under very fine-tuned conditions. Here, we show that an
s-wave superconductor that is well described by a spin-selectively disordered attractive Hubbard model away
from half filling has the breached-pair state as a ground-state without the need for such fine-tuning. The existence
of this breached-pair phase is established by laying recourse to a Monte Carlo technique called static path
approximation (SPA). Further, by using the SPA, we map out the entire phase diagram of the spin-selectively
disordered attractive Hubbard model and show that apart from the breached-pair phase, the many-body system
hosts the putative s-wave superconducting state and a polarized Fermi-liquid state.
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I. INTRODUCTION

Recently, there has been a resurgence of interest in re-
alizing ground states wherein superconducting (SC) order
coexists with magnetic order. These investigations are not just
centered around conventional solid-state systems [1–3] but
also include systems that lie in the field of ultracold atomic
gases [4–6]. One such possible coexistent phase, namely,
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [7,8] (which is a
SC phase with a finite-q modulation), has now been both
theoretically [9–16] and experimentally [1–6] well explored.
This of course raises the interesting question of whether it is
possible to obtain a stable ground state wherein a homoge-
neous (q = 0) SC order coexists with magnetism in an s-wave
superconductor. Sarma in a seminal work [17] showed the
possible existence of such a homogeneous state with two
gapless Fermi surfaces in an s-wave superconductor in the
presence of an external magnetic field. Called the Sarma phase
or the breached pair (BP) phase, this state is shown to arise at
the maximum of the thermodynamic potential and thus cannot
be a stable ground state.

Driven by advances in cold atomic gas systems, the search
for ground states that display unconventional order akin to the
BP phase or the FFLO phase received a renewed impetus.
For instance, it was conjectured that such a BP phase could
exist as a ground state in imbalanced Fermi systems with
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an attractive on-site interaction [18]. The BP phase was also
shown to arise in the context of a lattice fermion model for
spin-imbalanced s-wave superconductors within a mean-field
type description [10]. However, the BP phase of Ref. [18]
dubbed as the Liu-Wilczek-Sarma phase was shown to be
unstable to a phase-separated state comprising puddles of
polarized fluid in the otherwise uniform superfluid state [19].
Furthermore, it was later established via nonperturbative theo-
ries [15] and experiments on ultracold atomic gases [5] that for
imbalanced superconductors with s-wave pairing [10], the BP
constitutes a finite temperature phase and is unstable against a
homogeneous, gapped SC phase at the ground state.

It was, however, soon realized that the Liu-Wilczek-Sarma
phase could be stabilized via fine-tuning the Hamiltonian
to include momentum-dependent interactions [20,21]. In the
context of momentum-dependent interactions, a recent study
has shown that the BP phase can be stabilized as a ground state
in unconventional superconductors with dx2−y2 pairing [22].
The nodes in the SC gap of a d-wave superconductor serve as
a host to the unpaired fermions, thereby giving rise to a finite
magnetic polarization which coexists with the superconduct-
ing order. Further, in the context of cold atomic systems, it
was suggested that a variant of the Liu-Wilczek-Sarma phase
with just one gapless Fermi surface could be stabilized as the
ground state in a two-component Fermi mixture deep in the
BEC side of a BCS-BEC crossover [20]. So far, no experimen-
tal realization of this quantum BP phase (i.e., BP phase at the
ground state) has been reported, which motivates one to come
up with a suitable experimental protocol to realize the same. In
principle, a Pauli-limited unconventional superconductor such
as CeCoIn5, κ-BEDT, etc. [1–3,23,24] when subjected to a
moderate in-plane Zeeman field should be able to stabilize a
quantum BP phase, but the same has not been reported so far.
On the other hand, realizing a momentum-dependent pairing
state in an ultracold atomic gas setup is nontrivial.

In this paper, we present an alternate and, arguably,
a simpler route to stabilize a quantum BP phase in an
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s-wave superconductor. This route entails the introduction of
a spin-selective disorder potential wherein the two species
of fermions see different disorder potentials. Experimentally,
such spin-dependent potentials can be realized in optical lat-
tices with randomness being introduced as speckle disorder
[25–29]. In other words, experimental realization of such
spin-selective disorder can be thought of as a natural extension
of combining spin-dependent potential (which have been pro-
posed and experimentally realized) with disorder induced on
site randomness. A possible route to introduce randomness in
such cold atomic systems is via a speckle-type disorder which
is obtained by focusing the light beam that is generated by
scattering off a diffusive plate onto the optical lattice that is
formed by the interference of counterpropagating lasers.

Additionally, polarized two-dimensional (2D) supercon-
ductors emerging at the interface of oxide heterostructures (for
example, LaAlO3/SrTiO3 heterostructure), when subjected to
a random quenched disorder, can serve as an ideal platform to
realize the quantum BP phase [30–33].

