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Magic-angle twisted bilayer systems with quadratic band touching:
Exactly flat bands with high Chern number
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Studies of twisted moiré systems have been mainly focused on two-dimensional (2D) materials such as
graphene with Dirac points and transition-metal dichalcogenides so far. Here we propose a twisted bilayer of 2D
systems which feature stable quadratic-band-touching points and find exotic physics different from previously
studied twisted moiré systems. Specifically, we show that exactly flat bands can emerge at magic angles and,
more interestingly, each flat band exhibits a high Chern number (C = ±2). We further consider the effect of
Coulomb interactions in such magic-angle twisted systems and find that the ground state supports the quantum
anomalous Hall effect with quantized Hall conductivity 2 e2

hc at certain filling. Furthermore, the possible physical
realization of such twisted bilayer systems will be briefly discussed.
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I. INTRODUCTION

Twisted moiré systems, especially twisted bilayer graphene
(TBG), have attracted enormous attention in recent years due
to the emergence of topological flat bands and various
interesting phases such as correlation insulators and uncon-
ventional superconductivity [1–26]. Since its experimental
discovery, extensive studies of such systems have been done
on both experimental and theoretical sides. The theoretical
prediction of flat bands in TBG was made by Bistritzer and
MacDonald (BM) [27]; in their paper the BM Hamiltonian
and the moiré band theory were developed to study TBG and
other twisted moiré systems. Furthermore, a generalization
of the BM model was developed [28], and a more complete
description and understanding of the flat bands in a twisted
bilayer system were obtained through perturbation theory.
Based on the moiré band theory, enormous numbers of studies
were done to explore the topological features [29–32] as well
as the interaction effects [33–80] of TBG systems; nontrivial
topology of the flat bands has been shown, and huge progress
has been made in understanding the interacting phases.

Although twisted systems have attracted vast research at-
tention, studies of them have been mainly limited to twisted
graphene systems with Dirac fermions and twisted transition-
metal dichalcogenides (TMDs) [81–96]; explorations of
twisted systems with other types of fermions, such as those
with quadratic band touchings, remain scarce. It is desirable
to study such new types of twisted systems mainly for the
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following reasons. On the one hand, the larger density of
states in these systems may lead to nontrivial interacting
phases [97–100]. On the other hand, the possibility of realiz-
ing higher-Chern-number flat bands in such twisted systems
is attractive as high-Chern-number flat bands can provide
an arena to realize various exotic fractional quantum Hall
effects [101–109] and its realization in quantum materials
remains elusive.

In this paper, we investigate a twisted bilayer of systems
with quadratic band touching, with focus on the twisted bi-
layer checkerboard (TBCB) model. The checkerboard lattice
model in each single layer was proposed by Sun, Yao, Fradkin,
and Kivelson (SYFK) [97] to realize a stable quadratic-band-
touching point (QBTP). Note that for AB-bilayer graphene,
the putative QBTP is not stable in the presence of trigonal
hopping [110]. We found that such twisted systems can host
two exactly flat bands per spin in the chiral limit, and, more
interestingly, each flat band has nontrivial topology with high
Chern number C = ±2. Note that in contrast to TBG with a
total of eight flat bands, there are only four flat bands in the
TBCB. In the presence of Coulomb interactions, by projecting
them onto the topological flat bands of C = ±2 in TBCB
systems similar to the analysis employed for TBG [72,73], we
showed that the interaction prefers the ground state with min-
imum Chern number; at charge neutrality (ν = 0) the ground
state is an insulator with Chern number C = 0, while for ν =
±1 the ground state possesses Chern number ±2 and exhibits
the quantum anomalous Hall effect [5,7,16,111]. We further
propose a possible optical-lattice realization of the TBCB
with topological flat bands, providing a promising route to
experimentally study various correlated phases in TBCB.

II. QUADRATIC-BAND-TOUCHING MODEL

One prototype model hosting stable quadratic-band-
touching points (QBTPs) is the checkerboard model proposed
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FIG. 1. (a) Schematic representation of the checkerboard lattice.
Blue and red sites constitute sublattices A and B, respectively. Note
that the intrasublattice hopping in sublattice A is opposite to that in
sublattice B. (b) The moiré pattern of the TBCB lattice.

by SYFK [97]. As shown in Fig. 1(a), it can be described
by the tight-binding Hamiltonian H = −∑

i, j ti jc
†
i c j , with the

hopping amplitude ti j between sites i and j. Here, we con-
sider nearest-neighbor hopping t and next-nearest-neighbor
hopping ±t ′, as shown in Fig. 1(a). Note that the lattice
consists of two sublattices labeled as A and B. By perform-
ing the Fourier transformation ci∈A(B) = 1√

N

∑
k eik·riψk,A(B),

where N is the number of unit cells, we obtain H0 =∑
k ψ†(k)H0(k)ψ (k) with ψ† = (ψ†

A, ψ
†
B ). H0(k) is the two-

band Bloch Hamiltonian: H0(k) = dx(k)σx + dz(k)σz, where
dz(k) = −4t cos(kx/2) cos(ky/2) and dx(k) = 2t ′(cos kx −
cos ky) [112]. It is straightforward to obtain the dispersion
of two bands: εk,± = ±√

d2
x (k) + d2

z (k). By expanding the
periodic Bloch Hamiltonian around M = (π, π ) where two
bands cross (namely, k → k + M) and keeping only the low-
est orders in k, we obtain

H0(k) = tkxkyσx + t ′(k2
x − k2

y

)
σz. (1)

The dispersion around M is quadratic, and M is a called
the quadratic-band-touching point (QBTP). To transform the
Hamiltonian into a form with explicit chiral symmetry, we can
perform a basis transformation ψ → Uψ with U = ei π

2 σ x
and

obtain H̃0(k) = U †H0(k)U as

H̃0(k) = tkxkyσx + t ′(k2
x − k2

y

)
σy. (2)

Note that the QBTP features a Berry phase of 2π , which
is twice of that of a Dirac point. Hereinafter, unless stated
otherwise, we shall assume t ′ = t/2, so that the dispersion
E±(k) = ± t

2 k2.

III. EXACTLY FLAT BANDS AT MAGIC ANGLES

It is desirable to investigate novel physics in a twisted
bilayer of systems with quadratic-band-touching fermions for
the exotic property of the QBTP [97]. In this paper, we
consider the twisted bilayer of the checkerboard lattice and
explore its physics such as totally flat bands at magic angles
and the high Chern number of those flat bands. The lattice
structure of the TBCB lattice is shown in Fig. 1(b).

