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Quantum refrigerator driven by nonclassical light
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We study a three-level quantum refrigerator which is driven by a generic light state, even a nonclassical one.
With the help of P function expansion of the driving light, we obtain the heat current generated by different
types of light states. It turns out all different input light states give the same coefficient of performance for this
refrigerator, while the cooling power depends not only on the light intensity but also the specific photon statistics
of the driving light. Comparing the coherent light with the same intensity, the driving light with super(sub)-
Poissonian photon statistics could raise a smaller (stronger) cooling power. We find that this is because the
bunching photons would first excite the system but then successively induce the stimulated emission, which
draws the refrigerator back to the starting state of the cooling process and thus decreases the cooling current
generation. This mechanism provides a more delicate control method via the high order coherence of the input
light.
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I. INTRODUCTION

When a quantum heat engine runs between two reser-
voirs containing specific quantum coherences, the efficiency
of the heat engine could exceed the Carnot limit between
two canonical thermal baths [1–4]. But such exotic effects are
restricted for practical applications since quantum coherences
are usually quite fragile confronting the surrounding noises. In
contrast, applying a quantum light to control or drive a quan-
tum refrigerator is feasible under current techniques [5–8],
promising intriguing properties. Some recent studies show
that comparing the normal laser light with the same intensity
using nonclassical squeezed light could help enhance the two-
photon absorption rate [9] and exceed the cooling limit in laser
cooling experiments [10,11].

Therefore, here we study a quantum refrigerator which is
driven by different types of light states, especially the nonclas-
sical lights. We focus on a typical quantum thermal machine
composed of a three-level system in contact with two heat
baths [12]. Applying a proper temperature difference to the
two baths, a population inversion is generated between two
levels, and the system could work as a heat engine, emitting
laser light as its output work [13–16]. Reversely, when a
driving light is input to the three-level system, it works as a
refrigerator [Fig. 1(a)], moving the heat from the cold bath
to the hot one [17]. It is also worth noting that the transition
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structure of this three-level refrigerator is analogous to many
other physical systems [18–20], such as the laser cooling
system [21–23] and photovoltaic systems [24,25].

When the driving light shining on the refrigerator is a
generic quantum state, it is no longer enough to treat the
driving light simply as a planar wave, which is a quasi-
classical description in literature. To study the interaction
with a nonclassical driving light, notice that, with the help
of the P function representation, a generic light state can
be regarded as the combination of many coherent states |α〉
with P(α, α∗) as the “quasiprobability,” while the coherent
states |α〉 are the quantum correspondences for the classical
planar waves [26–30]. Therefore, the full system dynamics
can be obtained as the P function average of many evolution
“branches,” and each evolution branch can be obtained from
the above quasiclassical approach, treating the driving light as
a planar wave [31–34].

Based on this approach, we obtain the cooling power of this
quantum refrigerator for different input light states. It turns
out the coefficient of performance (COP) always remains as
e = ωc/(ωh − ωc) � Tc/(Th − Tc), whose upper bound is just
the Carnot limit for refrigerators. But the cooling powers
generated by different driving lights depend on the specific
photon statistics. Comparing the coherent light with the same
intensity, the driving light with super(sub)-Poissonian photon
statistics would raise a smaller (stronger) cooling power.

We find that this is because bunching photons would block
the cooling current generation due to the stimulated emission
they bring in. When a pair of bunching photons come together,
the first photon would excite the refrigerator system up, but
the second photon successively followed would induce the
stimulated emission, drawing the system back to the previous
state, and that blocks the generation of the cooling current
flowing to the hot bath. Therefore, comparing the coherent
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FIG. 1. Demonstrations for the the quantum refrigerator. (a) The
transition |e1〉 ↔ |e2〉 is driven by an idealistic single mode light,
which may carry nonclassical photon statistics. (b) The the whole
EM field is in the canonical thermal state with temperature TE. (c) An
analog between this three-level quantum refrigerator and the energy
level structure in the sideband cooling systems, where the oscillation
motion (of an ion or mechanical oscillator) is cooled down with the
help of a two-level system (|e〉, |g〉) coupled with it, and |n〉 indicates
the phonon states.

light where the photons come randomly both in bunches and
individually, the bunching (antibunching) light could generate
a smaller (stronger) cooling power under the same light inten-
sity. Clearly the similar mechanism could also take effect in
many other systems undergoing light driving.

As a comparison we also consider the situation where the
whole multimode light field is in the thermal equilibrium state
with a temperature TE [35–38]. It turns out the thermal photon
number must be larger than a certain threshold so as to make
sure the system works as a refrigerator. Again that indicates
the working status of the system is determined not only by the
light intensity but also the specific quantum state of the light
field.

The paper is arranged as follows. In Sec. II we show the
basic properties of the three-level system quantum refrigerator
under a coherent driving light. In Sec. III we discuss the
situation that the driving light carries generic photon statistics.
In Sec. IV we show that the driving light with antibunching
statistics could enhance the cooling power. In Sec. V we
consider the situation that the whole multimode EM field is in
a thermal equilibrium state. The summary is drawn in Sec. VI,
and some detailed derivations are placed in the Appendixes.