Our starting point is the 2D attractive Hubbard model on
a square lattice, with spin-selective random potential disorder
Viσ at each site:

H = − t
∑
〈i j〉,σ

(c†
iσ c jσ + c†

jσ ciσ )− | U |
∑

i

n̂i↑n̂i↓

+
∑

iσ

(Viσ − μ)n̂iσ . (1)

Here, in Eq. (1), the ciσ (c†
iσ ) are the fermion annihilation

(creation) operators at site i for the fermion species, σ =↑, ↓.
In what follows, all energy scales in the model are normalized
with respect to the nearest-neighbor hopping amplitude t ,
which we set to one. The density of the fermions (filling)
is dictated by the global chemical potential μ. The disorder
potential Viσ is set to be spin selective, such that Vi↑=0
and Vi↓ �= 0, selected randomly from a box distribution of
[−V/2,V/2]. The on-site interaction is incorporated through
the attractive | U |> 0 Hubbard term.

To avoid issues stemming from the well-known degeneracy
between the charge density wave and SC orders at T = 0 in
the clean limit (V = 0) of this model for the case of the half-
filled lattice (〈n〉 = 1) [34,35], we work in the regime where
the total density is fixed to 〈n〉 = 0.85.

The version of the Hamiltonian in Eq. (1) with
spin-independent disorder (V↑ = V↓ �= 0) has been well
studied [36–41]. These studies show a disorder driven
superconductor-insulator transition, such that beyond a crit-
ical disorder V > Vc, the energy states are localized.

The phase diagram of the spin-selective disordered at-
tractive Hubbard model has been investigated within the
framework of Bogoliubov–de Gennes mean-field theory
(BdG-MFT) [27,42,43]. These studies suggest the existence
of two critical disorder strengths Vc1 and Vc2, such that the
system is a gapped superconductor for V < Vc1 and an insu-
lator for V > Vc2; in the regime Vc1 < V < Vc2, a gapless SC
state is realized.

In this paper, by using a nonperturbative numerical scheme
viz. Static path approximation (SPA) [15,37,44], we study the
Hamiltonian shown in Eq. (1). Our key results for the spin-
selectively disordered attractive Hubbard model are encoded

FIG. 1. A schematic phase diagram that describes the various
phases hosted by the spin-selectively disordered attractive Hubbard
model as a function of the disorder strength. At a constant interaction
strength U , with increasing disorder strength V , the spin-selectively
disordered model goes from a BCS type ground state with a finite
hard gap and zero magnetic polarization to a BP phase. The BP phase
is a gapless superconducting ground state with a finite magnetic
polarization. With a further increase in V , the system goes over into
a polarized Fermi liquid.

in the schematic phase diagram shown in Fig. 1. In particular,
it shows the existence of a BP phase in addition to the usual
fully gapped superconductor and a polarized Fermi liquid. For
a constant value of the Hubbard interaction |U |, it shows that
the BP phase is stabilized for an intermediate range of disorder
strengths Vc1 < V < Vc2. Furthermore, Fig. 1 also shows that
at a constant value of disorder V , the system undergoes a
transition from a polarized Fermi liquid to a BP phase and
further into a fully gapped superconductor as function of
increasing U . A variety of thermodynamic and quasiparticle
indicators are used to characterize the BP ground state, and
other competing ground states inherent in the system using the
SPA method. As we shall soon see (Sec. II), the SPA method
retains spatial fluctuations at all length scales, implying that
it is sensitive to effects (especially in low dimensions) that
cannot be captured by a mean-field approach to the problem.

The paper is organized as follows: Section II is dedicated
to a brief elucidation of the SPA method and the observables
that we employ to characterize the spin-selectively disordered
attractive Hubbard model. Section III concerns itself with
the exposition of the key results of this paper. In particular,
Sec. III A is dedicated to the study of the model as a function
of disorder while the interaction is kept fixed to a constant
value. In a similar fashion, Sec. III B concerns itself with
the exploration of the system as a function of the interaction
strength while keeping the disorder strength fixed to a constant
value. The discussions and conclusions based on our analysis
of Sec. III are given in Sec. IV. Finally, in Appendix 1, we
elucidate in detail the formalism involved in the SPA scheme
and also compare and contrast this method with other tech-
niques that are in vogue in the study of strongly correlated
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systems. The details of the Monte Carlo (MC) scheme are
fully described in Appendix 2. Finally, in Appendix 3, the
results of the BdG-type analysis of the spin-selectively disor-
dered superconductor is placed in comparison with the results
that are obtained via a SPA analysis.

