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Energy-band echoes: Time-reversed light emission from optically driven quasiparticle wave packets
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The at-will control of quantum states is a primary goal of quantum science and technology. The celebrated
Hahn echo exemplifies such quantum-state control based on a time-reversal process in a few-level system. Here,
we propose a different echo phenomenon associated with the energy-band structure in quantum many-body
systems. We show that the dynamics of quasiparticle wave packets can be reversed by a driving electric-field
pulse, yielding echoes with the time-reversed waveform of the optical excitation pulse when the quasiparticles re-
combine. The present echoes are observed not only in band insulators but also in correlated insulators, including
a Mott insulator and a spontaneously-broken-symmetry charge-ordered insulator, in one- and higher-dimensional
systems, irrespective of the integrability of the models. Analytical expressions reveal the conditions under which
the echoes appear, and they also indicate that the frequency of the echo pulses reflects the dispersion relation for
quasiparticles such as electron-hole pairs, doublon-holon pairs, and kink-antikink pairs. These findings provide
a framework for all-optical momentum-resolved spectroscopy of the quasiparticles in quantum many-body
systems.
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I. INTRODUCTION

Precise control of quantum systems is of great impor-
tance for the development of quantum science and technology
[1–12]. Well-known examples of quantum control include the
Hahn echoes—also called spin echoes—in few-level quantum
systems [13]. This phenomenon is the time-reversal refocus-
ing of quantum spins, and it has been widely used in many
areas, since they provide access to the spectroscopic proper-
ties and relaxation dynamics of quantum systems via nuclear
magnetic resonance. Such a time-reversal process is a mani-
festation of unitary evolution and thus of the controllability of
the quantum systems, and it can also be observed as photon
echoes in condensed-matter systems [14], Loschmidt echoes
in quantum physics [15–17], and as what is often called a
“time mirror” in photonic, phononic, and fermionic systems
[18–25].

Coherent optical control of quantum many-body systems
has also been recognized as an intriguing problem in modern
condensed-matter physics, since such a system exhibits a wide
variety of phases and thereby provides a rich playground for
the control of physical properties. Recent developments in
photoinduced phase transitions [26–29] and Floquet engineer-
ing [30–34] have attracted growing interest in studying the
ultrafast and nonthermal control of quantum materials, due to
the rapid development of light sources [35–38] and of time-
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resolved measurement techniques [26,30,39–50]. However,
the coherent control of condensed-matter systems still faces
challenges, since quantum coherence is quickly destroyed by
interactions with environmental degrees of freedom.

Another strategy for ultrafast control of many-body dy-
namics is to use high-harmonic generation (HHG), which is
the nonperturbative process of attosecond pulse generation
from electrons driven coherently by a lightwave. Originally,
HHG was investigated in atomic gases [51–58], and it has
recently been studied in semiconductors [59–69], topological
materials [70–73], and strongly correlated systems [74–87].
The HHG mechanism can basically be understood from the
semiclassical theory called the three-step model [88–90]: the
electrons are ionized (or excited to conduction bands), accel-
erated, and then recombined during a single optical cycle of
an external pulse. This process involves the coherent recip-
rocating motion of the electrons controlled by the external
pulse; we therefore anticipate that the real-time HHG profile
can be understood in terms of the time-reversal process in
such a many-body system. Furthermore, since the electrons
are adiabatically accelerated within energy bands in crys-
talline solids, it has been recognized that HHG spectra contain
information about the energy-band structure [62,91–102],
including the Berry curvature [103–107] and the momentum-
dependent transition dipole moments [108–110]. However,
these methods require numerical simulations consistent with
the experiments, and they are hard to apply to strongly corre-
lated systems.

In this paper, we investigate the real-time dynamics of
quasiparticle wave packets driven by a lightwave. We dis-
cover an echo phenomenon associated with the energy-band
structure in crystalline solids, which we term “energy-band
echoes.” We first demonstrate the appearance of the echoes of
an optical excitation process in a minimal one-dimensional
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model of a band insulator, performing numerically exact
simulations of the real-time evolution, and we then derive
analytical expressions for the echoes. We find that the echoes
are generated after photoexcited quasiparticles are driven by
a half-cycle pulse that reverses the group velocity of the wave
packets and thereby achieves a time-reversal process, i.e., the
recombination of the wave packets. We also find that the
dispersion relation of the electron-hole pair is reflected in the
frequency of the echo as a function of the pulse amplitude.
Furthermore, we confirm that the echoes emerge from quasi-
particles in correlated insulators described by the Hubbard
model and by the transverse-field Ising model, and we show
that the echo frequency is consistent with the predictions
obtained from the exact solutions. The echoes are observed
even in a two-dimensional system and a nonintegrable system,
implying the generality and applicability of such energy-band
echoes. These findings suggest that the energy-band echoes
make possible all-optical reconstructions of well-defined dis-
persion relations not only for the electron-hole pair but also
for renormalized quasiparticles such as doublon-holon pairs
and kink-antikink (domain-wall) pairs.

The rest of this paper is organized as follows. In Sec. II,
we introduce the concept of energy-band echoes on the ba-
sis of numerical simulations and analytical expressions. In
Sec. III, we show that the echo signal reflects the energy and
momentum of photoexcited quasiparticles in several types of
insulators, and that these echoes can be applied to all-optical
momentum-resolved spectroscopy. Sections IV and V, respec-
tively, are devoted to a discussion and a summary of this work.

II. ENERGY-BAND ECHOES

In this section, we discuss the dynamics of photoexcited
carriers that are induced in band insulators by two pulses
with different frequencies. The first pulse is a weak optical
pulse that creates electron-hole pairs inside an energy band;
we assume that its spectral width is much narrower than
the energy-band width. The subsequent second pulse is an
off-resonant half-cycle pulse that adiabatically drives the elec-
trons but does not induce interband transitions. Hereafter, we
term the first and second pulses the excitation pulse and the
driving pulse, respectively. The vector potential of the light
field can be written as A(τ ) = Ae(τ ) + Ad(τ ), where Ae(τ )
and Ad(τ ) are the vector potentials of the excitation pulse and
the driving pulse, respectively, at time τ . The electric field is
given by E(τ ) = −∂τ A(τ ). Throughout this paper, the Dirac
constant, electron charge, and lattice constant are set to unity.

For simplicity, in this section we ignore dissipative effects
such as the relaxation, scattering, and dephasing due to many-
body interactions and thermal fluctuations. This assumption is
justified when a process mentioned below is completed before
such dissipation occurs, as discussed in Secs. III D 2 and IV.