II. THE THREE-LEVEL QUANTUM REFRIGERATOR

The basic setup of the three-level quantum refrigerator
is shown in Fig. 1(a), which is described by the Hamilto-
nian Ĥs = E1|e1〉〈e1| + E2|e2〉〈e2| (the ground state energy
is set as 0). The transition pathways |e1〉 ↔ |g〉 and |e2〉 ↔
|g〉 are coupled with two independent bosonic heat baths
(ĤB,i = ∑

k ωi,k b̂†
i,kb̂i,k , for i = h, c), and their interaction

Hamiltonians are ĤSB,i = τ̂+
i

∑
k gi,kb̂i,k + H.c., with τ̂+

h(c) :=

|e2(1)〉〈g| = [τ̂−
h(c)]

† as the transition operator. We consider the
two heat baths stay in the thermal equilibrium states with the
temperatures Th > Tc. It is worth noting that indeed the basic
transition structure of the sideband cooling system is quite
similar as this three-level model [Fig. 1(c)].

Here we show that, when using a light beam to drive the
transition |e1〉 ↔ |e2〉, such a three-level system could work
as a quantum refrigerator, namely, the net energy flux would
flow from the cold bath to the hot one [17,38].

Generally, the driving light is modeled as a classical planar
wave with a single frequency mode, and its interaction with
the three-level system is described by [26–29]

V̂ (t ) = −d̂ · �Ed sin(ωdt − φd ). (1)

where ωd is the driving frequency, d̂ := �℘σ̂− + H.c. is the
dipole operator of the three-level system, with �℘ := 〈e1|d̂|e2〉
as the transition dipole moment, and σ̂− := |e1〉〈e2| :=
(σ̂+)†.

Under the Born-Markovian-rotating-wave approxima-
tion [39], the dynamics of the system can be described by the
following master equation1:

∂t ρ̃ = i

h̄
[ρ̃, Ṽ (t )] + LE[ρ̃] + Lc[ρ̃] + Lh[ρ̃],

Ṽ = iE σ̂+ei
t − iE∗σ̂−e−i
t , (2)

where 
 := � − ωd is the detuning between the driving
light and the transition frequency h̄� := E2 − E1, E := eiφd (�℘·
�Ed )/2 is the driving strength, and the dissipations terms are

LE[ρ̃] = κ
(
σ̂−ρ̃σ̂+ − 1

2 {ρ̃, σ̂+σ̂−}+
)
,

Li[ρ̃] = γin̄i
(
τ̂+

i ρ̃τ̂−
i − 1

2 {ρ̃, τ̂−
i τ̂+

i }+
)

+ γi(n̄i + 1)
(
τ̂−

i ρ̃τ̂+
i − 1

2 {ρ̃, τ̂+
i τ̂−

i }+
)
, (3)

for i = h, c. Here Lh(c)[ρ̃] gives the energy exchange with the
hot (cold) bath, with n̄i := [exp(h̄ωi/kBTi ) − 1]−1 from the
Planck function (with h̄ωh(c) ≡ E1(2)), and LE[ρ̃s] gives the
spontaneous emission to the EM field.

From the master equation (2), the changing rate of the
system energy gives [40]

∂t 〈ĤS〉 = tr
{ i

h̄
[ρ̃, Ṽ (t )]ĤS + LE[ρ̃]ĤS

}
+ tr{Lc[ρ̃]ĤS}

+ tr{Lh[ρ̃]ĤS} := QE + Qc + Qh, (4)

where QE, Qc, Qh are the energy flux flowing to the system
from the EM field, cold, and hot baths, respectively. In the
steady state ∂t 〈ĤS〉 = 0, the above energy flows can be ob-
tained by solving master equation (2) (Appendix B). Here we
consider the situation that the spontaneous emission rate κ

is negligible comparing the coupling strengths with the two
heat bath (γh,c � κ → 0), and that gives the heat flows as

1Hereafter, õ indicates the operator in the interaction picture of ĤS.
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(let γh = γc ≡ γ )

Qh = −h̄ωhJ, Qc = h̄ωcJ, QE = h̄� J,

J = |�℘· �Ed|2 (n̄c − n̄h)

�1N + 4
2/�1 + |�℘· �Ed|2 �2/γ 2

≡ A | �Ed|2
B + C | �Ed|2

, (5)

where J is the population flux, A ≡ ℘2
d(n̄c − n̄h), B ≡

�1N + 4
2/�1, C ≡ ℘2
d�2/γ

2 are the abbreviated coeffi-
cients (denoting ℘d := |�℘· êd|, with êd as the unit direction of
�Ed), and

�1 = γ (2 + n̄c + n̄h ), �2 = γ (2 + 3n̄c + 3n̄h ),

N = 1 + 2n̄h + 2n̄c + 3n̄cn̄h. (6)

Notice that, as long as n̄c − n̄h � 0 with E 
= 0, we have
Qc � 0 and Qh � 0, which means the heat is flowing across
the system from the cold bath to the hot one. Namely, the
incoming light is driving the system to work as a refriger-
ator, and the above inequality gives the cooling condition
as ωc/Tc � ωh/Th. When the driving strength is weak, the
cooling power is proportional to the light intensity J �
(A /B) | �Ed|2.