II. METHOD AND OBSERVABLE

We decompose the quartic interaction term in Eq. (1)
into pairing and density channels by using the Hubbard-
Stratonovich (HS) transformation (see Appendix 1). This
involves introducing the corresponding bosonic auxiliary
fields �i(τ ) and φi(τ ), respectively. The auxiliary fields are
treated classically (by retaining only the �n = 0 Matsubara
mode), within the purview of SPA [15,37,44]. The resulting
effective Hamiltonian reads

Heff = −
∑
〈i j〉,σ

ti j (c
†
iσ c jσ + H.c.) −

∑
i

(�ic
†
i↑c†

i↓ + �∗
i ci↓ci↑)

−
∑
i,σ

φic
†
iσ ciσ +

∑
i,σ

(Viσ − μ)c†
iσ ciσ

+
∑

i

( | �i |2 +φ2
i

)
/ | U | . (2)

The pairing and density field configurations are controlled
by the Boltzmann weight, P{�i, φi} ∝ Trc†,ce−βSeff , where Seff

is the effective action. For large and random configurations,
the trace is taken numerically. The required configurations
{�i, φi} are generated by the MC technique, wherein Heff

(the effective Hamiltonian) is diagonalized for each attempted
update. The optimized configurations {�i, φi} are then used
to compute the various correlation functions and quasiparticle
indicators that we elucidate below. The observables discussed
in this paper are averaged over ten disorder realizations and
over 200 MC configurations, (Appendix 2 gives the complete
details of the MC scheme we adopt). We characterize the
system based on the indicators:

(i) The disorder averaged SC phase stiffness, ρs.
(ii) The magnetic polarization of a particular disor-

der realization, mi = ni↑−ni↓
ni↑+ni↓

, and its disorder averaged
counterpart m.

(iii) The disorder-averaged spin-resolved single-particle
density of states (DOS), N↑(ω) = (1/N )

∑
i | ui

n |2 δ(ω − En)
and N↓(ω) = (1/N )

∑
i | vi

n |2 δ(ω + En).
Here, ui

n and vi
n are the eigenvectors corresponding to the

eigenvalues En.
To determine the SC phase stiffness, we have applied a

phase twist to the system through a complex hopping param-
eter t → tei

∫
A.dl , where A is the vector potential [45]. The

difference between the resulting free-energy density of the
system and the free energy corresponding to the untwisted
system gives the measure of the SC phase stiffness. The results
presented in this paper correspond to a system size of L = 32,
unless specified otherwise. However, we have checked for
finite-size effects and have found our results to be robust
against the system-size variation.

At this juncture, it is important to contrast our approach to
that developed in Refs. [42,43] for a similar problem. More
specifically, in Refs. [42,43] the authors worked with a spin-
dependent chemical potential μσ , which aids in fixing the

FIG. 2. Disorder dependence of the spin-resolved single particle
DOS for the (a) up [N↑(ω)] and the (b) down [N↓(ω)] spin species,
at the selected interaction of |U | = 2. Increasing disorder leads to
progressive accumulation of the spectral weight at the Fermi level,
thereby leading to the crossover from gapped to gapless supercon-
ducting states. A finite spectral weight at the Fermi level is associated
with the broadening of the phase coherence peaks via transfer of
spectral weight away from the Fermi level.

number density of the individual fermionic species. Thus, as a
consequence there are two separate equations for the number
density which has to be solved self-consistently (along with
the gap equation) to obtain the ground states. These two
separate equations for the number density of individual spin
species necessitates the introduction of two spin-dependent
HS fields (φiσ ). Here, in contrast, we fix the total number
density of fermions in the system. This thus implies that there
is a spin-independent chemical potential μ, which fixes the
total number density of the fermions in the model. Thus, we
employ a single HS field φi that couples to both the spin
species.

III. RESULTS

In this section, we analyze the spin-selectively disordered
superconductor in terms of its thermodynamic and spectro-
scopic signatures. All our results are obtained at T = 0.01t ,
which we consider to be concomitant with the ground state.
Further lowering of the temperature does not affect the results
that are presented in this paper.