A. Numerical simulation

First, we demonstrate the appearance of echoes in a band
insulator by simulating the real-time dynamics induced by the
excitation pulse and driving pulse. We consider a tight-binding
model of a two-orbital band insulator. The Hamiltonian is

given by

Hbi = −
∑
〈i, j〉

∑
νν ′

tνν ′
i j c†

νicν ′ j +
∑

iν

Dνc†
νicνi, (1)

where c†
νi (cνi) is the creation (annihilation) operator for an

electron in orbital ν (= α, β ) at site i. The first term in Eq. (1)
represents nearest-neighbor electron hopping, with tνν ′

i j being
the transfer integral. The intraorbital and interorbital trans-
fer integrals are set to tαα

i j = tββ
i j = th and tαβ

i j = tβα
i j = tαβ ,

respectively. The vector potential A(τ ) is introduced via the
Peierls substitution: th → th exp[−iA(τ )·(r j − ri )] and tαβ →
tαβ exp[−iA(τ )·(r j − ri )], with ri being the position of site i.
The second term in Eq. (1) describes the on-site energy of each
orbital; we assume Dα = −Dβ = Eg/2, with Eg being the
energy gap. The interorbital transfer integral and the energy
gap are set to tαβ = 2th and Eg = 3th. Energy and time are
expressed in units of th and t−1

h , respectively.
In this section, we consider a one-dimensional chain and

impose the periodic boundary condition. The numbers of sites
and electrons are denoted by L and N , respectively, and the
electron density is set to N/L = 1. The energy of a photoex-
cited electron-hole pair is given by

ε1bi(k) = 2
√

(2tαβ cos k)2 + (Eg/2)2, (2)

where k is the momentum of the electron. We simulate the
time evolution numerically by using the equation |ψ (τ +
δτ )〉 = exp[−iH(τ + δτ/2)δτ ]|ψ (τ )〉 + O(δτ 3), with δτ =
0.01t−1

h , and we calculate the electric current J (τ ) =
〈ψ (τ )|Ĵ (τ )|ψ (τ )〉, where Ĵ (τ ) = −N−1δH/δA(τ ). The exci-
tation pulse is given by

Ae(τ ) = −[
1
2 e−(τ−τe+2σe )2/(2σ 2

e ) + e−(τ−τe−2σe )2/(2σ 2
e )]

× Ae sin(ωeτ ), (3)

where Ae and ωe denote the amplitude and frequency of the
pulse, respectively, and σe represents the pulse width. Here,
the envelope function is chosen so that the time-reversed
waveform can be identified easily, as shown in Fig. 1(a). The
electric field of the driving pulse is given by

Ed(τ ) = Ede−τ 2/(2σ 2
d ) cos(ωdτ + θd ), (4)

where Ed (= Adωd), ωd, σd, and θd denote the amplitude,
frequency, pulse width, and carrier envelope phase (CEP),
respectively. Since the driving pulse is preferably an off-
resonant half-cycle pulse, these parameters should satisfy
ωd � Eg and ωdσd ∼ 1. Note that the vector potential of the
driving pulse remains finite after irradiation, and its value is
given by

Af = −
∫ ∞

−∞
dτ Ed(τ ) = −Ad

√
2πωdσde−(ωdσd )2/2 cos θd,

(5)

where Af is gauge-invariant since it is the area of the
gauge-invariant electric field [111]. Hereafter, we discuss the
energy-band echo with θd = 0, which facilitates the analysis.
We note that the existence of such a unipolar pulse with Af 
=
0 is controversial [112–118]; we demonstrate in Sec. III E
that the echoes can be generated even by a driving pulse with
θd = π/2, i.e., Af = 0.
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FIG. 1. (a) Time profile of the electric current in a one-
dimensional band insulator. The dashed and dashed-dotted curves
represent the electric fields of the excitation pulse Ee and the driv-
ing pulse Ed, respectively. The parameter values are set to ωe =
4πσ−1

e = 5th, ωd = σ−1
d = 0.1th, Ae = 0.002, Ad = 0.9, and N =

1500. (b) Sketch of the echo-generation process, which consists
of the following three steps: (i) creation of a photocarrier by the
excitation pulse, (ii) intraband acceleration by the driving pulse, and
(iii) echo emission due to the recombination of the photocarrier wave
packet. See the text for details. Note that the echoes also appear for
optical pulses with Af = 0 as shown in Sec. III E.

Figure 1(a) shows the calculated electric current induced
by the excitation pulse and by the driving pulse. The delay
time between the two pulses is set to −τe = 40t−1

h . When
the excitation pulse arrives, at τ ≈ τe, the electric current
oscillates in proportion to Ee(τ ). We find that, following the
driving pulse, the electric current oscillates again, even though
an electric field is absent, and the envelope of this oscillation
is a precisely time-reversed waveform of the excitation pulse.
Since the electromagnetic radiation is proportional to ∂τ J (τ ),
this oscillation of the electric current will emit light with the
time-reversed waveform if the dynamics of the electromag-
netic fields are considered. It turns out in Sec. II B below
that the oscillating current originates from the quasiparticles
in energy bands. We therefore term this phenomenon the
“energy-band echo” in this paper.

B. Analytical calculation

In this section, we derive analytical expressions for the
echo signal and elucidate the mechanism of echo generation,
focusing again on a one-dimensional system for simplicity.
We consider a two-orbital band insulator, as in Sec. II A,
but we introduce the electric-field pulses as electric-dipole
couplings, not as the Peierls substitution of the vector poten-

tials. The Hamiltonian is written as H2band = H0 + He + Hd,
where

H0 =
∑

k

∑
λ∈{cb,vb}

ελ(k)c†
λ,kcλ,k, (6)

He(τ ) = −
∑

k

Ee(τ )(μkc†
cb,kcvb,k + μ∗

kc†
vb,kccb,k ), (7)

Hd(τ ) = −
∑

jλ

Ed(τ )r jc
†
λ, jcλ, j . (8)

Here, c†
λ,k (cλ,k ) is the creation (annihilation) operator for

an electron with momentum k in orbital λ ∈ {cb, vb}, where
cb and vb denote the conduction and valence bands, re-
spectively. The energy of an electron-hole pair is given by
ε(k) = εcb(k) − εvb(k). The term H0 in Eq. (6) describes the
noninteracting electrons. The light-matter interactions are in-
troduced through the time-dependent interband and intraband
dipole Hamiltonians, He(τ ) and Hd(τ ), respectively. Here,
μk is the transition dipole moment, and c†

λ, j is defined by

c†
λ, j = N−1/2 ∑

k e−ikr j c†
λ,k . Assuming that the excitation pulse

is weak and that the driving pulse is off-resonant, we omit the
negligible contributions of Ee to Hd and of Ed to He [119].
Since the echoes appear after the driving pulse, we consider
the interband polarization and electric current defined by

P̂inter = − 1

N

δHe

δEe
= 1

N

∑
k

(μ∗
kc†

vb,kccb,k + H.c.) (9)

and

Ĵinter = −i[P̂inter,H0 + He]

= 1

N

∑
k

ε(k)(−iμ∗
kc†

vb,kccb,k + H.c.), (10)

respectively. Since there is a one-to-one correspondence be-
tween the momenta of the carriers before and after the driving
as shown in Appendix A, the many-body state at time τ can
be written in a single Slater determinant form,

|ψ (τ )〉 =
∏

k

[
ψcb

k (τ )c†
cb,k + ψvb

k (τ )c†
vb,k

]|0〉, (11)

where ψcb
k and ψvb

k are the probability amplitudes of the
conduction- and valence-band states with momentum k that
satisfy the relation |ψcb

k (τ )|2 + |ψvb
k (τ )|2 = 1, and |0〉 is the

vacuum. By using Eqs. (10) and (11), we obtain the expecta-
tion value of the interband current as

Jinter (τ ) = 1

N

∑
k

ε(k)
[ − iμ∗

kψ
vb
k (τ )∗ψcb

k (τ ) + c.c.
]
. (12)

We next summarize the setup of the external fields and the
conditions that must be met. The excitation pulse is given by

Ee(τ ) = 1
2 E env

e (τ )e−i(ωeτ+θ ) + c.c., (13)

where ωe denotes the carrier frequency, θ represents a phase
constant, and E env

e (τ ) is a slowly varying envelope function
centered at time τ = τe [120]. The Fourier spectrum of the
excitation pulse is given by Ẽe(ω) = ∫ ∞

−∞ dτ Ee(τ )eiωτ . The
spectral width of Ẽe(ω) must be narrow, and it must be located
in the continuum of the interband excitation; these conditions
can be written as

∫ ∞
0 dω (ω−ωe )2|Ẽe(ω)|/ ∫ ∞

0 dω |Ẽe(ω)| �
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W 2 and Eg < ωe < Eg + W , where Eg and W are the energy
gap and the bandwidth of the photocarriers, respectively. The
peak amplitude of Ee(τ ) is assumed to be small enough so
that the excited state is in the linear-response regime. After
the excitation pulse decays, the driving pulse Ed(τ ) is applied
from τ = τdi (� τe ) to τ = τdf . The central frequency of
the driving pulse is much less than the band gap Eg, which
prevents unwanted interband excitations. After irradiation by
the driving pulse, the vector potential of Ed(τ ) approaches a
constant Ad(τ ) = − ∫ τ

τdi
dτ ′ Ed(τ ′) ≈ Af for τ > τdf .