As a result, the coefficient of performance (COP) for this
three-level refrigerator gives

e ≡ |Qc|
|Qh| − |Qc| = ωc

ωh − ωc
� Tc

Th − Tc
. (7)

Therefore, this COP is just bounded by the Carnot limit for re-
frigerators. The equality holds when the energy flows [Eq. (5)]
approach zero, which indicates the quasistatic and reversible
process, leading to the zero power. When the spontaneous
emission rate κ is a small but finite value, the upper bound
of the COP would be smaller than the Carnot limit.

III. THE DRIVING LIGHT WITH GENERIC
PHOTON STATISTICS

Now we consider a more general situation where the input
light driving the refrigerator could carry different kinds of
photon statistics, but still has a quite small linewidth and can
be regarded as a monochromatic light.

In this situation it is no longer enough to treat the driving
light only as a classical planar wave which cannot reflect the
photon statistics of the input light. Here we consider the EM
field is fully quantized, which is described by the multimode
Hamiltonian ĤE = ∑

h̄ωkâ†
kς âkς . The driving mode stays in

a specific quantum state, while all the other field modes are in
the vacuum state. Generally the quantum state of the driving
mode always can be represented as the following P function:

�̂d =
∫

d2α P(α, α∗) |α〉〈α|. (8)

Formally this density state �̂d of the driving mode can be
regarded as the combination of many coherent states |α〉, with
P(α, α∗) as the quasiprobability. For the quantized EM field, a
single mode coherent state |α〉 corresponds to a classical pla-
nar wave, since the electric field operator Ê(x, t ) ≡ Ê− + Ê+

gives

Ê+(x, t ) = (Ê−)† ≡ i
∑
kς

êkς

√
h̄ωk

2ε0V
âkςeik·x−iωkt

〈α|Ê(x, t )|α〉 = �Eα sin(ωdt − kd · x − φα ), (9)

where Ê± are the field operators with positive and negative
frequencies, and �Eα := êd |α|√2h̄ωd/ε0V .

In this sense, the generic state �̂d of the driving light could
be regarded as a “probabilistic” combination of many classical
planar waves. Therefore, the system dynamics also could be
obtained as the combination of many evolution branches, and
in each branch the system is driven by the planar wave given
by Eq. (9) that is (a rigorous proof is shown in Appendix A)

ρ̃(t ) =
∫

d2α P(α, α∗) ρ̃ (α)(t ),

∂t ρ̃
(α) = i

h̄
[ρ̃ (α), Ṽα (t )] + L[ρ̃ (α)], (10)

where the master equation for ρ̃ (α)(t ) has the same form as the
above Eq. (2) for the quasiclassical driving [31–34]. Here the
driving light in Ṽα should be replaced by the planar wave in
Eq. (9) determined by the coherent state |α〉, and the driving
strength in Eq. (2) now should be modified as Eα := eiφα (�℘·
�Eα )/2, respectively. Correspondingly, the expectations of the
system observables are obtained as

〈ôS(t )〉 ≡ tr[ôS · ρ̂(t )] =
∫

d2α P(α, α∗) 〈ô(α)
S (t )〉, (11)

where 〈ô(α)
S (t )〉 := tr[ôS · ρ̂ (α)(t )].

Namely, the full system evolution 〈ôS(t )〉 could be regarded
as the probabilistic summation of many evolution branches
〈ô(α)

S (t )〉, with P(α, α∗) as their probabilities, and each branch
〈ô(α)

S (t )〉 can be obtained from the above master equation with
the quasiclassical driving.

Based on this method, now we study the heat flows of
the above quantum refrigerator when the driving light carries
generic photon statistics. Similar to the energy-flow conser-
vation relation (4), the three heat flows are given as Qh =
−h̄ωh J , Qc = h̄ωc J , and QE = h̄� J , where J is the popu-
lation flux obtained from the P function average (11), namely,

J =
∫

d2α P(α, α∗) Jα, Jα ≡ A | �Eα|2
B + C | �Eα|2 . (12)

Here Jα is the same as the above Eq. (5), which indicates the
steady state flux when the driving light is a classical planar
wave corresponding to the coherent state as Eq. (9).

As a result, in spite of the driving light state, the COP for
this refrigerator is still e = ωc/(ωh − ωc) as long as J � 0,
which would lead to the same cooling condition as Eq. (7).

IV. ENHANCING THE COOLING POWER BY
ANTIBUNCHING PHOTONS

As long as the driving light state P(α, α∗) is known, the
heat flows of the refrigerator can be obtained from the above
Eq. (12). Here we consider some typical examples of different
driving light.
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FIG. 2. (a) The optical coherence g(k) for the photon dis-
tributions (15). (b) Demonstration for the Poissonian, sub- and
super-Poissonian statistics (15) with the same mean photon number
〈n〉 = 10. (c) The cooling power under a different driving light ob-
tained by Eq. (12). Here we set ξ0/γ = 1.1 and n̄c = 0.5, n̄h = 1.
(d) Demonstration for the heat current blockage by a pair of bunching
photons. When two photons come together, the first photon would
excite the system up, but the second photon successively followed
would induce the stimulated emission, which draws down the energy
back before it flows to the hot bath, and that decreases the cooling
power.