A. The phase diagram as a function of disorder

Here, we study the phase diagram of the model for a fixed
value of |U | = 2 as a function of the disorder strength V . In
particular, we first focus on the results depicted in Figs. 2 and
3. Specifically, Figs. 2(a), and 2(b) show the behavior of the
DOS corresponding to the up- and down-spin species, respec-
tively, as a function of the disorder strength at a fixed value
of |U | = 2. As can be clearly seen, with increasing disorder,
the gap vanishes for both up- and down-spin species. This
behavior for the DOS (at weaker interaction strengths) can
be modeled by means of a variation of the Abrikosov-Gorkov
(AG)-type formalism [43,46] for paramagnetic impurities in
disordered s-wave superconductors. However, in this adapta-
tion of the AG theory, one needs to account for two different
pair-breaking times (τ↑, and τ↓ for the up- and down-spin
species, respectively) reflective of the spin-selectivity of the
disorder potential. Furthermore, our implementation of the
disorder would imply that at the bare level, τ↑ is infinite,
which gets rendered to a large (with τ↑ 
 τ↓) but finite value
via renormalization effects due to a finite U (the disorder is
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FIG. 3. Ground-state phase diagram of superconductor in pres-
ence of spin-selective potential disorder at a filling of n = 0.85.
The different curves correspond to (i) single-particle energy gap at
the Fermi level (Eg), (ii) superconducting phase stiffness (ρs), and
(iii) average magnetic polarization (m), plotted as a function of
disorder strength; the dashed line corresponds to the fitting (see text).
The scales are normalized appropriately. The inset is a zoom-in near
the Vc1, which attests to the fact that the magnetic polarization picks
up when Eg goes to zero.

transferred to the up spin via interaction effects). Thus, within
this caveat of two different phenomenological pair-breaking
times, the DOS for both the up and down species conforms
exactly to the results of the AG theory [46].

Now, the results presented in Fig. 2 are used to map out,
with respect to disorder, the behavior of the single-particle
energy gap at the Fermi level (Eg) in Fig. 3. Apart from Eg,
Fig. 3 also depicts the variation with respect to disorder of
(i) the SC phase stiffness (ρs) and (ii) the average magnetic
polarization (m). Based on these indicators, we demarcate
the phase diagram into three different phases as (a) gapped
(uniform) SC (Eg �= 0, ρs �= 0, m = 0), (b) gapless SC (Eg =
0, ρs �= 0, m �= 0), and (c) inhomogeneous polarized Fermi
liquid (Eg = 0, ρs = 0, m �= 0). In other words, as a function
of increasing disorder strength, we find that the uniform SC
gives way to a gapless SC phase at Vc1 ∼ 0.75, where the Eg

collapses to zero. However, this phase still supports a nonzero
value for the global phase stiffness ρs �= 0. This implies that
quasi-long-range SC phase correlations continue to survive in
the gapless regime and vanish only when ρs drops to zero at
Vc2 ∼ 1.25, marking the loss of global SC order. Furthermore,
a fit of the magnetic polarization (shown in Fig. 3) to a power-
law form m ∼ (V − Vc1)β gives Vc1 ∼ 0.75 (in consonance
with the value one obtains from the closing of the SC gap)
and a β ∼ 1.5. The fact that the magnetic polarization picks
up as a power law as we enter the gapless phase suggests that
it can be used as an order parameter to describe the transition
into the gapless phase from the fully gapped superconductor.
However, one should note that this continuous transition is
a Lifshitz transition and no spontaneous symmetry is broken
across it. The spin-dependent asymmetry seen in Fig. 2 for the
spin-resolved DOS for V � Vc1 ∼ 0.75t is another indicator
of the system going into a magnetic polarized state. Finally,

with increasing disorder strength, the gapless phase gives way
to an inhomogeneous polarized Fermi liquid phase.

Now, to get a handle on the physical description of the
phases, we study its real-space characterization. More specif-
ically, in Fig. 4 for a single MC snapshot corresponding to a
particular disorder realization, we present real-space maps of
the (a) pairing field amplitude (| �i |), (b) pairing field phase
correlation [cos(θ0 − θi )], and (c) magnetic polarization (mi).
In the regime V < Vc1 as shown in Fig. 4, in real space the
state is characterized by a (quasi)-long-ranged, phase corre-
lated, uniform SC state and negligible magnetic polarization.
For Vc1 < V < Vc2, both the magnetic polarization and pairing
field are finite. However, the magnetic polarization in this
regime emerges as isolated spatial islands which grow in
size with increasing disorder strength. These regions of large
magnetic polarization are almost complementary to those of
suppressed superconductivity, demonstrating the physics of
competing orders where the suppression of one of the order
parameters promote the emergence of the other. The physical
picture of the phase that one obtains in the regime Vc1 < V <

Vc2 is that of SC regions where the gap has vanished but
still supports a finite phase stiffness, immersed in a matrix
of spin-polarized Fermi liquid. The phase stiffness on these
isolated SC regions are correlated with respect to each other.
Now, as the disorder is increased beyond V > Vc2, the phase
correlation between the islands is lost and we obtain the po-
larized Fermi liquid with a large magnetic polarization. In
other words, this phase is characterized by the survival of
short range pair correlations, in the form of phase uncorrelated
Josephson junctions. At still stronger disorders (not shown in
the figure), the energy states undergo localization [47].

The ground state obtained for the intermediate range of dis-
order Vc1 < V < Vc2 that hosts the two gapless Fermi surfaces
with a net magnetic polarization m and a nonvanishing SC
phase stiffness ρs is the one we identify with the BP or the
Liu-Wilczek-Sarma phase.