The echo-generation process can be divided into the three
steps illustrated in Fig. 1(b): (i) the creation of a photocarrier
by the excitation pulse, (ii) intraband acceleration by the driv-
ing pulse, and (iii) echo emission due to the recombination of
the photocarrier wave packet. In the following, we evaluate
the interband current in Eq. (12), considering these steps one
by one.

(i) The creation of photocarriers by the excitation pulse. Af-
ter the excitation pulse, the probability amplitudes in Eq. (11)
are given by

ψcb
k (τdi ) ≈ e−iεcb(k)τdi

iμk

2
Ẽ env

e (ε(k) − ωe)e−iθ , (14)

ψvb
k (τdi ) ≈ e−iεvb(k)τdi (15)

at τ = τdi (� τe), up to first order in He. Here, we use∫ τdi

−∞ dτ ′ Ee(τ ′)eiε(k)τ ′ ≈ Ẽe(ε(k)) ≈ Ẽ env
e (ε(k) − ωe)e−iθ /2,

where we have adopted Ee(τ ) = 0 for τ > τdi and have
used the rotating-wave approximation in the first and second
equalities, respectively, and Ẽ env

e (ω) is the Fourier spectrum
of E env

e (τ ); the phase of the valence wave function is set to
zero in the initial state (τ → −∞).

Recalling that Ẽe(ω) has a narrow spectral width centered
at ω = ωe, we can expand ε(k) as ε(k) ≈ ωe + v(ke )(k − ke )
for each ke that satisfies ωe = ε(ke ), where v(k) = ∂kε(k)
denotes the relative group velocity of the electron-hole pair
with electron canonical momentum k. In this linear approxi-
mation, the Fourier spectrum of the excitation pulse is linearly
transcribed into the wave function of the electron-hole pair,
ψcb

k ψvb∗
k , as illustrated in process (i) of Fig. 1(b). This process

is described by a semiclassical picture in which only the
central position of the wave packet is concerned: electron-hole
pairs with energy ωe are present after the excitation, and the
electrons and holes move in opposite directions with relative
velocity v(ke ) [see (i′) in Fig. 1(b)].

(ii) Intraband acceleration by the driving pulse. Once the
probability amplitudes at τ = τdi are obtained from Eqs. (14)
and (15), their time evolution is given exactly by

ψλ
k−Ad (τ )(τ ) = e−i

∫ τ

τdi
dτ ′ ελ(k−Ad (τ ′ ))

ψλ
k (τdi ) (16)

for any Ed(τ ) [121–123], where Ad(τ ) = − ∫ τ

τdi
dτ ′ Ed(τ ′) de-

notes the vector potential of the driving pulse. The derivation
of Eq. (16) is presented in Appendix A. The vector poten-
tial Ad(τ ) of the driving pulse leads to the translation of
the electron kinetic momentum from ke to ke − Ad(τ ) [124],
as depicted in process (ii) of Fig. 1(b). In the semiclassical
picture, the relative group velocity of the driven electron-hole
pair shifts from v(ke ) to v(ke − Ad(τ )) [see (ii′) in Fig. 1(b)].

(iii) Echo emission due to the recombination of the photo-
carrier wave packet. Substituting Eqs. (14)–(16) into Eq. (12),

we have

Jinter (τ )

≈ 1

N

∑
k

ε(k − Af )

[
μ∗

k−Af
μk

2
e−iε(k)τdi e−i

∫ τdf
τdi

dτ ′ ε(k−Ad (τ ′ ))

× e−iε(k−Af )(τ−τdf )Ẽ env
e (ε(k) − ωe)e−iθ + c.c.

]
(17)

for τ > τdf , where we have assumed that the expo-
nent on the right-hand side of Eq. (16) can be rewrit-
ten as

∫ τ

τdi
dτ ′ ε(k − Ad(τ ′)) = ∫ τdf

τdi
dτ ′ ε(k − Ad(τ ′)) + ε(k −

Af )(τ − τdf ) with Af = Ad(τdf ). Since the spectral width of
Ẽ env

e (ω − ωe ) is narrow and Ẽ env
e (ω − ωe ) is centered at ω =

ωe, the dispersion relations in the rapidly varying functions—
i.e., Ẽ env

e and the exponentials in Eq. (17)—can be expanded
around k = ke, and the summation

∑
k can be approximated

by the Fourier integral (2π )−1N
∫ ∞
−∞ dk. The other slowly os-

cillating prefactors are replaced with those for k = ke. Finally,
we obtain the expression for the current at τ > τdf as

Jinter (τ ) ≈
∑

ke

[
m(ke )E env

e

(
v(ke − Af )

v(ke )
τ + �τ

)

× e−i[ε(ke−Af )τ+�θ] + c.c.

]
. (18)

Here, the summation in Eq. (18) is over all ke such that ωe =
ε(ke ), and m, �τ , and �θ are miscellaneous constants given
by

m(ke ) = ε(ke − Af )

2v(ke )
μ∗

ke−Af
μke , (19)

�τ = −v(ke − Af )

v(ke )
τdf +

∫ τdf

τdi

dτ ′ v(ke − Ad(τ ′))
v(ke )

+ τdi,

(20)

�θ = θ − ε(ke − Af )τdf +
∫ τdf

τdi

dτ ′ ε(ke − Ad(τ ′)) + ωeτdi.

(21)

When v(ke − Af )/v(ke ) < 0, as shown in process (iii) of
Fig. 1(b), the envelope of the current in Eq. (18) is the time-
reversed waveform of the envelope of the excitation pulse.
This can be viewed as the reversal of the electron-hole pair
distribution in the frequency domain [from the blue to the red
curves on the vertical axis in Fig. 1(b)].

In the semiclassical picture, when the relative velocity
v(ke − Af ) is reversed, the electron and hole turn back and
eventually recombine, as depicted in process (iii’) in Fig. 1(b).
Equation (18) then tells us when the echo current is gen-
erated. Since the excitation pulse is centered at τ = τe, the
echo current is centered at the time when τ satisfies [v(ke −
Af )/v(ke )]τ + �τ = τe, i.e.,∫ τ

τe

dτ ′ v(ke − Ad(τ ′)) = 0. (22)

The condition given in Eq. (22) means that the relative
displacement of the photocarriers must be zero when they
recombine. This conclusion is consistent with earlier results
obtained by the saddle-point approximation [125,126], al-
though our formula in Eq. (18) describes the explicit time
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dependence of the envelope function beyond the saddle-point
approximation.

Another consequence of Eq. (18) is that the central fre-
quency of the echo pulse is ε(ke − Af ), which depends on
the residual vector potential Af of the driving pulse. This
indicates that we are able to obtain the energy-band structure
by varying the amplitude of the driving pulse and measuring
the frequency of the echo pulses. In Sec. III, we demonstrate
numerically that the dispersion relations of quasiparticles can
be reconstructed by using the energy-band echoes.