We first consider the driving light is carrying the ther-
mal statistics, whose P function is given by Pth(α) =
(π n̄th )−1exp[−|α|2/n̄th], with n̄th as the mean photon number.
Such a distribution is also consistent with the classical picture
for the chaotic light, which is regarded as the probabilistic
combination of planar waves, whose intensities satisfy the
negative exponential distribution [41,42]. In this case, from
Eq. (12), the population flow in the steady state gives

J th =
∫

d2α
e−|α|2/n̄th

π n̄th

ξ 2
0 |α|2(n̄c − n̄h)

B + ξ 2
0 |α|2�2/γ 2

. (13)

Here ξ0 := ℘d
√

2h̄ωd/ε0V is the single photon coupling
strength, where V takes the coherence volume of the driving
light [41]. And the intensity of the driving light (the Poynting
vector) is IE ≡ 2cε0〈Ê−Ê+〉 = (c/V ) n̄th h̄ωd.

It turns out the monochromatic “thermal” light is also driv-
ing the system to work as a refrigerator rather than warming
it up. But comparing the coherent driving [Eq. (5)] under the
same light intensity, the driving light with thermal statistics
generates a smaller cooling power [see Fig. 2(c)], while the
COP keeps the same as Eq. (7).

A more attracting situation is when the driving light has
nonclassical photon statistics, e.g., the antibunching light. For
nonclassical light states, their P functions may contain neg-
ative parts, or could be highly singular functions, and thus
cannot be regarded as legal probability distributions [26–30].
In these cases, besides adopting the specific P function di-
rectly, the above average (12) also can be calculated in the
following way: since the P function average is equal to the
normal order expectation by making the replacement α, α∗ →

â, â†, | �Eα|2 → Ê−Ê+ [43,44], the above population flow be-
comes [29,34,45]

J =
〈
:

A Ê−Ê+
B + C Ê−Ê+

:

〉

=
〈
:

A

C
− A

C

∫ ∞

0
ds e−s(1+ C

B Ê−Ê+ ) :

〉
. (14)

Here 〈: Ĵ (â†, â) :〉 denotes the normal order expectation.
Thus, once the generation function F (s̃) ≡ 〈: exp(−s̃â†â) :〉
is obtained for the driving light statistics, the heat flows of the
refrigerator can be calculated from the above integral.

Here we consider two examples of the photon statistics for
the driving light, i.e.,

P(−)
n = 1

Z−

λn

(2n)!
, P(+)

n = 1

Z+

λn

(n + 2)!
, (15)

with Z±(λ) as the normalization factors (see Appendix C). By
checking the mean photon number 〈n〉 and variance 〈δn2〉,
we can verify P(+)

n and P(−)
n are super- and sub-Poissonian

distributions, respectively [see Figs. 2(a) and 2(b)].
The cooling currents generated by these two types of

photon statistics are shown in Fig. 2(c). Comparing the co-
herent light with the same intensity, the driving light with
super(sub)-Poissonian photon statistics produces a smaller
(stronger) cooling power; with the increase of the driving
light intensity, the cooling powers generated by the super- and
sub-Poissonian lights both converge to the one generated by
the coherent light. In contrast, the cooling power generated
by the thermal light always keeps a finite difference lower than
the coherent light situation.

This result can be explained with the help of the following
expansion for the above normal order expectation (14),

J = A
∞∑

k=1

(−C )k−1

Bk
〈Ê k

−Ê k
+〉

= A

2cε0B
IE − A C

(2cε0B)2
I2
E g(2) + · · · . (16)

Here g(k) ≡ 〈Ê k
−Ê k

+〉/〈Ê−Ê+〉k is the k-order coherence func-
tion of the driving light (zero time), and IE ≡ 2cε0〈Ê−Ê+〉 is
the light intensity.

It turns out, when the light intensity is not too strong, the
heat flow induced by the driving light is proportional to the
light intensity IE in spite of the photon statistics [see the first
term of Eq. (16)]. With the increase of the light intensity IE ,
the high order coherence g(k) (k � 2) of the driving light also
effects the heat flow. From the minus sign of the second term
in Eq. (16), comparing the situation of coherent driving g(2) =
1, the driving lights with the sub-Poisson (g(2) < 1) and super-
Poisson (g(2) > 1) statistics would generate larger and smaller
flows, respectively.

Moreover, it is worth noting that for the two types of pho-
ton statistics (15), they both give g(2)

sub/super → 1 when the light
intensities grow large. Therefore, the cooling powers they
generate converge to the coherent light situation. In contrast,
the thermal light always gives g(2)

th = 2 in spite of the light
intensity, thus the cooling power generated by the thermal
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light always keeps a finite difference lower than the coherent
light situation.