Here we mainly focus on the low-energy physics of
the twisted bilayer system with quadratic band touching
by employing the continuum model describing the low-
energy band structure around the QBTP M. Using the
moiré band theory introduced by Bistritzer and MacDon-
ald [27], we obtained the interlayer hopping matrices T αβ

pp′ =

ΔK
Γ M
X

kx

ky

π

π(a) (b)

G1

G2

FIG. 2. (a) The Brillouin zone of the top (blue) and bottom (red)
layer. G1 and G2 are plotted in yellow. (b) The moiré Brillouin zone
of the TBCB lattice. The blue points represent the M points of the
top layer, while the red points represent the M points of the bottom
layer. We pick the square surrounded by dashed lines as our mBZ
and label the three high-symmetry points as 	, X , and M.

∑
G1G2

tp+G1



eiG1·τα−iG2·τβ δp+G1,p′+Mθ G2 , where G1 and G2 are
the reciprocal vectors of the lattice, α and β label the sublat-
tice indices A and B, respectively, Mθ represents the rotation
by angle θ , and τα(β ) represents the relative coordinates of the
sublattice α(β ) in the unit cell. For the checkerboard lattice
shown in Fig. 1(a), we have τA = (0, 0) and τB = ( 1

2 , 1
2 ) in

units of the lattice constant a. Inspired by the TBG theory,
we only keep the largest four tp terms, i.e., the terms with
p − p′ = Ci

4z(Mθ − 1)M, where i = 0, 1, 2, 3. With these four
hoppings we can construct the moiré Brillouin zone (mBZ) as
shown in Fig. 2(b), and the hopping matrices take the form

T1 =
(

wAA wAB

wAB wAA

)
, T2 =

(
wAA −wAB

−wAB wAA

)
, (3)

where T1 (T2) is the hopping matrix of hopping along the green
(brown) lines in the mBZ as shown in Fig. 2(b) [113].

Assuming the chiral limits wAA = 0 and wAB = w [114],
we numerically computed the moiré bands and observed ex-
actly flat bands for a series of magic angles as shown in
Fig. 3. The band structure is controlled by a single parameter,

FIG. 3. (a)–(d) The band structure of the TBCB lattice with
α = 0.26, 2.16, 5.93, and 11.62, respectively. For each case, there
exist two degenerate and totally flat bands in the middle. (e) The
bandwidth of the middle two bands. The bandwidth drops to exactly
zero at the magic angles. (f) The wave-function density for a single
zero mode at QBTP M along the line AA-AB; a zero point exists at
the AA stacking point.
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α = w

t ′k2
θ

= wa2

8t ′π2 sin2(θ/2)
, which is proportional to 1/ sin2(θ/2).

Note that the parameter α is qualitatively different from its
counterpart w

sin(θ/2) for TBG [114]. As a consequence, the
magic angle for the TBCB can be much larger compared
with TBG. This property makes the twist angle of the TBCB
system easier to be tuned experimentally.

IV. ORIGIN OF THE EXACTLY FLAT BANDS

We now provide an analytical understanding of the origin
of exactly flat bands at those magic angles. First, we perform

the Fourier transformation and obtain the hopping matri-
ces in real space: T (r) = ∑2

n=1 2Tn cos(qn · r), where q1 =
kθ√

2
(1, 1) and q2 = kθ√

2
(1,−1) with kθ = 2

√
2π

a sin θ
2 . Since the

system preserves the chiral symmetry when wAA = 0, we
choose the basis �(r) = (ψ1,A, ψ2,A, ψ1,B, ψ2,B)T, where 1
and 2 are the layer indices and A and B are the sublattice
indices, such that the Hamiltonian is given by

H (r) =
(

0 D(r)
D∗(−r) 0

)
, (4)

where D(r) is completely antiholomorphic:

D(r) =
(

−i t
2∂

2
2w[cos(q1 · r) − cos(q2 · r)]

2w[cos(q1 · r) − cos(q2 · r)] −i t
2∂

2

)
, (5)

with ∂ ≡ ∂z̄ = ∂x − i∂y [hereinafter we shall use r = (x, y)
and z = x + iy interchangeably].

The QBTP at M with zero energy is protected by symme-
try. Explicitly, the zero-energy wave function φM satisfying
HφM = 0 is given by φT

M = (0, 0, ψT
M), where ψM(r) is a

two-component wave function satisfying DψM(r) = 0. Since
D is antiholomorphic, we can construct the wave function
ψk(r) = fk(z)ψM(r), where fk(z) is a holomorphic function,
with the following feature: Dψk(r) = fk(z)DψM(r) = 0. If
such a holomorphic function fk(z) exists for every k in the
mBZ, the wave function of the totally flat band with momen-
tum k is obtained. Note that ψM satisfy the Moire boundary
condition ψM(z + Lj ) = σzψM(z), which means fk(z + Lj ) =
eik·L j fk(z), where Lj = L j · x̂ + iL j · ŷ [114]; consequently,
fk(z) must have a simple pole, and such a construction fails
in general. However, when ψM(r) has a zero point at special
twist angles, nonsingular fk(z) is permitted, and the exactly
flat bands from the construction above can exist. Such a spe-
cial twist angle at which ψM(r) has zeros is a so-called magic
angle. Indeed, our calculation of ψM with zero energy at the
magic angle shows that ψM(r) is zero when r is at the AA
stacking point, as shown in Fig. 3(f).

V. DERIVATION OF THE FIRST MAGIC ANGLE

Based on the requirement that at the magic angle the wave
function φM(r) = 0 for r at the AA stacking point, we can an-
alytically derive the parameter α corresponding to the magic
angle. Solving the equation DψM(r) = 0 perturbatively in the
parameter α < 1, we obtain the spinor wave function

ψM(r) = (1 + u1α + u2α
2 + · · · )

1√
2

(
1

±1

)
, (6)

where “· · · ” represents higher-order terms in α and u j (r) car-
ries momentum mq1 + nq2 with |m| + |n| = j. Up to the sec-
ond order u2, one can get the solution u1(r) = ∓2α[cos(q1 ·
r) + cos(q2 · r)] and u2(r) = 1

2α2[cos(2q1 · r) + cos(2q2 ·
r)]. Requiring that the wave function is zero at the AA
stacking point, namely, ψM(0) = (0, 0)T , we obtain the first
magic-angle solution α = α0 = 2 − √

3 ≈ 0.268, which is

very close to the numerically obtained first magic angle shown
in Fig. 3(a).

Another (probably more intuitive) way to derive the magic
angle is to require the vanishing of the inverse effective mass
of the fermions at the QBTP M, which is qualitatively differ-
ent from the TBG system, which only requires the vanishing
of the Fermi velocity at magic angles. Requiring the vanishing
of the inverse effective mass of the fermions at the QBTP M,
we obtain the first magic-angle parameter α = 1√

12
≈ 0.289,

which is also quite close to the value obtained numerically in
Fig. 3(a). Details of computing the inverse effective mass are
shown in Appendix B.