We next make some remarks about the requirement and
generality of the energy-band echoes. First, the frequency of
the excitation pulse should not be located at a band edge.
Otherwise, the linear approximation for ε(k) at k = ke fails
to describe the echo current in Eq. (18), even though a rem-
nant of the echoes can still be observed; this is discussed
in detail in Appendix B. Second, the present time-reversal
dynamics are caused by the reversal of the relative group ve-
locity v(ke − Af ) of the photoexcited particles, whereas earlier
proposals in, e.g., Ref. [23], require the sign reversal of the
total Hamiltonian. Therefore, for a wide class of insulators in
which an electric field can drive well-defined quasiparticles
in reciprocal space, energy-band echoes can be observed,
and the analytical results in Eqs. (18) and (22) are valid to
some extent. In these systems, ε(k) = εcb(k) − εvb(k) can be
thought of as the energy of the photocarriers—e.g., a doublon
and holon in Mott insulators—and the relative velocity v(k)
in Eq. (22) should be replaced with a vector v(k) in two- or
three-dimensional systems. These conjectures are supported
by the numerical calculations presented in Sec. III.

III. MOMENTUM-RESOLVED SPECTROSCOPY OF
QUASIPARTICLE EXCITATIONS

In this section, we show that energy-band echoes can be
used to reconstruct the dispersion relations of photoexcited
quasiparticles. This is based on the fact that the echo current
given in Eq. (18) depends on the vector potential Af associated
with the amplitude of the driving pulse. Furthermore, we
demonstrate that this scheme can be applied not only to band
insulators but also to strongly correlated systems, including
Mott and charge-ordered insulators. We also discuss the ef-
fects of integrability and dimensionality on the energy-band
echoes. For simplicity, throughout this section we apply a
Gaussian excitation pulse

Ae(τ ) = −Aee−(τ−τe )2/(2σ 2
e ) sin(ωeτ ) (23)

and the subsequent driving pulse given in Eq. (4); the param-
eter values are the same as those adopted in Sec. II A unless
otherwise stated.

A. Band insulator

In Fig. 2, we show the energy-band echoes that appear in
the one-dimensional band insulator defined by Eq. (1). After
the driving pulse decays, two echo pulses appear at τ ≈ 40t−1

h
and τ ≈ 90t−1

h . The appearance of the two pulses can be
ascribed to the fact that the equation ωe = ε(ke ) has two roots
in the one-dimensional system. The roots of ωe = ε(ke ) in
the first Brillouin zone (−π, π ] are ke ≈ ±1.05 and ±2.1;

(a)

(b)
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FIG. 2. Echoes in a one-dimensional band insulator. (a) Time
profile of the electric current. The inset shows the Fourier spectrum
of the electric current (solid curve) and the energy of the electron-
hole pair ε1bi(ke − Af ) calculated from Eq. (2) (vertical lines). The
amplitude of the driving pulse is set to Ad = 0.9 (i.e., Af/π ≈
−0.44). (b) Spectral map of the electric current. The red curves show
ω = ε1bi(ke − Af ) as a function of Af . The inset shows a sketch of the
intraband dynamics of two photoexcited pairs.

the energies of the electron-hole pairs after the driving pulse
are given by ε1bi(ke − Af ) ≈ 6.69th for ke ≈ +1.05 and −2.1,
and 8.16th for ke ≈ −1.05 and +2.1. These values are in good
agreement with the peak structure of the Fourier spectrum of
the echo current for τ � 0, denoted by J̃ (ω), as shown in the
inset of Fig. 2(a). The frequency of the first (second) echo
at τ ≈ 40t−1

h (90t−1
h ) is found to be ω ≈ 6.69th (8.16th). The

first echo was already seen in Fig. 1(a) for the excitation pulse
defined by Eq. (3).

We next consider the Af dependence of the echo frequency
in more detail. Figure 2(b) shows a color map of the Fourier
spectra of J (τ ) for τ � 0. There are two branches: with in-
creasing |Af |, one increases from ω = 3th to 8.54th and the
other decreases from ω = 8.54th to 3th. These branches are
described quite well by the equation ω = ε1bi(ke − Af ) as
indicated by the red curves in Fig. 2(b). We also find that the
echo appears for Af between the first and second extrema of
ω = ε1bi(ke − Af ), where the relative velocity of the electron-
hole pair is reversed by the driving pulse, as illustrated in
the inset of Fig. 2(b). These results are consistent with the
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analysis in Sec. II B and demonstrate that the frequency of
the echo provides information about the energy-band structure
ε1bi(ke − Af ) as a function of the vector potential Af .

When the excitation pulse is resonant with a band edge,
however, the analytical expressions derived in Sec. II B are not
valid because v(ke ) = 0 in Eq. (18). In this case, the frequency
of the echoes deviates from ω = ε1bi(ke − Af ), as discussed in
Appendix B.

B. Mott insulator

Mott insulators comprise another important class of in-
sulators, in which the electron-electron interaction energy
dominates over the kinetic energy of an electron. Here, we
consider a prototypical model of a Mott insulator, i.e., the
half-filled one-dimensional Hubbard model. The Hamiltonian
for this system is given by

HH = −
∑

is

(thc†
isci+1,s + H.c.) + U

∑
i

ni↑ni↓, (24)

where c†
is (cis) is the creation (annihilation) operator for an

electron at site i with spin s (= ↑,↓), and ni = ∑
s nis =∑

s c†
iscis represents the number operator. The nearest-

neighbor transfer integral and the on-site repulsive interaction
are denoted by th and U , respectively. The ground state at
half-filling is a Mott insulating state, and the elementary
charge excitations are doublons and holons. According to the
Bethe ansatz [127], the energy and momentum of a doublon-
holon pair can be written as E (kd, kh ) = εd(kd ) + εh(kh) and
P(kd, kh ) = pd(kd ) + ph(kh), respectively, where

εh(k) = εd(k)

= 2th cos k + U

2

+ 2
∫ ∞

0

dω

ω

J1(ω) cos(ω sin k)e−ωU/(4th )

cosh[ωU/(4th)]
, (25)

ph(k) = pd(k) + π

= π

2
− k − 2

∫ ∞

0

dω

ω

J0(ω) sin(ω sin k)

1 + eωU/(2th )
. (26)

Here, kd (kh) is called the spectral parameter for a dou-
blon (holon), and Jn denotes the nth-order Bessel function
of the first kind. Since we consider optical excitations with
P(kd, kh ) = 0, the spectral parameters satisfy the relation kd =
−kh. The energy of the photoinduced doublon-holon pair is
defined by εH(k) = E (k,−k). The spectral parameter in the
photoexcited state, denoted by k = ke, is given by the roots
of the equation ωe = εH(ke ), and the parameter k after the
driving pulse is determined by k = p−1(p(ke ) − Af ), with p
being the shifted doublon momentum p(k) = pd(k) + π/2 [=
ph(k) − π/2].

We obtain the ground state and simulate the real-time dy-
namics numerically by using the infinite density-matrix renor-
malization group (iDMRG) and the infinite time-evolving
block decimation (iTEBD) methods, respectively [128,129],
for matrix product states with global U (1) ⊗ U (1) symme-
try associated with the conservation of the total number and
magnetization of the electrons [130]. The bond dimension of
the matrix product states is set to χ = 400 for the ground
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FIG. 3. Echoes in a Mott insulator. (a) Time profile of the elec-
tric current calculated by the iTEBD method. The amplitude of the
driving pulse is set to Ad = 1.5 (i.e., Af/π ≈ −0.73) and the other
parameters are ωe = U = 8th and Ae = 0.004. The inset shows the
Fourier spectra for different bond dimensions χ and the energy of
the doublon-holon pair. (b) Spectral map of the electric current.
The bond dimension is set to χ = 2000. The red curves show ω =
εH(p−1[p(ke ) − Af ]) as a function of Af .

states and χ = 2000 for the time-evolved states; the rela-
tive error of the ground-state energy is of order 10−6. The
vector potential A(τ ) is introduced as the Peierls phase, i.e.,
th → the−iA(τ ). The real-time evolution of |ψ (τ )〉 is given
by |ψ (τ + δτ )〉 ≈ exp[−iHH(τ + δτ/2)δτ ]|ψ (τ )〉, and the
second-order Suzuki-Trotter decomposition is adopted.