This effect can be understood by the demonstration in
Fig. 2(d). Generally one incoming photon would excite the
system up |e1〉 → |e2〉, and then generate an energy flow to
the hot bath. But if a pair of bunching photons come together,
after the system is excited to |e2〉 by the first photon, the sec-
ond photon successively followed could immediately induce
the simulated emission and draw back the system to |e1〉,
which prevents the energy flowing to the hot bath. Such a
blockage effect depends on the competition between the re-
leasing rate to the hot bath (∼γh) and the stimulated emission
rate due to the incoming photons (∼ξ0).

For a driving light with the Poissonian statistics, the pho-
tons come to the system randomly, either in bunches or
individually, while the bunching photon pairs would decrease
the cooling current flowing from the cold bath to the hot
one. Therefore, comparing the coherent light with the Pois-
sonian statistics, the bunching (antibunching) light, which has
the super(sub)-Poissonian statistics, would contribute more
(less) blocking effect due to the stimulated emission, and
thus produces a smaller (stronger) cooling power. It should
be emphasized that here we focus on the situation that the
linewidth of the driving light is negligible compared with the
decay rates γh,c, thus the corrections from the finite bandwidth
of the driving light are omitted. If the finite linewidth is taken
into consideration, a more rigorous treatment is needed, e.g.,
by adopting proper stochastic equations [31–33,46].

V. THE WHOLE LIGHT FIELD AS A THERMAL BATH

As a comparison, here we consider another situation where
the multimode EM field as a whole is a heat bath [35–38],
staying in the thermal equilibrium state ρE ∝ exp[−ĤE/kBTE]
(TE is the temperature), and there is no other driving light beam
[see Fig. 1(b)].

In this case, the incoherent thermal lights are injected into
the system from all different directions with different frequen-
cies. The system dynamics is now described by the following
master equation [39]:

∂t ρ̃ = L′
E[ρ̃] + Lc[ρ̃] + Lh[ρ̃],

L′
E[ρ̃] = κn̄E

(
σ̂+ρ̃σ̂− − 1

2 {ρ̃, σ̂−σ̂+}+
)

+ κ (n̄E + 1)
(
σ̂−ρ̃σ̂+ − 1

2 {ρ̃, σ̂+σ̂−}+
)
, (17)

where n̄E := [exp(h̄�/kBTE) − 1]−1 is the mean thermal pho-
ton number, and Lh,c[ρ̃] are the same as Eq. (3) indicating the
dissipation due to the coupling with the hot and cold baths.

Similarly as Eq. (5), the energy flowing from the system
to the hot, cold, EM baths are given by the above master
equation, i.e., ∂t 〈ĤS〉 = Q′

E + Q′
c + Q′

h. In the steady state
they give

Q′
h = −h̄ωhJ ′, Q′

c = h̄ωcJ ′, Q′
E = h̄� J ′,

J ′ = κ[n̄E(n̄c − n̄h) − n̄h(n̄c + 1)]

N + κ
γ
M ,

M = n̄E(3n̄h + 3n̄c + 2) + n̄h + 2n̄c + 1, (18)

and N is the same as Eq. (6).

To make the system work as a refrigerator, namely, the heat
flows from the cold bath to the hot one, the above heat flows
require J ′ > 0, and that gives

n̄c − n̄h � n̄h(n̄c + 1)

n̄E

⇔ ωc

Tc
+ �

TE

� ωh

Th
(19)

by substituting the Planck functions. When this condition is
not satisfied, the heat flows from the hot bath to the cold
one, and the system is not working as a refrigerator. Since
ωh − ωc ≡ �, this cooling condition requires that the three
temperatures must satisfy Tc < Th � TE.

Clearly the cooling condition here is different from the
situation where the refrigerator is driven by a monochromatic
light beam, which only requires n̄c − n̄h � 0 and nonzero
intensity for the driving light [Eq. (5)]. Unlike the above
monochromatic driving case, here the incoherent thermal
lights are coming to the system from all different directions
with different frequencies. It turns out the cooling condition
here requires that the mean thermal photon number n̄E(�, TE)
in the EM bath must be larger than a certain threshold n̄E �
n̄h(n̄c + 1)/(n̄c − n̄h). And the COP of this refrigerator is

e = |Q′
c|

|Q′
h| − |Q′

c|
= ωc

ωh − ωc
� Tc − ThTc/TE

Th − Tc
, (20)

whose upper bound is smaller than the above monochromatic
driving case [Eq. (7)]. Such an upper bound also has been ob-
tained in some previous studies about the quantum absorption
refrigerators working between three thermal baths [35–37].
Clearly the working status of the refrigerator is significantly
dependent on the the specific quantum state of the EM field,
not only on the incoming light intensity.