VI. HIGH CHERN NUMBER OF EXACTLY FLAT BANDS

To analyze the topology of these flat bands, we first calcu-
late the Wilson loop’s winding number of the TBCB lattice.
For the Bloch states in the moiré Brillouin zone, to define
the Wilson loop, we need to first restore the periodicity of the
Bloch states and thus need to introduce the extra embedding
matrix V G

Q,Q′ = δQ−G,Q′ . Consequently, the Wilson loop for the
TBCB lattice is calculated by

W (k1) = U †
k1,0

Uk1,
2π
N

· · ·U †
k1,

(N−1)×2π

N

V GUk1,0, (7)

where Uk1,k2 = Uk = (|u1k〉, . . . , |uN k〉) with k =
(k1, k2) [29,32,115]. We assume that b1 and b2 are the
reciprocal vectors of the moiré lattice, k = k1b1 + k2b2. We
keep k1 unchanged and vary k2 to obtain the flow of the
Wilson loop spectrum along k1. We find that the Wilson loop
winds from ±1 to ∓1 twice while k1 goes from −π to π ,
so the winding of the Wilson loop at the first magic angle
is ±2, as shown in Fig. 4. This is also true for other magic
angles that we identified. When adding more bands into the
Wilson loop calculation such as the middle six bands, the
winding is still preserved, which suggests that the topology is
stable. In fact, the antiunitary particle-hole symmetry P (see
Appendix C) protects the degeneracy of the Wilson bands at
k1 = 0/π in the same way as in TBG [32].

In the noninteracting limit, the degeneracy of the two
flat bands for the TBCB is protected by the time-reversal
symmetry T . To give a simple illustration of the topology
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with the existence of interactions, we apply a weak-time-
reversal-symmetry-breaking term which preserves all other
symmetries except the mirror symmetry: Aσy sin( kx

2 ) sin( ky

2 ).
The degeneracy is then lifted, while the flatness of bands is
still well preserved. Assuming A/wAB = 0.5, we have cal-
culated the Berry curvature of the two flat bands and the
corresponding Chern number: Cn = 1

2π

∫
mBZ Bndkx dky . Our re-

sult shows that the lower band hosts a Chern number of ∓2
while the upper band host a Chern number of ±2, where
the sign of the Chern number depends on the sign of A. For
a spinless TBCB system, this is the only possible way for
the two bands to split; the topology of the system is highly
nontrivial with high Chern number C = ±2. It is noteworthy
that this high Chern number of ±2 is realized in the flat bands
of a twisted bilayer system [116] with stable QBTPs, and in
our system, the QBTPs have only one valley, which will lead
to different physics.

VII. CORRELATION EFFECT

Interactions can play an essential role in the physics of
twisted bilayer systems [33–40,42–47,49–79]. Here, we con-
sider the Coulomb interactions

HI = 1

2A

∑
G∈G, q∈mBZ

V (q + G)δρ−q−Gδρq+G, (8)

where δρq = ∑
r eiq·r(ρr − 1

2δq,0δG,0), G represents the moiré
reciprocal lattice vectors in the Brillouin zone (BZ) of the
original lattice, and V (q) = πd2Ud

tanh(d|q|/2)
d|q|/2 is the screened

Coulomb potential with Ud = e2/(εd ) [72]; d is the distance
between the TBG and the top or bottom gate, and ρr is the
charge density at r. To solve its low-energy physics, one
can project the Hamiltonian onto the subspace of the two
flat bands. To do so, we employ fermion operators in the
mBZ energy band basis c†

n,s(k) = ∑
Qα uQ,α,n(k) f †

α,s(k + Q),
where Q ∈ Q± and Q± is the collection of the sites of layer
l = ± of the mBZ as plotted in Fig. 2. Here, n is the moiré
band index, and n = ±1 represents the two flat bands. Due to
its nontrivial topology, we cannot define a symmetric smooth
and periodic wave function uQ,α,n(k) [68]. Here we adopt
a periodic gauge that satisfies uQ,α,n(k + bi ) = uQ−G,α,n(k).

FIG. 4. Wilson loop bands of the flat bands at the first magic
angle, α = 0.26. The two Wilson loops wind from ±1 to ∓1 twice
as k1 varies from −π to π . Thus the winding number of the Wilson
loop is ±2.

Similar to the treatment of interactions in TBG [72,73], af-
ter the projection into the flat band subspace the interacting
Hamiltonian for the TBCB system is written as

HI = 1

2
tot

∑
q∈mBZ

∑
G∈G

O−q,−GOq,G, (9)

where 
tot is the total area of the TBCB system,

Oq,G =
∑

ks

∑
m,n=±1

√
V (q + G)Mm,n(k, q + G)

×
(

c†
m,s(k + q)cn,s(k) − 1

2
δq,0δm,n

)
, (10)

and

Mmn(k, q + G) =
∑

α, Q∈Q±

u∗
Q−G,α,m(k + q)uQ,α,n(k). (11)

As discussed in Appendix C, considering the C2z, T , and P
symmetries, the M matrix is constrained as follows:

M(k, q + G) = ζ 0α0(k, q + G) + iζ yα2(k, q + G), (12)

where ζ represents the Pauli matrix for the two-flat-band
subspace, α0(k, q + G) and α2(k, q + G) are real numbers
with the constraints α0(k, q + G) = α0(k + q,−q − G) and
α2(k, q + G) = −α2(k + q,−q − G), and αa(k, q + G) =
αa(−k,−q − G) for a = 0, 2 (see details in Appendix C).

In the Chern band basis [32,72] which is the eigen-
state of the flat bands with Chern number C = 2e: d†

k,e,s =
c†

1,s (k)+iec†
−1,s (k)√

2
, where e = ±1, we can rewrite the operator

Oq,G in a diagonal way:

Oq,G =
∑

ks

∑
e=±1

√
V (q + G)Me(k, q + G)

×
(

d†
k+q,e,sdk,e,s − 1

2
δq,0

)
, (13)

where Me(k, q + G) = α0(k, q + G) + ieα2(k, q + G). Fol-
lowing the Lagrange multiplier method introduced in
Refs. [72,73], the ground state satisfies the equation
(Oq,G − AGNδq,0)|�〉 = 0, where N is the total number
of electrons and AG is the multiplier (see details in
Appendix D). Assuming an integer filling ν and AG =
ν
N

√
V (G)

∑
k α0(k, G), the ground states take the form

|�ν+,ν−
ν 〉 = ∏

k

∏ν+
j1=1 d†

k,+1,s j1

∏ν−
j2=1 d†

k,−1,s j2
|0〉, where ν +

2 = ν+ + ν− is the total filling factor of the system with ν±
being the integer filling of the Chern bands with Chern num-
ber C = ±2. It is clear that the state |�ν+,ν−

ν 〉 carries a Chern
number of 2(ν+ − ν−) and different states with the same ν are
degenerate.