Figure 3(a) shows the calculated time profile for the elec-
tric current in a one-dimensional Mott insulator with U =
8th. The frequency of the excitation pulse is set to ωe = 8th;
the corresponding spectral parameter is ke ≈ ±1.73. We find
that the echo current is induced at τ ≈ 40t−1

h . The inset in
Fig. 3(a) shows that the spectral peak of the echo is located
at ω ≈ 8.41th, in agreement with the energy calculated from
εH(p−1[p(ke ) − Af ]) and denoted by the vertical line; we also
observe convergence with respect to χ .

The Fourier spectra of the echoes are displayed in Fig. 3(b).
There are two clear branches, which are similar to those in
the band insulator and which are in agreement with the ex-
act doublon-holon energies denoted by the red curves. This
observation shows that energy-band echoes can be used to
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obtain the quasiparticle dispersion relations even in a strongly
correlated insulator, whereas one-particle spectra observed
by angle-resolved photoemission spectroscopy are smeared
in such a system since noninteracting electrons are not the
well-defined quasiparticles any longer [131,132].

C. Charge-ordered insulator

A strong interaction often favors long-range order that
spontaneously breaks the symmetry of a system. In this sec-
tion, we consider a charge-ordered insulator without inversion
symmetry as an example to gain further insight into the
energy-band echoes.

We adopt the one-dimensional transverse-field Ising (TFI)
model. The Hamiltonian for this system is given by

HTFI = −V
∑

i

σ z
i σ z

i+1 − th
∑

i

σ x
i , (27)

where {σ x
i , σ

y
i , σ z

i } are the Pauli matrices at the ith unit cell.
The first and second terms in Eq. (27) represent the Ising
interaction and the transverse field, respectively. By using
the Jordan-Wigner transformation, Pfeuty [133] rigorously
showed that the ground state is a spontaneously-broken-
symmetry state with

∑
i〈σ z

i 〉 
= 0 for th < V , and it undergoes
a phase transition to a disordered phase with

∑
i〈σ z

i 〉 = 0 via
the quantum critical point at th = V . Using the Fourier and
Bogoliubov transformations, we can reduce the Hamiltonian
to the diagonal form

HTFI =
∑

k

ε1(k)η†
kηk, (28)

ε1(k) = 2
√

t2
h + V 2 + 2thV cos k, (29)

where η
†
k denotes a fermionic creation operator with momen-

tum k. In the ordered phase, the elementary excitation is a kink
or domain-wall excitation. The photoexcited state is given by
η

†
kη

†
−k|0〉 [80], with |0〉 being the vacuum (i.e., the ground

state), in which a kink-antikink pair has the energy

εTFI(k) = ε1(k) + ε1(−k). (30)

Notwithstanding its simplicity, the TFI model emerges in
various contexts in physics. For example, it is known that
organic ferroelectrics that consist of molecular dimers can
be described by the TFI model [80,134,135], with the Pauli
matrices representing the intradimer orbital degree of free-
dom, th denoting the intradimer transfer integral, and V being
proportional to the interdimer repulsive interaction strength.
The broken-symmetry phase is interpreted as a charge-ordered
phase with a finite electric polarization

∑
i〈σ z

i 〉 
= 0. The
Peierls substitution of the vector potential A yields a rotation
of the transverse field around the z-axis, i.e.,

HTFI(A) = −V
∑

i

σ z
i σ z

i+1 − th
∑

i

[
σ x

i cos A − σ
y
i sin A

]
.

(31)

By introducing the time-dependent unitary transformation
U = exp[−iA(τ )

∑
i σ

z
i /2] [80], we can rewrite Eq. (31) as

HTFI(E ) = −V
∑

i

σ z
i σ z

i+1 − th
∑

i

σ x
i − E (τ )

∑
i

σ z
i

2
, (32)
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FIG. 4. Echoes in a charge-ordered insulator. (a) Time profile of
the electric current calculated by the iTEBD method. The amplitude
of the driving pulse is set to Ad = 1.5 (i.e., Af/π ≈ −0.73), and the
other parameters are ωe = 4.4th and V = 1.6th. The inset shows the
Fourier spectra for χ = 100 and 200; the energy of the kink-antikink
pair is indicated by the vertical line. (b) Spectral map of the electric
current. The red curve shows ω = εTFI(ke − P0Af ) as a function of Af

with P0 ≈ 0.94 (see the text). The inset in (b) illustrates the motion
of the kink-antikink pair in reciprocal space.

with E (τ ) = −∂τ A(τ ). The polarization operator is defined by

P̂ = − 1

N

δHTFI

δE
= 1

2N

∑
i

σ z
i . (33)

We obtain the ground state of the Hamiltonian given in
Eq. (27) and simulate the real-time evolution governed by the
Hamiltonian in Eq. (31) by using the iTEBD method with
χ = 200; the absolute error of the ground-state energy is of
the order of 10−8th. Here, we chose a positively polarized state
with 〈0|P̂|0〉 > 0 as the initial state.

Figure 4(a) displays the time profile of the electric current
and its Fourier spectrum in the charge-ordered phase with
V = 1.6th. The excitation-pulse frequency is set to ωe = 4.4th,
which creates a kink-antikink pair with k = ke ≈ 2.396. An
echo pulse is generated at τ ≈ 40t−1

h , and its central fre-
quency converges with respect to χ , as shown in the inset.
We show the spectral map of the electric current in Fig. 4(b).
The equation ωe = εTFI(k) has the single root k = ke, and
there is a single branch given by ω = εTFI(ke − P0Af ) [the
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FIG. 5. Echoes in a two-dimensional band insulator. (a) Energy-band structure ε2bi(k). The contrast on the surface represents |ψ cb
k |2 for

an x-polarized excitation pulse. The double-headed arrow indicates the polarization of the excitation pulse. (b) Spectral map of the electric
current with an x-polarized excitation pulse and an x-polarized driving pulse. The red and green curves represent ω = ε2bi(k(1)

e,x − Af , 0) and
ε2bi(k(2)

e,x − Af , π ), and ω = ε2bi(ke,x − Af , ke,y ), respectively (see the text). (c) Fourier spectrum of the electric current for Ad = 1.64 (i.e.,
Af/π ≈ −0.79). The vertical lines represent the calculated energies of the quasiparticles after the driving pulse. (d),(e) Sketches of the motions
of the photoexcited electron and hole under an x-polarized driving pulse. (f) Spectral map of the electric current with an x-polarized excitation
pulse and a y-polarized driving pulse. The parameters are set to ωd = 0.1th, ωe = 5th, Ae = 0.002, and L = 1500 in (a)–(f).

vertical line in the inset of Fig. 4(a) and the red curve in
Fig. 4(b)]. Here, the prefactor of Af is defined by P0 =
2〈0|P̂|0〉, which originates from a nonlocal operator appear-
ing in the Jordan-Wigner transformation and reflects the
absence of inversion symmetry; see Appendix C for a de-
tailed discussion. In this sense, energy-band echoes capture
the many-body nature associated with spontaneous symmetry
breaking.