VI. DISCUSSION

In the paper we study a three-level quantum refrigerator
which is driven by a generic light state, even a nonclassical
one. Since the driving light input to the refrigerator could be
a generic quantum state, it is no longer enough to treat the
driving light simply as a planar wave, which is a quasiclassi-
cal description in literature. With the help of the P function
representation, a generic driving state can be regarded as the
combination of many coherent states |α〉 with P(α, α∗) as the
quasiprobability, while the coherent input states could well
return the quasiclassical driving description. Therefore, the
full system dynamics can be obtained as the P function av-
erage of many evolution branches, and each evolution branch
is obtained from the quasiclassical approach by treating the
driving light as a planar wave.

Based on this approach, it turns out all different input light
states give the same COP for this refrigerator, while the cool-
ing power depends not only on the light intensity but also the
specific photon statistics of the driving light. Comparing the
coherent light with the same intensity, the driving light with
super(sub)-Poissonian photon statistics could raise a smaller
(stronger) cooling power. We find that this is because the
bunching photons could block the cooling current generation
due to the the spontaneous emission they enhanced. This
mechanism could provide a more delicate control method via
the high order coherence of the input light.

043158-5



HUI-JING CAO, FU LI, AND SHENG-WEN LI PHYSICAL REVIEW RESEARCH 4, 043158 (2022)

As a comparison we also consider the situation where the
multimode EM field as a whole is in the thermal equilibrium
state, and the incoherent thermal lights with different frequen-
cies are injected into the system from all different directions.
It turns out the thermal photon number in the EM bath must
be larger than a certain threshold so as to make the system
work as a refrigerator. Therefore, the working status of the
refrigerator is significantly dependent on the photon statistics
and frequency distribution of the EM field, not only on the
incoming light intensity.
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APPENDIX A: THE SYSTEM DYNAMICS UNDER
GENERIC DRIVING LIGHT

When the photon statistics of the driving light is taken into
consideration, it is no longer enough to treat the driving light
only as a classical planar wave, and the light state should be
described by the fully quantized EM field. In this situation the
classical planar wave corresponds to a coherent state in the
driving mode. Considering the whole EM field is in a multi-
mode coherent state ρ̂

{α}
B := |{α}〉〈{α}| = ⊗kς |αkς 〉〈αkς |, the

expectation of the electric field operator [Eq. (9)] gives

〈Ê(x, t )〉 =
∑
kς

êkς

√
h̄ωk

2ε0V

(
i αkςeik·x−iωkt + H.c.

)

:= �Eα(x, t ), (A1)

which just corresponds to a classical wave package composed
of many field modes, with the amplitude and phase of each
mode (kς ) determined by αkς . For an idealistic monochro-
matic driving light, only the driving mode is in the coherent
state |α〉 while all the other field modes are in the vacuum
states, then the electric field gives �Eα(x, t ) → �Ed sin(kd · x −
ωdt − φα ), with the amplitude �Ed ≡ êd |α|√2h̄ωd/ε0V and
φα = arg α.

To study the interaction with such an EM field in a mul-
timode coherent state, we start from the general interaction
between a two-level system and the fully quantized EM field,
which is (interaction picture)

H̃SB = −d̃(t ) · Ê(x0, t )

= −d̃(t )
∑
kς

êkς

√
h̄ωk

2ε0V

× (
i âkς eik·x0−iωkt + H.c.

)
, (A2)

with x0 as the position of the two-level system (hereafter
we set x0 = 0). The field operators can be divided as the
summation of their mean values and quantum fluctuations,
i.e., âkς ≡ 〈âkς 〉 + δâkς = αkς + δâk and Ê ≡ �Eα + δÊ, then
the above interaction also can be divided into two parts H̃SB =

Ṽα(t ) + H̃ (0)
SB , where

Ṽα(t ) = −d̃(t ) · �Eα(x0, t ),

H̃ (0)
SB = −d̃(t )

∑
kς

êkς

√
h̄ωk

2ε0V

(
i δâkς e−iωkt + H.c.

)
. (A3)

Notice that Ṽα(t ) just indicates the interaction between the
electric dipole and a planar wave �Eα(x0, t ).

Furthermore, the dynamics of the system can be obtained
by taking the integral iteration of the von Neumann equa-
tion (interaction picture), that is,

∂t ρ̃SB(t ) = i

h̄
[ρ̃SB(t ), Ṽα(t )] + i

h̄

[
ρ̃SB(t ), H̃ (0)

SB (t )
]

= i

h̄
[ρ̃SB(t ), Ṽα(t )] + i

h̄

[
ρ̃SB(0), H̃ (0)

SB (t )
]

− 1

h̄2

∫ t

0
ds

[[
ρ̃SB(s), Ṽα(s) + H̃ (0)

SB (s)
]
, H̃ (0)

SB (t )
]
.

(A4)

Here H̃ (0)
SB only contains the contribution of pure quantum

fluctuation δâkς , which gives the same result as the situa-
tion dealing with the spontaneous emission in the vacuum
field. Thus, applying the Born-Markov RWA, the master equa-
tion for the system dynamics is obtained as [34,39]

∂t ρ̃
{α}
S = i

h̄

[
ρ̃

{α}
S , Ṽα(t )

] + κ
(
σ̂−ρ̃

{α}
S σ̂+

− 1
2 σ̂+σ̂−ρ̃

{α}
S − 1

2 ρ̃
{α}
S σ̂+σ̂−)

. (A5)

The superscript {α} indicating the initial state of the EM field
is the specific multimode coherent state ρ̂

{α}
B . This is just the

master equation dealing with quasiclassical driving widely
adopted in literature.