In real TBCB systems, it is difficult to tune the intrasublat-
tice hopping wAA to be strictly zero. When wAA �= 0, neither
the particle-hole symmetry nor the chiral symmetry holds (see
Appendix C for details). Thus the M matrix takes a general
form

M(k, q + G) = ζ 0α0(k, q + G) + ζ xα1(k, q + G)

+ iζ yα2(k, q + G) + ζ zα3(k, q + G). (14)
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In the Chern basis, the operator Oq,G = O0
q,G + O1

q,G, where
O0

q,G is given by Eq. (13), while O1
q,G reads

O1
q,G =

∑
ks,e=±1

√
V (q + G)Fe(k, q + G)d†

k+q,−e,sdk,e,s, (15)

where Fe(k, q + G) = ieα1(k, q + G) + α3(k, q + G).
When the system has an even filling factor ν and assuming
the flat band approximation, the ground state of the operator
O1

q,G becomes |�ν〉 = ∏
k

∏(ν+2)/2
j=1 d†

k,+1,s j
d†

k,−1,s j
|0〉, which

has a zero Chern number. For odd filling factors ν, after
taking O1

q,G as a perturbation, the degeneracy of the different
Chern states will be lifted, and O1

q,G prefers the ground state
with minimum Chern number. For instance, when ν = ±1,
the system possesses a ground state with broken time-reversal
symmetry and high Chern number C = ±2.

VIII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we proposed a twisted bilayer system of
fermions with C4-symmetry-protected quadratic band touch-
ing, which can exhibit exactly flat bands with high Chern
numbers C = ±2. Our system’s symmetry and the stable
QBTPs are noteworthy aspects of this study of the twisted
graphene system. The origin of the exactly flat band is related
to the antiholomorphic property of the Hamiltonian in the
chiral limit with t �= 2t ′. At the first magic angle, the flatness
of the topological bands is rather robust against deviation from
the exactly flat conditions; that is, the topological bands in the
middle exhibiting a high Chern number of ±2 are nearly flat
for a wide range of parameters. See details in Appendix A.

Such a TBCB lattice may be realized by loading cold atoms
into a specially designed optical-lattice system [117,118].
It has been proposed that the twisted square lattice can be
realized by introducing four states (labeled by spin ±1/2
and two layers) and constraining each “layer” by a set of
square optical lattices which differ by polarization and a small
twisting angle [119]. If 2π fluxes are added to the square
plaquettes such that the hopping amplitude along its diagonal
is −t ′, the TBCB lattice may be experimentally realized, and
the quantum anomalous Hall effect associated with the flat
band with high Chern number may be observed. Furthermore,
away from integer filling, it is also possible to realize inter-
esting phases such as unconventional superconductivity and
fractional Chern insulators, which is left for future studies.
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APPENDIX A: ROBUSTNESS OF THE FLAT BANDS

As discussed in the main text, the exactly flat band cri-
teria of the TBCB require t = 2t ′ and wAA = 0. In this

FIG. 5. (a) The bandwidth of the middle two flat bands while
varying t from 500 to 1500 meV. (b) The band structure with t ′ =
500 meV, t = 800 meV, wAA = 0.0 meV, wAB = 2.05 meV, and θ =
1.6◦. (c) The bandwidth of the middle two flat bands while varying
wAA from 0 to 2.0 meV. (d) The band structure with t ′ = 500 meV,
t = 1000 meV, wAA = 0.5 meV, wAB = 2.05 meV, and θ = 1.6◦.

Appendix we show how the flatness of the two flat bands is
affected by these two parameters near the first magic angle.
We calculated the bandwidth of the middle two flat bands
while varying t or wAA. The results are shown in Fig. 5. Notice
that if wAA �= 0, the particle-hole symmetry is broken, and
thus the flat bands deviate from zero energy.

As shown in Fig. 5(a), as t varies from 500 to 1500 meV,
the bandwidth of the flat bands varies from 0 to 2.5 meV,
which is relatively small. As wAA varies from 0 to 2.0 meV
[Fig. 5(c)], the bandwidth of the flat bands varies from 0 to
3 meV. The flat bands are quite robust against the deviation of
the parameters.

APPENDIX B: ANOTHER DERIVATION
OF THE FIRST MAGIC ANGLE

We now provide another derivation of the first magic angle
by requiring the vanishing of the inverse effective mass of
the fermions at the QBTP. (Note that this is in contrast to the
magic-angle definition of vanishing Fermi velocity in TBG.)
Here we only consider the nearest four M points of the bottom
layer (red) to the center point of the top layer (blue) in the
mBZ, as shown in Fig. 2 of the main text. We write the
ten-band Hamiltonian in the momentum space for these five
points in the mBZ:

H(k) =

⎛
⎜⎜⎜⎝
H0(0) T1 T2 T3 T4

T1 H0(q1) 0 0 0
T2 0 H0(q2) 0 0
T3 0 0 H0(q3) 0
T4 0 0 0 H0(q4)

⎞
⎟⎟⎟⎠,

(B1)
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where H0(q) = ( 0 −it ′(k − q)2

−it ′(k − q)2 0
), T1 =

T3 = T1, and T2 = T4 = T2. The wave function
(ψt , ψb,1, ψb,2, ψb,3, ψb,4) satisfies the Schrödinger equation:

H0(0)ψt +
∑

i

Tiψb,i = Eψt , (B2a)

Tiψt + H0(qi)ψb,i = Eψb,i, i = 1, 2, 3, 4. (B2b)

From Eq. (B2b) we obtain that ψb,i = (E −
H0(qi))−1Tiψt , from which we can get the effective
Schrödinger equation for ψt :[

H0(0) +
∑

i

Ti((E + H0(qi))Ti

E2 − t ′2(k2 + q2
i − 2k · qi

)2

]
ψt = Eψt .

(B3)
Neglecting the E2 and kn for n > 2 terms as small and

noticing that q2
i = 1, we get

H0(0) − ∑
i

TiH0(qi )Ti

t ′2(1+k2−2k· qi )
2

1 + ∑
i

w2

t ′2(1+k2−2k· qi )
2

ψt = Eψt . (B4)

Substituting the Ti we have obtained before, one can get the
effective Hamiltonian

H =
(

0 −iteffk
2

−iteffk2 0

)
, (B5)

with teff = 1−12α2

1+4α2 t ′. When α = 1√
12

≈ 0.289, teff ∝ m−1
eff tends

to zero and flat bands emerge. This result is close to the first
magic angle we obtained numerically.