D. Dimensionality and integrability

We have hitherto discussed energy-band echoes with a
focus on one-dimensional integrable systems, in which the
photoexcited quasiparticles have an infinite lifetime. A nat-
ural question then arises: Do energy-band echoes appear in
higher-dimensional or nonintegrable systems, and if so, how?
In the following, we address this question by considering a
two-dimensional tight-binding model and a one-dimensional
extended Hubbard model.

1. Two-dimensional band insulator

We adopt the two-orbital tight-binding Hamiltonian given
in Eq. (1) on a square lattice with nearest-neighbor hopping.
The energy of an electron-hole pair is given by

ε2bi(k) = 2
√

[2tαβ (cos kx + cos ky)]2 + (Eg/2)2, (34)

where k = (kx, ky) is the momentum of the electron. We simu-
late the real-time dynamics as in Sec. II A, with the insulating

initial state having N/L2 = 1, where L2 denotes the number
of sites. The parameter values are Eg = 3th, tαβ = th, and
ωe = 5th. In this section, we focus on the electric current in
the x-direction.

First, we apply the excitation pulse in the x-direction. Fig-
ure 5(a) shows the quasiparticle band structure ε2bi(k) and
the conduction-electron distribution |ψcb

k |2 after the excitation
pulse. The electrons are excited to the isoenergy surface given
by ωe = ε2bi(k). Since the transition moment is proportional
to the relative group velocity v2bi(k) = ∂ε2bi(k)/∂k, the elec-
tron distribution |ψcb

k |2 vanishes where v2bi,x(k) = 0.
When we apply the driving pulse in the x-direction, we

observe echo generation even in this two-dimensional system,
and we obtain the spectral map of the electric current shown
in Fig. 5(b). This panel contains three branches: two of them,
ranging from ω = 3th to 8.544th, can be attributed to quasi-
particles excited at k = (k(1)

e,x , 0) with ωe = ε2bi(k(1)
e,x , 0) and at

k = (k(2)
e,x , π ) with ωe = ε2bi(k(2)

e,x , π ). These are in agreement
with ω = ε2bi(k(1)

e,x − Af , 0) and ω = ε2bi(k(2)
e,x − Af , π ), as in-

dicated by the red curves in Fig. 5(b) and the red vertical
lines in Fig. 5(c). Since v2bi,y(kx, 0) = 0 for any kx, these
quasiparticles move in the x-direction parallel to the driving
pulse, as depicted in Fig. 5(d). For quasiparticles with mo-
menta that depart slightly from ky = 0, the electron and hole
cannot recombine, since the sign of v2bi,y(k) is unchanged by
the driving pulse, as illustrated in Fig. 5(e), and thus they
do not generate echoes. These two branches can therefore
be understood by analogy to those in the one-dimensional
systems.
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The third branch in Fig. 5(b) stems from the two-
dimensional motions of quasiparticles excited with nonzero
relative velocity in the y-direction, and it is reproduced by
the following analysis of the classical motion of the quasipar-
ticles. Assuming that Eq. (22) holds for higher-dimensional
systems, we expect an echo to appear when the relative dis-
placement r(τ ) is zero after the driving pulse. This condition
is given by

r(τ ) =
∫ τ

τe

dτ ′ v2bi(ke − A(τ ′)) = 0, (35)

where ke satisfies ωe = ε2bi(ke ). From Eq. (35), we obtain a
set of ke that contributes to the echoes [indicated by the green
dots in Fig. 5(a)] and the corresponding echo frequency ω =
ε2bi(ke,x − Af , ke,y) [the green curve in Fig. 5(b) and the green
vertical line in Fig. 5(c)].

By changing the polarization of the excitation pulse, we
can distinguish these two types of echoes mentioned above:
one comes from one-dimensional motions and the other from
higher-dimensional motions. Figure 5(f) shows a spectral map
of the electric current with an x-polarized excitation pulse and
a y-polarized driving pulse; we observe only the single branch
attributed to the two-dimensional motions, although the echo
intensity is different from that in Fig. 5(b). Since quasi-
particles with kx = 0, π are not excited by the x-polarized
pulse in the present model, the echoes originating from the
one-dimensional motion completely disappear. Therefore, in
principle, we can reconstruct the energy-band structure of
two- or three-dimensional materials through a comprehensive
analysis of the polarization dependence of the energy-band
echoes.

2. Nonintegrable Mott insulator

Next, we consider the one-dimensional extended Hubbard
model defined by the Hamiltonian

HextH = HH + V
∑

i

nini+1, (36)

where the first term HH is the Hubbard Hamiltonian given
in Eq. (24), and the second term represents a repulsive in-
teraction between the nearest-neighbor sites. The integrability
of the system is broken when V 
= 0, which is supported by
the observation that the level-spacing statistics are close to the
Wigner-Dyson distribution, as shown in Appendix D.

By using the iDMRG and iTEBD methods as in Sec. III B,
we can calculate the ground state in the Mott insulating phase
(U = 8th and V = 2th) with χ = 400 and its real-time evolu-
tion with χ = 3000. The time profile of the electric current
is shown in Fig. 6(a), and its Fourier spectrum is plotted in
the inset. The echo signal is generated at τ ≈ 40t−1

h , whose
spectral peak is located at ω ≈ 9th. A small oscillation with
frequency ω ≈ 5th is also observed after the excitation pulse
decays, which we attribute to the excitation of bound doublon-
holon pairs, i.e., excitons [136]. The bound pair does not give
rise to echoes since it is not driven by the electric field.

Figure 6(b) shows a spectral map of the electric current.
Prominent spectral weight emerges at |Af |/π ≈ 0.3, transfers
from ω ≈ 5th to 12th with increasing |Af |, and then vanishes
at |Af |/π = 1; it appears again for |Af |/π > 1 and transfers
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FIG. 6. Echoes in a nonintegrable Mott insulator. (a) Time profile
of the electric current calculated by the iTEBD method. The ampli-
tude of the driving pulse is set to Ad = 1.4 (i.e., Af/π ≈ −0.68), and
the other parameters are ωe = U = 8th, V = 2th, and Ae = 0.02. The
inset shows the Fourier spectra for χ = 2000 and 3000. (b) Spectral
map of the electric current. The bond dimension is set to χ = 3000.

downward. Although no exact expression for the quasiparticle
energy is known, these two prominent peaks are likely to
belong to two different branches that are adiabatically con-
nected to those of the Hubbard model with V = 0, providing
information about the quasiparticle dispersion relations as a
function of Af . We attribute the nondispersive peak at ω ≈ 5th
to the excitation of bound pairs.

As shown above, energy-band echoes can be observed even
in a nonintegrable system, in which the photoexcited quasi-
particles acquire a finite lifetime. Considering the similarity
between the energy-band echoes and Hahn echoes, we antici-
pate that the relaxation or dephasing time of the quasiparticles
can be estimated from the delay-time dependence of the echo
intensity. However, we leave this issue for future work, since
the present numerical method does not accurately capture the
long-time behavior.

E. Optical driving pulse

In previous sections, we used the driving pulse Ed(τ ) given
in Eq. (4), with the CEP being θd = 0, which leaves a finite
vector potential Af ∝ cos θd after Ed(τ ) decays. While the ex-
istence of such a unipolar (i.e., Af 
= 0) pulse is controversial
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FIG. 7. Echoes in a one-dimensional band insulator with an op-
tical driving pulse. (a) Time profiles of the electric fields, vector
potential, and electric current. The green curve shows the envelope
of J (τ ) calculated from the Hilbert transformation. The amplitude of
the driving pulse is set to Ad = 2.2 [i.e., |Ad(τe )|/π ≈ 0.51], and the
other parameters are ωd = 0.05th, ωe = 5th, Ae = 0.002, τe = 0, and
N = 1500. The inset shows the Fourier spectrum of J (τ ). (b) Spectral
map of the electric current. The green and red curves represent
ω = ε1bi(ke − Ad(τr ) + Ad(τe )) as functions of |Ad(τe )| for the first
and second echoes, respectively, where Ad(τr ) − Ad(τe ) is the vector-
potential change to which the electron-hole pairs are subjected.