The origin of this phase can be understood as follows:
At the level of the Hamiltonian, the spin-selective disorder
potential can be recast as an anticorrelated combination com-
prising a chemical potential disorder and a random Zeeman
field. Thus, spin-dependent disorder maps the model into an
imbalanced fermion system with unequal number densities
and an asymmetric bandwidth, a disordered version of the
Hamiltonian studied in Ref. [48]. The resulting Pauli
paramagnetic pair breaking [49,50] arising out of the
random Zeeman field generates unpaired fermions which
get accommodated as low energy excitation in the gap-
less BP phase. These unpaired fermions give rise to a
nonzero average magnetic polarization in the BP regime,
which serves as an order parameter for the phase tran-
sition from the gapped SC to the gapless BP phase.
In light of the interpretation of the spin-selective disorder
into anticorrelated chemical potential disorder and ran-
dom Zeeman field, it would be tempting to identify the
BP elucidated above as a disordered FFLO phase [51].
However, such an identification would be incorrect, as the dis-
ordered FFLO state has a nonzero finite momentum pairing,
whereas the BP phase discussed here is fundamentally differ-
ent as the pairing is a zero-momentum pairing. The rewriting
of the disorder term in terms of the Zeeman field also allows
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FIG. 4. Spatial evolution of breached pair state with increasing disorder strength. Each column comprises the superconducting pairing
field amplitude (| �i |), phase correlation [cos(θ0 − θi )] between the phases at a reference site θ0, and any other site θi on the lattice, and
magnetic polarization (mi). Superconducting order and magnetic polarization are weakly complementary, such that the spatial suppression of
one promotes the emergence of the other. To highlight this feature, we have used the same color scheme both for the superconducting phase
coherence and the magnetic polarization. The circles highlight the representative regions where the maxima in the superconducting phase
coherence corresponds to the minima in the magnetic polarization and vice versa.

us to understand the dependence of both Vc1 and Vc2 on |U |:
An increasing |U | implies a concomitant increase in V for the
pair breaking to be effective, which in turn implies an increase
in the value of Vc1. In a similar vein, an increase in U in turn
also implies a further increase in value of Vc2.

B. The phase diagram as a function of the interaction strength

We next characterize the model by studying its behavior
as a function of the interaction strength at a fixed value of
disorder which we choose without loss of generality to be
V = 1.05. In particular, in Fig. 5(a), we plot the SC phase
stiffness (ρs) and average magnetic polarization (m), as
a function of the interaction | U | at a fixed value of the
disorder strength V = 1.05. Figure 5(a) should be read in
conjunction with Fig. 5(b), which shows the behavior of

FIG. 5. (a) Ground-state phase diagram at a fixed disorder
strength of V = 1.05, characterized based on the (i) average mag-
netic polarization (m) and (ii) superconducting phase stiffness
(ρs), as a function of interaction strength. (b) The spin-resolved
single-particle density of states [N↑(ω)] at V = 1.05 and different
interactions |U |, demonstrating the evolution from BP to gapped SC
phase.

the DOS N↑(ω) as a function of energy ω for the selected
value of disorder strength and a range of interactions. For the
prototypical case in the low interaction regime |U | = 1.75,
the system supports a finite DOS at the Fermi level consistent
with what one expects for a Fermi-liquid state. As we
tune up the strength of the interactions, beyond a critical
value Uc1 we enter the BP phase where both ρs and m are
finite [see Fig. 5(a)]. Concomitantly, as seen in Fig. 5(b),
the DOS N↑(ω) in this range exhibit signatures of preformed
SC pair. Progressive increase in interaction enhances the
phase coherence between local SC islands as suggested by
the increasingly prominent coherence peaks in the DOS.
Note that the asymmetry in the coherence peaks bear
out the signature of particle-hole anisotropy. Further
increase in interaction beyond a critical value Uc2

opens a hard gap at the Fermi level (corresponding
to an uniform superconductor) while simultane-
ously suppressing the magnetic polarization to zero.
The recasting of the spin-selective disorder into a random
chemical potential and a random Zeeman field (both
anticorrelated with respect to each other) also allows
us to understand the effect of disorder on the values
of Uc1 and Uc2: If the disorder strength increases, one
needs to go to a larger value of U to set up phase
coherence between the SC islands. This implies an
increase in Uc1. Furthermore, the spin-selective disorder
results in a Zeeman gap between the up and down spins
which gets enhanced with increasing V . To create a
uniform SC state, one has to overcome this Zeeman gap.
Thus, for larger values of V , this implies that the value of Uc2

also increases, (see Fig. 1). Thus, a larger disorder strength
requires a stronger interaction strength for the realization of a
uniform SC state.
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IV. DISCUSSION AND CONCLUSIONS

Through extensive numerical investigations based on the
SPA [15,37,44], we have managed to distill the ground-state
phase diagram of the attractive Hubbard model in the presence
of spin-selective disorder. In particular, we have shown that,
apart from the polarized Fermi liquid and the fully gapped
superconductor, a gapless BP phase constitutes a stable low-
temperature phase in this model.