APPENDIX C: SYMMETRIES OF THE TWISTED BILAYER
CHECKERBOARD LATTICE AND GAUGE FIXING

The Hamiltonian of the twisted bilayer checkerboard lat-
tice is

H =
∑

l

∑
k

f †
l,khlθ/2(k) fl,k

+
∑

k

2∑
i=1

( f †
1,kTi f−1,k+qi + f †

1,kTi f−1,k−qi + H.c.),

(C1)

where hlθ/2(k) is the kinetic term of the checkerboard lattice
with a twist angle lθ/2 from the x axis [l = +1 (l = −1)
for the upper (lower) layer] and has the form of Eq. (1) in
the main text. Let σ and τ represent the Pauli matrix for
the sublattice degrees of freedom and the layer degrees of
freedom, respectively. The Hamiltonian with the moiré BZ as
shown in Fig. 2(b) respects the following spatial symmetries.

C2x/y symmetry

C2x/y fkC−1
2x/y = σz fC2x/yk, [H,C2x/y] = 0, (C2)

C4z symmetry

C4z fkC−1
4z = σy fRπ/2k, [H,C4z] = 0. (C3)

The Hamiltonian also possesses particle-hole symmetry
and time-reversal symmetry.

Particle-hole symmetry

P fkP−1 = σy f †
−k, PH (k)P−1 = −H∗(−k), (C4)

Time-reversal symmetry

T fkT −1 = f−k, [H, T ] = 0. (C5)

Notice that here the particle-hole symmetry is a rigorous
one but will be broken when wAA �= 0, which is different from
TBG. The system also preserves chiral symmetry if wAA = 0
with the operator σyT .

With these symmetries, we can fix the gauge of the wave
function. We introduce the sewing matrix Bg(k) for the C2z,
T , and P symmetries.

[D(C2z )]un(k) =
∑

[BC2z (k)]m,num(−k), (C6)

[D(T )]un(k) =
∑

[BT (k)]m,num(−k), (C7)

[D(P)]un(k) =
∑

[BP(k)]m,num(−k). (C8)

The sewing matrix can be simplified as

[BC2z (k)]m,n = δm,neiϕ
C2z (k)
n , [BT (k)]m,n = δm,neiϕT

n (k),

[BP(k)]m,n = δ−m,neiϕP
n (k). (C9)

These three symmetry operators can be combined to obtain
two independent symmetry operations, C2zP and C2zT , which
keep k unchanged. The corresponding sewing matrices are
defined by the following equations:

[D(C2z )D(T )]u∗
n(k) =

∑
m

[BC2zT (k)]m,num(k),

[D(P)D(C2z )]un(k) =
∑

m

[BC2zP(k)]m,num(k). (C10)

The symmetry operations C2zP and C2zT satisfy the properties

(C2zT )2 = (C2zP)2 = 1, [C2zT,C2zP] = 1. (C11)

Thus we can adopt the following k-independent sewing ma-
trices:

[BC2zT (k)]m,n = δm,n, [BC2zP(k)]m,n = − sgn(n)δ−m,n.

(C12)
These sewing matrices can also be expressed by the Pauli
matrix for the two flat bands

BC2zT (k) = ζ 0, BC2zP(k) = iζ y, (C13)

where ζ represents the Pauli matrix for the two-flat-band
subspace. We have chosen a similar form to the sewing matrix
of the TBG systems adopted in Ref. [72], and the difference
is that TBCB systems do not have two valleys. The wave
function and thus the M matrix introduced in the main text
and Appendix D,

Mmn(k, q + G) =
∑

α,Q∈Q±

u∗
Q−G,α,m(k + q)uQ,α,n(k), (C14)

are also constrained by the two symmetries, C2zT and C2zP,
with the sewing matrices we obtained in Eq. (C13),

Mmn(k, q + G) = M∗
mn(k, q + G),

Mmn(k, q + G) = [ζ yM(k, q + G)ζ y]m,n. (C15)

043151-6



MAGIC-ANGLE TWISTED BILAYER SYSTEMS WITH … PHYSICAL REVIEW RESEARCH 4, 043151 (2022)

Thus the M matrix takes the form

M(k, q + G) = ζ 0α0(k, q + G) + iζ yα2(k, q + G), (C16)

where α0(k, q + G) and α2(k, q + G) are real numbers. Be-
sides, from the definition of the M matrix in the main text, the
M matrix also satisfies the Hermiticity condition

M∗
mn(k, q + G) = Mnm(k + q,−q − G), (C17)

which means that αi(k, q + G) satisfy

α0(k, q + G) = α0(k + q,−q − G),

α2(k, q + G) = −α2(k + q,−q − G). (C18)

We can also fix the relative gauge between the wave func-
tions with momentum k and those with momentum −k by
C2z symmetry. Notice that in the TBCB system, C2z, T , and P
symmetries commute with each other, and we can choose the
sewing matrix for these three symmetries:

BC2z (k) = ζ 0, BT (k) = ζ 0, BP(k) = iζ y. (C19)

Thus the M matrix also has the following constraint implied
between the momentum k and the momentum −k:

Mmn(k, q + G) = Mmn(−k,−q − G), (C20)

which implies that

αa(k, q + G) = αa(−k,−q − G) for a = 0, 2. (C21)

When the hopping wAA �= 0, the particle and chiral symme-
tries are broken, and Eq. (C15) no longer holds. Constrained
by the real condition, the M matrix takes a more general form,

M(k, q + G) = ζ 0α0(k, q + G) + ζ xα1(k, q + G)

+ iζ yα2(k, q + G) + ζ zα3(k, q + G)

= M0(k, q + G) + M1(k, q + G), (C22)

where αi(k, q + G) (i = 0, 1, 2, 3) are real numbers.
Similar to the chiral case introduced above, now αi(k, q +

G) are also constrained by the Hermiticity condition and the
C2z symmetry:

αa(k, q + G)αa(k + q,−q − G) for a = 0, 1, 3,

α2(k, q + G) = −α2(k + q,−q − G), (C23)

αa(k, q + G) = αa(−k,−q − G), for a = 0, 1, 2, 3.

(C24)

APPENDIX D: SOLVING THE GROUND STATE
OF THE INTERACTING HAMILTONIAN

The Coulomb interacting Hamiltonian of the system in the
momentum space is written as

H = 1

2A

∑
G∈G, q∈mBZ

V (q + G)δρ−q−Gδρq+G, (D1)

where the gate Coulomb potential is V (q) =
πd2Ud

tanh(d|q|/2)
d|q|/2 . Under the Chern band basis, the charge

density term δρ−q−G is

δρG+q =
∑
k,s

∑
m,n

Mm,n(k, q + G)

×
(

c†
m,s(k + q)cn,s(k) − 1

2
δq,0δmn

)
, (D2)

where

Mm,n(k, q + G) =
∑

α

∑
Q∈Q±

u∗
Q−G,α,m(k + q)uQ,α,n(k).