[112–118], here by introducing a CEP-controlled monocycle
driving pulse we show that energy-band echoes can be ob-
tained even for Af = 0.

We adopt a driving pulse Ed(τ ) with CEP θd = π/2 that
contains a single optical cycle, and we apply the excitation
pulse at τ = τe = 0 when the vector potential of the driv-
ing pulse is maximal. The excitation pulse must be shorter
than a half-cycle of the driving pulse, which means that the
pulse width σe must satisfy ω−1

e � σe � ω−1
d . The wave-

forms of Ed(τ ), Ee(τ ), and A(τ ) = Ad(τ ) + Ae(τ ) are shown
in Fig. 7(a). With this setup, the photoexcited quasiparticles
are subjected to a finite impulse due to the driving pulse
even though Af = 0. The impulse is determined by the vector
potential at τ = τe, denoted by Ad(τe ) [see Fig. 7(a)].

Figure 7(a) also shows the time profile of the electric cur-
rent and its spectrum for the one-dimensional band insulator
defined by Hbi in Eq. (1). We find that two echoes appear

at τ ≈ 30t−1
h and 60t−1

h . We show the spectral map of the
electric current in Fig. 7(b), where two branches are seen,
although they are broadened for large |Ad(τe )| compared with
the previous results.

To compare the energy-band dispersion with the echo
frequency, we evaluate the changes in the vector potential be-
tween τ = τe and the time τ = τr at which the quasiparticles
recombine and the echoes are generated. The green curve in
Fig. 7(a) represents the envelope of J (τ ) obtained through a
low-pass filter and the Hilbert transformation, from which we
evaluate the changes in A(τ ) for the first and second echoes.
The vertical lines in the inset of Fig. 7(a) and the green and
red curves in Fig. 7(b) show ω = ε1bi(ke − Ad(τr ) + Ad(τe )),
which agree with the simulated spectra of the echoes.

IV. DISCUSSION

We have illustrated the appearance of energy-band echoes
in band insulators and correlated insulators. We find that what
is essential for the generation of the energy-band echoes is the
presence of an energy continuum of photoexcited quasiparti-
cles that can be driven by the external electric field. Therefore,
we can expect to observe such echoes not only in solids but
also in a cold-atom system on an optical lattice. In such a sys-
tem, resonant interband excitation has been achieved [137],
and an intraband driving has been realized by using a constant
inertial force [138] and a synthetic gauge field [139,140].

For energy-band echoes in solids, dissipation of the pho-
tocarriers may not be negligible, which reduces the echo
intensity, as we mentioned in Sec. III D 2 above. To ob-
serve these echoes, one optical cycle of the driving pulse is
preferably shorter than the relaxation and dephasing times
of the photocarriers, which are typically of the order of a
few femtoseconds for electron-electron interactions and sub-
picoseconds for electron-phonon interactions [141]. Hence, to
prevent relaxation during the driving process, a femtosecond
excitation pulse and a monocycle midinfrared or terahertz
driving pulse are suitable for experiments. In the present
study, we used ωd = 0.1th ∼ 0.1 eV (i.e., h̄/ωd ∼ 6.6 fs),
which is much shorter than the typical timescales of electron-
phonon interactions but longer than those of electron-electron
interactions. Nevertheless, echoes are still observed in a non-
integrable Mott insulator with U = 4V = 8th ∼ 8 eV � ωd,
as shown in Sec. III D 2, which leaves open the possibility of
observing such echoes in real materials.

The energy-band echoes require both an excitation pulse
and a driving pulse, which is reminiscent of high-order
sideband generation (HSG) [63,104,142–147]. In the HSG
process, an excited state is prepared by a resonant pulse
and then driven by an intense multicycle terahertz pulse. In
the present study, however, the vector-potential shift due to
the half- or monocycle driving pulse uncovers such a light-
emission process during a single optical cycle, which leads to
the concept of energy-band echoes.

Angle-resolved photoemission spectroscopy (ARPES) is a
well-established and sophisticated experimental method that
directly accesses the energy bands below the Fermi level.
Since the present spectroscopy based on energy-band echoes
(energy-band echo spectroscopy for short) acquires the dis-
persion relations of the electron-hole pairs, we can obtain the
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band structure below and above the Fermi level in combi-
nation with ARPES, which is similar to an earlier proposal
for all-optical spectroscopy based on HHG [92]. Further-
more, energy-band echo spectroscopy provides well-defined
dispersion relations for renormalized quasiparticles such as
the doublon-holon pairs in a Mott insulator, as shown in
Sec. III B, whereas ARPES spectra for this case are usually
blurred because of many-body interactions [131,132].

V. SUMMARY

In this work, we have investigated energy-band echoes that
originate from the dynamics of quasiparticle wave packets
driven and controlled by a lightwave. After the driving pulse
decays, the electric current oscillates with the time-reversed
waveform of the excitation pulse. The echoes are observed
not only in band insulators but also in correlated insulators, in
one and higher dimensions. On the basis of the numerical and
analytical results, we have elucidated the echo-generation pro-
cess: (i) a photocarrier is excited, and its wave packet has the
same waveform as the excitation pulse; (ii) the photocarrier
is adiabatically accelerated by the driving pulse; and (iii) the
recombination of the wave packet yields echoes with the time-
reversed waveform. Furthermore, we found that the dispersion
relation is reflected in the echo frequency as a function of the
driving-pulse amplitude. We have confirmed numerically that
the echo frequency agrees with the predictions obtained from
exact solutions, and we have also found that the echoes appear
even in a nonintegrable system where the quasiparticles have a
finite lifetime. These results suggest that energy-band echoes
can be used to achieve momentum-resolved spectroscopy of
elementary optical excitations in a wide class of insulators.
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APPENDIX A: INTRABAND DYNAMICS IN A
BAND INSULATOR

We derive Eq. (16) by considering the electric-field-
induced dynamics of a noninteracting tight-binding model
[121–123]. The Hamiltonian for orbital λ can be written as

Hλ =
∞∑

m=0

[
gλ

mK̂m + gλ∗
m (K̂†)m

] − Ed(τ )R̂, (A1)

where K̂m = ∑
j c†

λ, jcλ, j+m and R̂ = ∑
j r jc

†
λ, jcλ, j , and gλ

m

is defined by ελ(k) = ∑∞
m=0 eikmgλ

m + c.c. We introduce the
time-evolution operator U (τ ) = UR(τ )UK (τ ) as

i∂τUR(τ ) = −Ed(τ )R̂UR, (A2)

i∂τUK (τ ) = U −1
R

∑
m

[
gλ

mK̂m + gλ∗
m (K̂†)m

]
URUK . (A3)
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FIG. 8. Light emission for a band-edge excitation pulse.
(a) Sketch of band-edge excitation. Only a part of Ẽ (ω) (gray shad-
ing) can be transferred to the wave function of the electron-hole pair.
(b) Spectral map of the electric current. The red, yellow, and green
dashed curves represent ω = ε1bi(ke − Af ), ε1bi(ke + �k − Af ), and
ε1bi(ke − �k − Af ), respectively, with ke = π/2 and �k ≈ 0.23. The
inset shows the time profile of the electric current for Ad = 1.08 (i.e.,
Af/π ≈ −0.52). The parameters are set to ωd = 0.1th, Ae = 0.002,
τe = −50t−1

h , and ωe = 3th = Eg.