As evidenced in the real-space maps Fig. 4, to accom-
modate such a gapless phase, the system breaks up into SC
islands where the local gap vanishes, immersed in a sea of
polarized fermionic liquid. These gapless superconducting
structures still host a fluctuating phase that are correlated
over the many superconducting islands such that it supports
a nonzero global phase stiffness. This thus alludes to the
possibility that the interplay of phase and disorder fluctuations
conspire to stabilize a BP-like ground state wherein a net
magnetic polarization coexists with gapless superconductiv-
ity. The behavior of the DOS at weaker interaction strength
can be explained via an adaptation of the AG theory [43,46].
However, a stronger interaction strength requires the devel-
opment of an effective field theory for the problem at hand,
something we leave as a future exercise.

At this juncture, we emphasize that unlike in earlier studies
on cold-atomic Fermi-superfluids wherein one had to in-
voke a momentum-dependent interaction [20–22] to stabilize
the so-called Sarma-Liu-Wilczek phase as the ground state,
here the BP-type ground state is obtained for a simple
Hubbard-like on-site attractive interaction. In fact, using a
similar SPA analysis, it was shown conclusively [15] that
the BP-type ground state cannot exist as the ground state
of a Hubbard model with momentum-independent attractive
interaction (on site) in the presence of a Zeeman-field. Fur-
thermore, the FFLO phase that exists at large values of the
Zeeman field in the translationally invariant [16] version of
the imbalanced Fermi superfluids could be highly susceptible
to the effect of disorder (discussed in detail in the next para-
graph).

This interplay between disorder and finite magnetic field
discussed above raises an interesting question on what are
the ground states of an attractive (disordered) Hubbard model
wherein the randomness couples directly (at a bare level)
to the Zeeman field. In such a scenario of purely random
Zeeman field, one expects physics that is very much akin to
that of paramagnetic impurities to play out. In other words,
the term corresponding to the disordered Zeeman field will
look structurally similar to that of paramagnetic impurities
in a host superconductor. This would then imply that as the
strength of disorder is increased, one expects a transition from
a fully gapped BCS-type superconductor to a gapless phase,
and finally to a normal state. Now, the question is whether one
can stabilize a BP phase by using a purely random Zeeman
field. Obviously, just like in this paper, at half filling one
cannot obtain a BP phase as the ground state. Away from half
filling with purely random Zeeman field, just like the case of
the translationally invariant attractive Hubbard model (with
point-contact interaction and finite uniform Zeeman field),
discussed in the preceding paragraph [15], we believe that the
energetics are such that the BP phase cannot be stabilized as

the ground state. In other words, in such a scenario with a
purely random Zeeman field, at zero temperature, just like in
the case of half filling, one expects a direct transition from a
gapless phase to a polarized Fermi liquid.

There are several interesting questions that still need to
be probed in the context of such a spin-selectively disor-
dered attractive Hubbard model: For instance, even though
the Aizenmann-Wehr theorem [52,53] guarantees that the
transition from the fully gapped phase to the gapless phase
is continuous, the universality class of such a transition re-
mains an open question. One suspects that such a transition
may lie in the disordered XY universality class. However, a
complete analytical theory attesting to the same is currently
lacking. Another important question that remains unanswered
in the present paper is the role played by thermal fluctua-
tions in modifying the ground-state phase diagram. We leave
the resolution of this relevant issue to a future publication
[54]. Another question that is worth pursuing is whether the
disorder-induced imbalanced Fermi systems studied here sup-
port a non-Fermi liquid phase analogous to the one studied in
Ref. [48]. Also, the question on the phase diagram of such a
spin-selectively disordered attractive Hubbard model in three
dimensions is a very relevant open problem to pursue.

Within the genre of problems discussed above, another
interesting problem, especially in the context of cold atoms,
would be to study the role of spin-selective disorder on finite-q
pairing states such as the FFLO state [7,8]. It is very much
plausible that a concomitant scenario to the one discussed in
Refs. [51,55,56] arises and, at zero temperature, a disordered
FFLO phase obtains even in the presence of spin-selective
randomness, intervening between a SC and normal phase.
This disordered FFLO phase survives up to a moderate dis-
order strength, beyond which one obtains a direct transition
from the superconductor to the insulator. However, an equally
likely scenario would be that the presence of a spin-dependent
randomness would melt the FFLO phase (especially in low
dimensions) for even infinitesimally small disorder strengths
via an Imry-Ma type mechanism [57,58]. Which of these
scenarios actually holds true is we believe an open question
worth investigating.