(D3)
The interacting Hamiltonian now is written in a semiposi-

tive definite form

H = 1

2
tot

∑
q∈mBZ

∑
G∈G

O−q,−GOq,G, (D4)

where Oq,G = ∑
ks

∑
m,n=±1

√
V (q + G)Mm,n(k, q +

G)(c†
m,s(k + q)cn,s(k) − 1

2δq,0δm,n).
Notice that the number of the electron N is conserved; thus

we are able to introduce a Lagrange multiplier AG

H = 1

2
tot

∑
G∈G

[(∑
q

(Oq,G − AGNδq,0)(O−q,−G

− A−GNδ−q,0)

)
+ 2A−GNO0,G − A−GAGN2

]
. (D5)

When the flat metric condition [72,73] Mm,n(k, G) =
ξ (G)δm,n is satisfied or filling factor ν = 0, the last two terms
in Eq. (D5) are constant which depend on N . In this way, one
can easily conclude that the ground state of the interacting
Hamiltonian satisfies the equation

(Oq,G − AGNδq,0)|�〉 = 0. (D6)

To solve the ground state, one only needs to solve Eq. (D6).
In general, the flat metric condition is not strictly satisfied ex-
cept for G = 0. Fortunately, when the flat metric condition is
not largely violated, the ground states which satisfy Eq. (D6)
persist as long as the gap between the ground states and
exciting states is not closed. Since the wave function decreases
exponentially as G increases for the moiré Hamiltonian [28],
one can assume that the flat metric condition is not largely
violated and the ground state derived above is the real ground
state of the system. Future studies can adopt the real-space
projection method [50,121] to confirm our conclusion for
ground states.
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[48] B. Roy and V. Juričić, Unconventional superconductivity in
nearly flat bands in twisted bilayer graphene, Phys. Rev. B 99,
121407(R) (2019).

[49] J. González and T. Stauber, Kohn-Luttinger Superconductivity
in Twisted Bilayer Graphene, Phys. Rev. Lett. 122, 026801
(2019).

[50] J. Kang and O. Vafek, Strong Coupling Phases of Partially
Filled Twisted Bilayer Graphene Narrow Bands, Phys. Rev.
Lett. 122, 246401 (2019).

[51] K. Seo, V. N. Kotov, and B. Uchoa, Ferromagnetic Mott State
in Twisted Graphene Bilayers at the Magic Angle, Phys. Rev.
Lett. 122, 246402 (2019).

[52] B. Lian, Z. Wang, and B. A. Bernevig, Twisted Bilayer
Graphene: A Phonon-Driven Superconductor, Phys. Rev. Lett.
122, 257002 (2019).

[53] Y. Da Liao, Z. Y. Meng, and X. Y. Xu, Valence Bond Orders
at Charge Neutrality in a Possible Two-Orbital Extended Hub-
bard Model for Twisted Bilayer Graphene, Phys. Rev. Lett.
123, 157601 (2019).

[54] G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H.
MacDonald, and E. Tutuc, Correlated Insulating States in
Twisted Double Bilayer Graphene, Phys. Rev. Lett. 123,
197702 (2019).

[55] X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Geometric
and Conventional Contribution to the Superfluid Weight in
Twisted Bilayer Graphene, Phys. Rev. Lett. 123, 237002
(2019).

[56] T. Huang, L. Zhang, and T. Ma, Antiferromagnetically ordered
Mott insulator and d + id superconductivity in twisted bilayer
graphene: A quantum Monte Carlo study, Sci. Bull. 64, 310
(2019).

[57] F. Wu and S. Das Sarma, Collective Excitations of Quantum
Anomalous Hall Ferromagnets in Twisted Bilayer Graphene,
Phys. Rev. Lett. 124, 046403 (2020).

[58] M. Xie and A. H. MacDonald, Nature of the Correlated Insu-
lator States in Twisted Bilayer Graphene, Phys. Rev. Lett. 124,
097601 (2020).

[59] N. Bultinck, S. Chatterjee, and M. P. Zaletel, Mechanism
for Anomalous Hall Ferromagnetism in Twisted Bilayer
Graphene, Phys. Rev. Lett. 124, 166601 (2020).

[60] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Topology-
Bounded Superfluid Weight in Twisted Bilayer Graphene,
Phys. Rev. Lett. 124, 167002 (2020).

[61] C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Ferromag-
netism in Narrow Bands of Moiré Superlattices, Phys. Rev.
Lett. 124, 187601 (2020).

[62] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath,
Fractional Chern insulator states in twisted bilayer graphene:
An analytical approach, Phys. Rev. Res. 2, 023237 (2020).

[63] C. Repellin and T. Senthil, Chern bands of twisted bilayer
graphene: Fractional Chern insulators and spin phase transi-
tion, Phys. Rev. Res. 2, 023238 (2020).

[64] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä, and P.
Törmä, Superfluid weight and Berezinskii-Kosterlitz-Thouless
transition temperature of twisted bilayer graphene, Phys. Rev.
B 101, 060505(R) (2020).

[65] T. Soejima, D. E. Parker, N. Bultinck, J. Hauschild, and M. P.
Zaletel, Efficient simulation of moiré materials using the den-

043151-9

https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevB.103.205412
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevB.97.235453
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1103/PhysRevB.99.121407
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevLett.123.157601
https://doi.org/10.1103/PhysRevLett.123.197702
https://doi.org/10.1103/PhysRevLett.123.237002
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1103/PhysRevLett.124.046403
https://doi.org/10.1103/PhysRevLett.124.097601
https://doi.org/10.1103/PhysRevLett.124.166601
https://doi.org/10.1103/PhysRevLett.124.167002
https://doi.org/10.1103/PhysRevLett.124.187601
https://doi.org/10.1103/PhysRevResearch.2.023237
https://doi.org/10.1103/PhysRevResearch.2.023238
https://doi.org/10.1103/PhysRevB.101.060505


MING-RUI LI, AI-LEI HE, AND HONG YAO PHYSICAL REVIEW RESEARCH 4, 043151 (2022)

sity matrix renormalization group, Phys. Rev. B 102, 205111
(2020).

[66] Y. Zhang, K. Jiang, Z. Wang, and F. Zhang, Correlated insulat-
ing phases of twisted bilayer graphene at commensurate filling
fractions: A Hartree-Fock study, Phys. Rev. B 102, 035136
(2020).

[67] O. Vafek and J. Kang, Renormalization Group Study of Hid-
den Symmetry in Twisted Bilayer Graphene with Coulomb
Interactions, Phys. Rev. Lett. 125, 257602 (2020).

[68] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vishwanath,
and M. P. Zaletel, Ground State and Hidden Symmetry of
Magic-Angle Graphene at Even Integer Filling, Phys. Rev. X
10, 031034 (2020).

[69] M. Christos, S. Sachdev, and M. S. Scheurer, Superconduc-
tivity, correlated insulators, and Wess–Zumino–Witten terms
in twisted bilayer graphene, Proc. Natl. Acad. Sci. USA 117,
29543 (2020).