The solution of Eq. (A2) is given by

UR(τ ) = e−iAd (τ )R̂, (A4)

where Ad(τ ) = − ∫ τ

τdi
dτ ′ Ed(τ ′) is the vector potential of the

driving pulse. Since [R̂, K̂m] = −mK̂m and [K̂, K̂†] = 0 in the
thermodynamic limit, we obtain the solution of Eq. (A3) in the
form

UK (τ ) = exp

{
−i

∑
m

[
χλ

m(τ )K̂m + χλ
m(τ )∗(K̂†)m

]}
, (A5)

where χλ
m(τ ) = ∫ τ

τdi
dτ ′ gλ

me−iAd (τ ′ )m. The matrix elements of
U (τ ) are given by

〈k|U (τ )|k′〉 = δk+Ad (τ ),k′ e−i
∫ τ

τdi
dτ ′ ελ[k′−Ad (τ ′ )] (A6)

with |k〉 = N−1/2 ∑
j eikr j c†

λ, j |0〉. Substituting Eq. (A6) into
ψk (τ ) = ∑

k′ 〈k|U (τ )|k′〉ψk′ (τdi ), we obtain Eq. (16).

APPENDIX B: BAND-EDGE EXCITATION

The expression for the electric current given in Eq. (18)
does not hold when the excitation pulse is resonant with a
band edge. In this case, only a part of the Fourier spectrum of
the excitation pulse is transcribed into the electron-hole wave
function, as shown in Fig. 8(a). This gives rise to the collapse
of the time-reversed waveform for τ > 0.

In Fig. 8(b), we show the time profile and spectral map
of the electric current in a one-dimensional band insulator
for a band-edge excitation pulse with ωe = Eg; the other pa-
rameters are the same as in Sec. III A. The oscillation from
time τ ≈ −40t−1

h to −20th is due to the presence of electron-
hole pairs with zero group velocity. A remnant of the echoes
is observed in J (τ ) at τ ≈ 100th, as shown in the inset of
Fig. 8(b). The Fourier spectra of J (τ ), shown in Fig. 8(b),
indicate the appearance of a dispersive peak, although it de-
viates from ω = ε1bi(ke − Af ) with ke = π/2. Considering the
spectral width of the excitation pulse, depicted in Fig. 8(a), we
also plot two curves, ω = ε1bi(ke + �k − Af ) and ε1bi(ke −
�k − Af ), where �k satisfies ε1bi(ke ± �k) = Eg + 2σ−1

e , in
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Fig. 8(b). The peak frequency is found to lie between the two
curves.

APPENDIX C: INTRABAND DYNAMICS OF THE
ONE-DIMENSIONAL TRANSVERSE-FIELD ISING MODEL

Here, we explain how the correction factor P0 emerges in
the energy-band echoes in the one-dimensional TFI model.
The Jordan-Wigner transformation is defined by

σ x
j = 2n j − 1, (C1)

S+
j = c†

j e
iπ

∑
l< j nl , (C2)

where c†
j denotes a fermion creation operator, n j = c†

j c j

represents the number operator, and S±
j = (σ y

j ± iσ z
j )/2 is

a spin raising/lowering operator with the x-axis being the
quantization axis. Since the Peierls substitution of the vector
potential rotates the transverse field around the z-axis, the
Hamiltonian in Eq. (31) can be diagonalized by the following
transformation:

σ̃ x
j = σ x

j cos A − σ
y
j sin A, (C3)

σ̃
y
j = σ x

j sin A + σ
y
j cos A, (C4)

σ̃ z
j = σ z

j , (C5)

which leaves the eigenvalues of HTFI unchanged. Accord-
ingly, the fermion operator c†

j becomes

c̃ j =
(

c j
e−iAσ z

j + 1

2
+ c†

j

e−iAσ z
j − 1

2

)
e−iA

∑
l< j σ z

l . (C6)

Since what is needed is a one-to-one correspondence of
the energy eigenstates between systems with infinitesimally
small differences in A, by assuming (e±iAσ z

j + 1)/2 ≈ 1 and
(e±iAσ z

j − 1)/2 ≈ 0 for |A| � 1, we have

c̃ j ≈ c je
−iA

∑
l< j σ z

l . (C7)

In the energy-band echo process, only the broken-symmetry
ground state |0〉 and low-lying excited states are involved
in the dynamics. In these states, the polarization density is
expected to be spatially uniform, and it is given approximately
by P0 = N−1 ∑

l〈0|σ z
l |0〉 = 〈0|σ z

l |0〉 for the excited states as
well as for the ground state. With the additional assump-
tion that quantum fluctuations due to the transverse field are
negligible [148], the operator

∑
l< j σ

z
l in Eq. (C7) can be

replaced with a c-number:
∑

l< j σ
z
l → jP0 for a domain wall

propagated in the positive direction. Then we obtain

η̃
†
−k ≈ ukc†

−(k+P0A) + ivkck+P0A, (C8)

where c†
k = N−1/2 ∑

j eik jc†
j , uk = cos(θk/2), and vk =

− sin(θk/2), with θk = tan−1[(−V sin k)/(−th − V cos k)],
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FIG. 9. Level statistics for the one-dimensional extended Hub-
bard model. (a) Nearest-neighbor level-spacing distribution for V =
2th. The smoothing parameter and bin width are set to σ = 0.5 and
δs = 0.1, respectively. (b) The parameter q as a function of V , for
L = 10–14. The inset shows q for V = 2th; the line is obtained by
the weighted least-squares method.

which diagonalizes the Hamiltonian. Equation (C8) indicates
that the energy after the driving pulse is given by ε1(k −
P0Af ).

APPENDIX D: LEVEL STATISTICS FOR THE EXTENDED
HUBBARD MODEL

Here, we show numerically the Wigner-Dyson level statis-
tics of the extended Hubbard model on a one-dimensional
chain with L sites [Eq. (36)]. Since the Hamiltonian
has global symmetries—i.e., the translational (T ), par-
ity (P), time-reversal (Θ), particle-hole (C), and spin-
rotational symmetries—we consider a subspace that contains
a ground state with electron density N/L = 1, total mag-
netization Sz = 0, spin quantum number S = 0, momentum
k = 0, and (P,Θ, C) = (+1,+1,+1) for L = 0 mod 4 and
(+1,−1,−1) for L = 2 mod 4. We use the Lanczos method
with desymmetrization of the Hamiltonian [149–151] and
projection onto the subspace with S = 0.

Figure 9(a) shows the nearest-neighbor level-spacing dis-
tributions P(s) for L = 10, 12, and 14, where we adopt an
unfolding method with the Gaussian kernel density estima-
tion. With increasing L, the distribution P(s) approaches the
Wigner-Dyson distribution PWD(s) = (π/2)s exp(−π2s2/4)
rather than the Poisson distribution PP(s) = exp(−s), indicat-
ing that the system is nonintegrable when V = 2th.

To discuss the V dependence of the level-spacing dis-
tribution, we introduce the Brody function defined by
Pq(s) = α(q)sq exp[−β(q)s1+q], where α(q) = (1 + q)β(q)
and β(q) = {�[(2 + q)/(1 + q)]}1+q, with � being the
Gamma function. Since Pq(s) reduces to the Poisson distribu-
tion for q = 0 and to the Wigner-Dyson distribution for q = 1,
the parameter q interpolates between integrable and nonin-
tegrable systems. We obtain q by fitting P(s) to the Brody
function, as shown in Fig. 9(b). The parameter q increases
with V and approaches 1 as L → ∞ for V > 0. Therefore,
the nearest-neighbor interaction V breaks the integrability, as
one naively expects.
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