Finally, experiments probing the 2D electron gas at the
oxide interface (such as LaAlO3/SrTiO3 heterostructure) have
confirmed inhomogeneous spatial coexistence of SC and
ferromagnetic correlations [33,59]. Such spatial coexistence
gives rise to local magnetic polarization that can be thought
to arise due to local Zeeman fields. Now, it is plausible that
interplay of such local Zeeman fields with a random chemi-
cal potential (stemming from non-magnetic impurities) might
lead to spin-selective disorder potential that in turn stabilizes
the BP phase.
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APPENDIX

1. Static path approximation vis a vis other techniques

In this Appendix, we briefly elucidate the approximation
that is entailed in the SPA method and compare it with other
well-known methods that are currently in vogue.

To start, we express the partition function of the Hubbard
model in terms of a functional integral over Grassmann valued
fields ψiσ (τ ), ψ̄iσ (τ ) as

Z =
∫

DψDψ̄e−S[ψ,ψ̄],

S =
∫ β

0
dτ

[ ∑
i j,σ

{ψ̄iσ ((∂τ − μ)δi j − ti j )ψ jσ }

+ |U |
∑
i,σ,σ ′

ψ̄iσ ψiσ ψ̄iσ ′ψiσ ′

]
. (A1)

Since only quadratic path integrals can be exactly evalu-
ated, the presence of a quartic interaction term in the partition
function poses an immediate problem that it cannot be evalu-
ated exactly.

To make progress, following Refs. [16,37,44], we take re-
course to the HS transformation to decouple the quartic term.
In other words, we rewrite the partition function in terms of
the pairing field �i(τ ), �̄i(τ ) and charge field φi(τ ). Written
in terms of the HS fields, the partition function Eq. (A1) can
be recast as

Z =
∫

D�D�∗DφDψDψ̄e−S1[ψ,ψ̄,φ,�,�∗],

S1 =
∫ β

0
dτ

[ ∑
i j,σ

{ψ̄iσ ((∂τ − μ)δi j − ti j )ψ jσ }

−
∑

i

{
�i(τ )ψ̄i↑(τ )ψ̄i↓(τ ) + H.c. − | �i |2

| U |
}

+
∑

i

{iφi

∑
σ,σ ′

ψ̄iσ (τ )ψiσ ′ (τ )δσσ ′ + φ2
i

| U | }
]
. (A2)

The integral over the Grassmanian fields (ψ, ψ̄) are now
purely quadratic, however, we pay a cost in terms of the extra
integrations over the HS fields �i(τ ), �∗

i (τ ), and φi(τ ). Note
that at this point, Eq. (A3) is an exact rewriting of the Hubbard
model of Eq. (A1).

The quadratic integration over the Grassmanian fields can
be formally carried out, thus providing the weight factor for
the �i and φi configurations. Thus,

Z =
∫

DφD�D�∗e−S2[�,�∗,φ],

S2 = log Det[G−1{�,φ}] + | �i |2
| U | + φ2

i

| U | . (A3)

Here, in Eq. (A3), G is the electron Green’s function in a
{�i, φi} background.

Furthermore, it is obvious from Eq. (A3) that the weight
factor for an arbitrary space-time configuration {�i(τ ), φi(τ )}
involves computation of the fermionic determinant in that
background. Now, we invoke the SPA [15,44], which involves
dropping the imaginary time (τ ) dependence of the auxiliary
or HS fields. In other words, at this juncture we only retain
the �n = 0 Matsubara frequency mode. However, the model
retains within itself spatial fluctuations at all scales.

For further clarity, we now compare the SPA scheme we
utilize to other well-known techniques:

(1) The quantum MC retains the full i,�n dependence of
the HS fields � and φ computing log Det[G−1{�,φ}] itera-
tively for importance sampling. The approach is valid at all
T , but to obtain the real frequency spectra, one needs to do a
computationally difficult analytic continuation.

(2) MFT essentially implies that the HS fields �i(�n) and
φi(�n) are spatially uniform (or periodic) and time indepen-
dent (�n = 0) modes, i.e., �i(�n) → � and φi(�n) → φ.

(3) DMFT: The DMFT treatment has the full dynamics of
the problem, however, the HS fields � and φ are evaluated at
effectively a single site, i.e., �i(�n) → �(�n) and φi(�n) →
φ(�n). This is an exact treatment when dimensionality
D → ∞.