[70] Y. Da Liao, J. Kang, C. N. Breiø, X. Y. Xu, H.-Q. Wu, B. M.
Andersen, R. M. Fernandes, and Z. Y. Meng, Correlation-
Induced Insulating Topological Phases at Charge Neutrality in
Twisted Bilayer Graphene, Phys. Rev. X 11, 011014 (2021).

[71] J. Liu and X. Dai, Theories for the correlated insulating states
and quantum anomalous Hall effect phenomena in twisted
bilayer graphene, Phys. Rev. B 103, 035427 (2021).

[72] B. A. Bernevig, Z.-D. Song, N. Regnault, and B. Lian, Twisted
bilayer graphene. III. Interacting Hamiltonian and exact sym-
metries, Phys. Rev. B 103, 205413 (2021).

[73] B. Lian, Z.-D. Song, N. Regnault, D. K. Efetov, A. Yazdani,
and B. A. Bernevig, Twisted bilayer graphene. IV. Exact in-
sulator ground states and phase diagram, Phys. Rev. B 103,
205414 (2021).

[74] B. A. Bernevig, B. Lian, A. Cowsik, F. Xie, N. Regnault,
and Z.-D. Song, Twisted bilayer graphene. V. Exact analytic
many-body excitations in Coulomb Hamiltonians: Charge gap,
Goldstone modes, and absence of Cooper pairing, Phys. Rev.
B 103, 205415 (2021).

[75] F. Xie, A. Cowsik, Z.-D. Song, B. Lian, B. A. Bernevig, and N.
Regnault, Twisted bilayer graphene. VI. An exact diagonaliza-
tion study at nonzero integer filling, Phys. Rev. B 103, 205416
(2021).

[76] S. Liu, E. Khalaf, J. Y. Lee, and A. Vishwanath, Nematic
topological semimetal and insulator in magic-angle bilayer
graphene at charge neutrality, Phys. Rev. Res. 3, 013033
(2021).

[77] K. Hejazi, X. Chen, and L. Balents, Hybrid Wannier Chern
bands in magic angle twisted bilayer graphene and the quan-
tized anomalous Hall effect, Phys. Rev. Res. 3, 013242 (2021).

[78] E. Khalaf, S. Chatterjee, N. Bultinck, M. P. Zaletel, and
A. Vishwanath, Charged skyrmions and topological origin
of superconductivity in magic-angle graphene, Sci. Adv. 7,
eabf5299 (2021).

[79] C. Lewandowski, D. Chowdhury, and J. Ruhman, Pairing in
magic-angle twisted bilayer graphene: Role of phonon and
plasmon umklapp, Phys. Rev. B 103, 235401 (2021).

[80] J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang, Exact
Landau Level Description of Geometry and Interaction in a
Flatband, Phys. Rev. Lett. 127, 246403 (2021).

[81] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hub-
bard Model Physics in Transition Metal Dichalcogenide Moiré
Bands, Phys. Rev. Lett. 121, 026402 (2018).

[82] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,
Topological Insulators in Twisted Transition Metal Dichalco-
genide Homobilayers, Phys. Rev. Lett. 122, 086402 (2019).

[83] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K. Watanabe,
T. Taniguchi, A. H. MacDonald, J. Shan, and K. F. Mak,
Simulation of Hubbard model physics in WSe2/WS2 moiré
superlattices, Nature (London) 579, 353 (2020).

[84] E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao,
X. Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, M.
Blei, J. D. Carlström, K. Watanabe, T. Taniguchi, S. Tongay,
M. Crommie, A. Zettl, and F. Wang, Mott and general-
ized Wigner crystal states in WSe2/WS2 moiré superlattices,
Nature (London) 579, 359 (2020).

[85] H. Pan, F. Wu, and S. Das Sarma, Quantum phase diagram of
a moiré-Hubbard model, Phys. Rev. B 102, 201104(R) (2020).

[86] S. Shabani, D. Halbertal, W. Wu, M. Chen, S. Liu, J. Hone, W.
Yao, D. N. Basov, X. Zhu, and A. N. Pasupathy, Deep moiré
potentials in twisted transition metal dichalcogenide bilayers,
Nat. Phys. 17, 720 (2021).

[87] Y. Zhang, T. Liu, and L. Fu, Electronic structures, charge trans-
fer, and charge order in twisted transition metal dichalcogenide
bilayers, Phys. Rev. B 103, 155142 (2021).

[88] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi, J.
Hone, V. Elser, K. F. Mak, and J. Shan, Correlated insulat-
ing states at fractional fillings of moiré superlattices, Nature
(London) 587, 214 (2020).

[89] Z. Bi and L. Fu, Excitonic density wave and spin-valley super-
fluid in bilayer transition metal dichalcogenide, Nat. Commun.
12, 642 (2021).

[90] N. Morales-Durán, A. H. MacDonald, and P. Potasz, Metal-
insulator transition in transition metal dichalcogenide het-
erobilayer moiré superlattices, Phys. Rev. B 103, L241110
(2021).

[91] J. Zang, J. Wang, J. Cano, and A. J. Millis, Hartree-Fock study
of the moiré Hubbard model for twisted bilayer transition
metal dichalcogenides, Phys. Rev. B 104, 075150 (2021).

[92] Z. Zhang, Y. Wang, K. Watanabe, T. Taniguchi, K. Ueno, E.
Tutuc, and B. J. LeRoy, Flat bands in twisted bilayer transition
metal dichalcogenides, Nat. Phys. 16, 1093 (2020).

[93] T. Li, S. Jiang, B. Shen, Y. Zhang, L. Li, Z. Tao, T. Devakul,
K. Watanabe, T. Taniguchi, L. Fu, J. Shan, and K. F. Mak,
Quantum anomalous Hall effect from intertwined moiré bands,
Nature (London) 600, 641 (2021).

[94] T. Devakul, V. Crépel, Y. Zhang, and L. Fu, Magic in twisted
transition metal dichalcogenide bilayers, Nat. Commun. 12,
6730 (2021).

[95] T. Devakul and L. Fu, Quantum Anomalous Hall Effect from
Inverted Charge Transfer Gap, Phys. Rev. X 12, 021031
(2022).

[96] D. Kiese, Y. He, C. Hickey, A. Rubio, and D. M. Kennes,
TMDs as a platform for spin liquid physics: A strong cou-
pling study of twisted bilayer WSe2, APL Mater. 10, 031113
(2022).

[97] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Topological
Insulators and Nematic Phases from Spontaneous Symmetry
Breaking in 2D Fermi Systems with a Quadratic Band Cross-
ing, Phys. Rev. Lett. 103, 046811 (2009).

[98] O. Vafek and K. Yang, Many-body instability of coulomb in-
teracting bilayer graphene: Renormalization group approach,
Phys. Rev. B 81, 041401(R) (2010).