The above derivations also indicate that if the initial state
of the EM field is not a coherent state but a general one, the
above master equation (A5) for quasiclassical driving is not
sufficient enough to enclose the photon statistics of the driving
light. In this situation, generally, the field state always can be
represented as the following multimode P function:

ρ̂B(0) =
∫

d{α,α∗} P({α,α∗}) |{α}〉〈{α}|

=
∫

d{α,α∗} P({α,α∗}) ρ̂
{α}
B . (A6)

Formally, the density state ρ̂B(0) could be regarded as the
combination of different coherent states ρ̂

{α}
B with P({α,α∗})

as the quasiprobability, and each ρ̂
{α}
B corresponds to a classi-

cal wave package �Eα(x, t ). Then the system dynamics ρ̂S(t ) =
tr[ρ̂SB(t )] can be written as

ρ̂S(t ) = trB

[
U ρ̂S(0) ⊗ ρ̂B(0)U†

]
=

∫
d{α,α∗} P

({α,α∗}) trB

[
U ρ̂S(0) ⊗ ρ̂

{α}
B U†

]
=

∫
d{α,α∗} P

({α,α∗}) ρ̂
{α}
S (t ). (A7)

Here ρ̂
{α}
S (t ) ≡ trB[U ρ̂S(0) ⊗ ρ̂

{α}
B U†] indicates the system

evolution when the initial state of the EM field is ρ̂
{α}
B =
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|{α}〉〈{α}|, which just can be given by the above master equa-
tion (A5). Correspondingly, the observable expectations of the
system also can be obtained as a P function average, that is,

〈ôS(t )〉 =
∫

d{α,α∗} P
({α,α∗}) 〈ô(α)

S (t )〉, (A8)

where 〈ô(α)
S (t )〉 := trS[ôSρ̂

{α}
S (t )] can be obtained as the master

equation (A5). Namely, the fully system dynamics 〈ôS(t )〉
could be regarded as the probabilistic combination of many
evolution branches 〈ô(α)

S (t )〉 with P({α,α∗}) as the quasiprob-
ability, and each branch can be obtained by the quasiclassical
driving approach.

APPENDIX B: THE ENERGY FLOW UNDER
COHERENT DRIVING

Here we show the results for the steady state solution of
the master equation (2), which describes the system driven by
the coherent light (modeled by a planar wave). Denoting 
 ≡
� − ωd as the detuning between the driving light and the tran-

sition frequency h̄� ≡ E2 − E1, under the interaction picture
defined by Ĥ
 := ĤS − 
|e2〉〈e2|, the expectations of N̂1(2) ≡
|e1(2)〉〈e1(2)|, N̂g ≡ |g〉〈g|, and τ̂+

E ≡ (τ̂−
E )† ≡ |e2〉〈e1|) form

a closed set of time-independent equations, which read (set-
ting γh = γc ≡ γ )

∂t 〈N̂1〉 = −[E〈τ̂+
E 〉 + E∗〈τ̂−

E 〉] − γ (n̄c + 1)〈N̂1〉
+ κ〈N̂2〉 + γ n̄c〈N̂g〉,

∂t 〈N̂2〉 = [E〈τ̂+
E 〉 + E∗〈τ̂−

E 〉] − γ (n̄h + 1)〈N̂2〉
− κ〈N̂2〉 + γ n̄h〈N̂g〉,

∂t 〈τ̂+
E 〉 = i
〈τ̂+

E 〉 + E∗[〈N̂1〉 − 〈N̂2〉]
− 1

2 [γ (n̄c + 1) + γ (n̄h + 1) + κ]〈τ̂+
E 〉, (B1)

and 〈N̂1〉 + 〈N̂2〉 + 〈N̂g〉 ≡ 1. In the steady state t → ∞, the
system becomes stationary and the above time derivatives give
zero. Here we consider the situation where the spontaneous
emission rate κ is negligible comparing the coupling strengths
with the two heat baths, i.e., γ � κ � 0, and then the steady
state solution gives

〈N̂1〉 = 4�2γ 2n̄c(1 + n̄h) + 4|E |2γ (n̄c + n̄h)�1 + γ 2n̄c(1 + n̄h )�2
1

�
,

〈N̂2〉 = 4�2γ 2n̄h(1 + n̄c) + 4|E |2γ (n̄c + n̄h)�1 + γ 2n̄h(1 + n̄c)�2
1

�
,

〈τ̂+
E 〉 = [〈τ̂−

E 〉]∗ = 4i� E∗γ 2(n̄c − n̄h) + 2E∗γ 2(n̄c − n̄h)�1

�
, (B2)

where � = 4�2γ 2N + �1(�1γ
2N + 4|E |2�2) and

�1 = γ (2 + n̄c + n̄h ), �2 = γ (2 + 3n̄c + 3n̄h ), N = 1 + 2n̄h + 2n̄c + 3n̄cn̄h. (B3)

Based on the master equation, the heat flows defined in Eq. (4) give

Qh(c) = h̄ωh(c) · γh(c)[n̄h(c)〈N̂g〉 − (n̄h(c) + 1)〈N̂2(1)〉], QE = h̄�[E〈τ̂+
E 〉 + E∗〈τ̂−

E 〉] − h̄�κ〈N̂2〉. (B4)

By substituting the steady state solutions (B2) into the above flows, they give the steady heat flows as Eq. (5) in the main text.