2. Details of the Monte Carlo method

Here, we briefly discuss some of the more salient points
related to the MC method that we employ to study the spin-
selectively disordered superconductor. We use the traveling
cluster approximation (TCA), (see Ref. [15] for more details).
Within this scheme, instead of diagonalizing the full N = L ×
L lattice Hamiltonian for each attempted update of the aux-
iliary fields {�i, φi}, a smaller cluster (of size Nc = Lc × Lc)
surrounding the update site is diagonalized. Thus, employing
this TCA, the cost of diagonalization of the matrix is brought
down from ∼O(N4), per lattice sweep to ∼NO(N3

c ). This
linear scaling in N that stems from using the TCA allows us to
access lattice sizes up to ∼40 × 40, whereas standard routines
based on the diagonalization of the full lattice Hamiltonian for
each attempted MC update would restrict us to system size to
∼12 × 12 (for a reasonable computation cost) even with the
SPA. In our calculations, we have used a cluster dimension
Lc = 6, (going to larger cluster sizes does not change our
results).

In what follows, we briefly discuss the details of our MC
calculations. Our calculations are carried out over 4000 MC
sweeps. Out of these, we equilibrate over the first 2000
sweeps. Out of the remaining 2000 sweeps, 200 configura-
tions are saved over which the correlation functions were
computed. Increasing the number of MC sweeps any further
does not alter the results presented in this paper. In a similar
vein, we have verified that increasing the number of disorder
realization (up to 20) does not affect our results.

3. Bogoliubov–de Gennes formalism

In this section, we compare the results obtained from
a self-consistent (inhomogeneous) BdG MFT applied to
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the s-wave superconductor with spin-selective potential
disorder [42,43] to those obtained from the SPA analysis
obtained in the main part of this paper. Within the
BdG scheme, the s-wave singlet pairing is defined as
�i = U 〈ci↓ci↑〉 while the charge order parameter is defined as
φi = U

2 (ni↑ + ni↓) = U
2 (〈c†

i↑ci↑〉 + 〈c†
i↓ci↓〉), where U is the

on-site interaction. We diagonalize the effective Hamiltonian
by using the Bogoliubov-Valatin transformations, ci,σ =∑

m(um,iσ γm,σ − sσv∗
m,iσ γ

†
m−σ ), where γ †

mσ (γmσ ) correspond
to the creation (annihilation) operators of the Bogoliubov
quasiparticles with spin σ and energy εσ

m and wave functions
umiσ and vmiσ . We have introduced spin index s↑ = 1
and s↓ = −1. The resulting gap and number equations are

�i =U
∑

m

{v∗
mi↓umi↑ f (εm↑) + u∗

mi↓vmi↑ f (εm↓)},

ni =
∑

m

{| umi↑ |2 f (εm↑)+ | vmi↑ |2 f (εm↓)}

+
∑

m

{| umi↓ |2 [1 − f (εm↑)]+ | vmi↓ |2 [1 − f (εm↓)]},
(A4)

where f (εm) is the Fermi function. For each disorder realiza-
tion starting from an initial guess value, these equations are
iteratively solved till self consistent values are obtained for �i

and φi. The thermodynamic indicators such as the magnetic
polarization m and the pairing field structure factor S(q) =
(1/N )

∑
i j �

∗
i � jeiq.(ri−r j ) are obtained after averaging over

the disorder realizations (we average over 20 different dis-
order realizations to compute our thermodynamic quantities).
The resulting ground state (as obtained from the converged
solutions) is finally characterized based on these disorder av-
eraged thermodynamic indicators m and S(q).

Figure 6 shows the magnetic polarization and structure
factor obtained using the BdG formalism, in comparison to
those obtained via the SPA technique. From Fig. 6, we see that

FIG. 6. Disorder dependence of superconducting pairing field
structure factor [S(q)] and average polarization 〈mi〉 as obtained
using BdG mean field (dashed curves) and SPA (solid curves) ap-
proaches. The blue dashed line indicates the phase transition (of the
Lifshitz type) between the uniform superconductor and breached-
pair phase, as determined using SPA, while the orange dashed line
corresponds to the same as determined using BdG. The calculations
are carried out at n ∼ 0.85, | U |=2, T = 0.01, and for a system size
of L = 32.

there are some salient differences between the results garnered
by using the SPA formalism as opposed to those obtained by
using the BdG method: From Fig. 6, it is obvious that the
value of Vc2 [where m �= 0 and S(q) = 0] as calculated from
SPA is at Vc2 = 1.25, whereas the S(q) evaluated by using the
BdG method is still finite and vanishes for much larger V .
Furthermore, as is clear from Fig. 6, the disorder dependence
of the pairing field correlation [S(q)] as obtained by the two
approaches behave differently. These discrepancies stem from
the fact that unlike the BdG treatment, SPA incorporates phase
fluctuations that lead to rapid suppression of the pairing field
correlations as suggested by the exponential decay of S(q) at
large V .
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