043151-10

https://doi.org/10.1103/PhysRevB.102.205111
https://doi.org/10.1103/PhysRevB.102.035136
https://doi.org/10.1103/PhysRevLett.125.257602
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1073/pnas.2014691117
https://doi.org/10.1103/PhysRevX.11.011014
https://doi.org/10.1103/PhysRevB.103.035427
https://doi.org/10.1103/PhysRevB.103.205413
https://doi.org/10.1103/PhysRevB.103.205414
https://doi.org/10.1103/PhysRevB.103.205415
https://doi.org/10.1103/PhysRevB.103.205416
https://doi.org/10.1103/PhysRevResearch.3.013033
https://doi.org/10.1103/PhysRevResearch.3.013242
https://doi.org/10.1126/sciadv.abf5299
https://doi.org/10.1103/PhysRevB.103.235401
https://doi.org/10.1103/PhysRevLett.127.246403
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1103/PhysRevB.102.201104
https://doi.org/10.1038/s41567-021-01174-7
https://doi.org/10.1103/PhysRevB.103.155142
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41467-020-20802-z
https://doi.org/10.1103/PhysRevB.103.L241110
https://doi.org/10.1103/PhysRevB.104.075150
https://doi.org/10.1038/s41567-020-0958-x
https://doi.org/10.1038/s41586-021-04171-1
https://doi.org/10.1038/s41467-021-27042-9
https://doi.org/10.1103/PhysRevX.12.021031
https://doi.org/10.1063/5.0077901
https://doi.org/10.1103/PhysRevLett.103.046811
https://doi.org/10.1103/PhysRevB.81.041401


MAGIC-ANGLE TWISTED BILAYER SYSTEMS WITH … PHYSICAL REVIEW RESEARCH 4, 043151 (2022)

[99] F. Zhang, H. Min, M. Polini, and A. H. MacDonald, Spon-
taneous inversion symmetry breaking in graphene bilayers,
Phys. Rev. B 81, 041402(R) (2010).

[100] Y. You and E. Fradkin, Field theory of nematicity in the
spontaneous quantum anomalous Hall effect, Phys. Rev. B 88,
235124 (2013).

[101] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional
Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett.
106, 236804 (2011).

[102] X.-L. Qi, Generic Wave-Function Description of Fractional
Quantum Anomalous Hall States and Fractional Topological
Insulators, Phys. Rev. Lett. 107, 126803 (2011).

[103] F. Wang and Y. Ran, Nearly flat band with Chern number C =
2 on the dice lattice, Phys. Rev. B 84, 241103(R) (2011).

[104] Y.-F. Wang, H. Yao, C.-D. Gong, and D. N. Sheng, Fractional
quantum Hall effect in topological flat bands with Chern num-
ber two, Phys. Rev. B 86, 201101(R) (2012).

[105] S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Topological flat
band models with arbitrary Chern numbers, Phys. Rev. B 86,
241112(R) (2012).

[106] Y.-L. Wu, N. Regnault, and B. A. Bernevig, Bloch Model
Wave Functions and Pseudopotentials for All Fractional Chern
Insulators, Phys. Rev. Lett. 110, 106802 (2013).

[107] B. Andrews and A. Soluyanov, Fractional quantum Hall states
for moiré superstructures in the Hofstadter regime, Phys. Rev.
B 101, 235312 (2020).

[108] Z. Liu, A. Abouelkomsan, and E. J. Bergholtz, Gate-Tunable
Fractional Chern Insulators in Twisted Double Bilayer
Graphene, Phys. Rev. Lett. 126, 026801 (2021).

[109] B. Andrews, T. Neupert, and G. Möller, Stability, phase transi-
tions, and numerical breakdown of fractional Chern insulators
in higher Chern bands of the Hofstadter model, Phys. Rev. B
104, 125107 (2021).

[110] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[111] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo,
K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X.

Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang
et al., Experimental observation of the quantum anomalous
Hall effect in a magnetic topological insulator, Science 340,
167 (2013).

[112] Notice that we have adopted the real gauge such that di(k)
are real; in this case the Hamiltonian is not periodic and
satisfies H (k + Gi ) = σzH (k)σz, where Gi is the reciprocal
vector of the lattice [31]. We can also choose a periodic and
complex gauge, and in this case we have dx (k) − idy(k) =
−(1 + e−ikx + e−iky + e−i(kx+ky ) ).

[113] Note that T1,2 = wAAσ0 ± wABσx , which commute with the
unitary transformation U = ei π

2 σx , such that the tunneling ma-
trix is not changed by the unitary transformation.

[114] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of
Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett.
122, 106405 (2019).

[115] A. Alexandradinata, Z. Wang, and B. A. Bernevig, Topological
Insulators from Group Cohomology, Phys. Rev. X 6, 021008
(2016).

[116] High-Chern-number flat bands can also be realized in twisted
graphene multilayers [119,120].

[117] G. Wirth, M. Ölschläger, and A. Hemmerich, Evidence for
orbital superfluidity in the P-band of a bipartite optical square
lattice, Nat. Phys. 7, 147 (2011).

[118] K. Sun, W. V. Liu, A. Hemmerich, and S. Das Sarma, Topo-
logical semimetal in a fermionic optical lattice, Nat. Phys. 8,
67 (2012).

[119] A. González-Tudela and J. I. Cirac, Cold atoms in twisted-
bilayer optical potentials, Phys. Rev. A 100, 053604
(2019).

[120] P. J. Ledwith, A. Vishwanath, and E. Khalaf, Family of
Ideal Chern Flatbands with Arbitrary Chern Number in Chiral
Twisted Graphene Multilayers, Phys. Rev. Lett. 128, 176404
(2022).

[121] J. Kang and O. Vafek, Symmetry, Maximally Localized
Wannier States, and a Low-Energy Model for Twisted Bi-
layer Graphene Narrow Bands, Phys. Rev. X 8, 031088
(2018).

043151-11

https://doi.org/10.1103/PhysRevB.81.041402
https://doi.org/10.1103/PhysRevB.88.235124
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1103/PhysRevLett.107.126803
https://doi.org/10.1103/PhysRevB.84.241103
https://doi.org/10.1103/PhysRevB.86.201101
https://doi.org/10.1103/PhysRevB.86.241112
https://doi.org/10.1103/PhysRevLett.110.106802
https://doi.org/10.1103/PhysRevB.101.235312
https://doi.org/10.1103/PhysRevLett.126.026801
https://doi.org/10.1103/PhysRevB.104.125107
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1126/science.1234414
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevX.6.021008
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys2134
https://doi.org/10.1103/PhysRevA.100.053604
https://doi.org/10.1103/PhysRevLett.128.176404
https://doi.org/10.1103/PhysRevX.8.031088