APPENDIX C: THE NORMAL ORDER EXPECTATION FOR THE HEAT FLOW GENERATED
BY GENERIC PHOTON STATISTICS

Here we show how to calculate the normal order expectation for the population flow in Eq. (14). Notice that the population
flow has been turned into the integral of the normal order expectation 〈: e−s̃â†â :〉 ≡ F (s̃), which is the critical part to be calcu-
lated. Here we consider the density state of the monochromatic driving light is diagonal in the Fock basis, i.e., ρ = ∑

Pn|n〉〈n|
with Pn as the photon number distribution, thus the characteristic function F (s̃) gives

F (s̃) =
∞∑

k=0

(−s̃)k

k!
〈(â†)kâk〉 =

∞∑
k=0

∞∑
m,n=0

ρmn
(−s̃)k

k!
〈n|(â†)kâk|m〉 =

∞∑
n=0

n∑
k=0

ρnn
(−s̃)kn!

k!(n − k)!
=

∑
n

Pn(1 − s̃)n. (C1)

For the examples of the Poisson, sub-Poisson, and super-Poisson statistics discussed in the main text, they are

Poisson: Pn = 1

eλ

λn

n!
, ⇒ F (s̃) = e−s̃λ, sub-Poisson: P(−)

n = 1

Z−(λ)

λn

(2n)!
,

⇒ F (s̃) = Z−
(
λ(1 − s̃)

)
Z−(λ)

, Z−(λ) ≡ cosh
√

λ, .

super-Poisson: P(+)
n = 1

Z+(λ)

λn

(n + 2)!
⇒ F (s̃) = Z+

(
λ(1 − s̃)

)
Z+(λ)

, Z+(λ) ≡ eλ − λ − 1

λ2
(C2)
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Then the population flow (14) can be further calculated from
the integral numerically, i.e.,

J =
〈
:

A Ê−Ê+
B + C Ê−Ê+

:

〉
=

〈
:
A

C
− A

C

∫ ∞

0
ds e−s(1+ C

B Ê−Ê+ ) :

〉

= A

C
− A

C

∫ ∞

0
ds e−sF

(
C

B

h̄ωd

2ε0V
s

)
. (C3)

APPENDIX D: THE ENERGY FLOW GENERATED BY THE
MULTIMODE THERMAL FIELD

Here we show the results for the energy flow when the
whole multimode EM field is in the thermal equilibrium state
ρE ∝ exp[−ĤE/kBTE] with TE as the temperature. In this case
the incoherent thermal lights with different frequencies are
injected into the system from all different directions, and
there is no other driving light beam. The system dynamics is
described by the master equation (17), and that gives

∂t 〈N̂1〉 = κ[(n̄E + 1)〈N̂2〉 − n̄E〈N̂1〉]
− γ [(n̄c + 1)〈N̂1〉 − n̄c〈N̂g〉],

∂t 〈N̂2〉 = −κ[(n̄E + 1)〈N̂2〉 − n̄E〈N̂1〉]
− γ [(n̄h + 1)〈N̂2〉 − n̄h〈N̂g〉]. (D1)

In the steady state t → ∞, ∂t 〈N̂1,2〉 = 0 and 〈N̂1〉 + 〈N̂2〉 +
〈N̂g〉 ≡ 1 give the solution as

〈N̂1〉 =
n̄c(n̄h + 1) + κ

γ
(n̄E + 1)(n̄h + n̄c)

N + κ
γ
M ,

〈N̂2〉 =
n̄h(n̄c + 1) + κ

γ
(n̄E + 1)(n̄h + n̄c)

N + κ
γ
M ,

M ≡ n̄E(3n̄h + 3n̄c + 2) + n̄h + 2n̄c + 1, (D2)

and N is the same as Eq. (6) in the coherent driving case.
With the help of the master equation (17), the energy flowing
from the three reservoirs to the system is defined from the
conservation relation ∂t 〈ĤS〉 = Q′

E + Q′
c + Q′

h. In the steady
state they give

Q′
h = −h̄ωhJ ′, Q′

c = h̄ωcJ ′, Q′
E = h̄� J ′,

J ′ = κ[n̄E(n̄c − n̄h) − n̄h(n̄c + 1)]

N + κ
γ
M , (D3)

When J ′ > 0, the heat current flows from the cold bath to
the hot one, and thus the system works as a refrigerator,
and that requires the cooling condition (19) in the main
text.
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