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Spatiotemporal dynamics of classical and quantum density profiles in low-dimensional spin systems
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We provide a detailed comparison between the dynamics of high-temperature spatiotemporal correlation
functions in quantum and classical spin models. In the quantum case, our large-scale numerics are based on
the concept of quantum typicality, which exploits the fact that random pure quantum states can faithfully
approximate ensemble averages, allowing the simulation of spin-1/2 systems with up to 40 lattice sites. Due
to the exponentially growing Hilbert space, we find that for such system sizes even a single random state is
sufficient to yield results with extremely low noise that is negligible for most practical purposes. In contrast, a
classical analog of typicality is missing. In particular, we demonstrate that to obtain data with a similar level of
noise in the classical case, extensive averaging over classical trajectories is required, no matter how large the
system size. Focusing on (quasi-)one-dimensional spin chains and ladders, we find remarkably good agreement
between quantum and classical dynamics. This applies not only to cases where both the quantum and classical
models are nonintegrable but also to cases where the quantum spin-1/2 model is integrable and the corresponding
classical s → ∞ model is not. Our analysis is based on the comparison of space-time profiles of the spin and
energy correlation functions, where the agreement is found to hold not only in the bulk but also in the tails of
the resulting density distribution. The mean-squared displacement of the density profiles reflects the nature of
emerging hydrodynamics and is found to exhibit similar scaling for quantum and classical models.
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I. INTRODUCTION

Building on seminal results in chaos and random-matrix
theory [1,2] as well as more recent developments such as
the eigenstate thermalization hypothesis [3–6], it is now well
established that generic quantum and classical many-body
systems relax to thermal equilibrium at long times [6–11].
In this context, one of the most generic nonequilibrium sit-
uations is given by transport processes of local densities due
to a global conservation law [11]. Such transport processes
describe the slow relaxation from local to global equilibrium
and dominate the late-time and long-wavelength properties
of systems with conservation laws. Gaining a deeper under-
standing how such a macroscopic hydrodynamic behavior
emerges from the underlying microscopic equations of mo-
tion is the subject of ongoing theoretical research [11,12],
while novel experiments with different quantum-simulator
platforms nowadays allow the controlled exploration even
of anomalous types of quantum transport and hydrodynam-
ics [13–15]. Key insights have been gained not least due to
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improved numerical machinery [16–21], as well as the in-
troduction of suitable random-circuit models, which provide
minimal models to capture the universal properties of chaotic
quantum systems [12,22–26].

An important role, which can strongly influence the nature
of transport in a given model, is played by integrability. On
one hand, in the case of classical mechanics, integrability is
well-defined in terms of the Liouville-Arnold theorem, which
requires L (mutually commuting) constants of motion for a
system of L spins [27,28]. The trajectories in such integrable
systems remain strictly confined to a small part of phase space,
resulting in a breakdown of ergodicity. In contrast, if there are
not enough constants of motion, integrability is absent and
chaotic dynamics is expected to emerge as a consequence.
On the other hand, such a clear-cut definition of integrability
is not available in the case of quantum systems [29]. One
commonly applied definition is solvability in terms of the
Bethe ansatz, which includes important systems such as the
spin-1/2 Heisenberg chain and the one-dimensional Fermi-
Hubbard model [30–34]. In particular, for such models it is
possible to construct extensive sets of (quasi)local integrals of
motion [11,35,36], reminiscent of the definition of integrabil-
ity in classical mechanics. Building on this intricate algebraic
structure, much progress in understanding the dynamics of
integrable quantum systems has been recently made within
the framework of generalized hydrodynamics [37–39], which
provides analytical support for early numerical studies [11].
In particular, while integrable systems (due to their coherent
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quasiparticle excitations) are often expected to exhibit ballis-
tic transport and finite Drude weights [11], the latter indicating
that induced currents remain (at least partially) conserved on
indefinite timescales, it has become clear that the dynamics
of integrable systems is much richer. This includes parame-
ter regimes where normal diffusive transport [40,41], usually
associated with chaos, can occur. Moreover, if the integrable
model additionally possesses a non-Abelian symmetry, it
was found that transport is neither ballistic nor diffusive,
but superdiffusive instead [42,43]. More specifically, it has
been argued that this combination of integrability and non-
Abelian symmetry generically leads to superdiffusion within
the Kardar-Parisi-Zhang (KPZ) universality class with dy-
namical exponent z = 3/2 [11,43–51], reported numerically
in the case of high-temperature spin transport in the spin-1/2
Heisenberg chain which is SU(2) symmetric [47,52].

Integrability only accounts for a small region of the full
parameter space and is typically found in one-dimensional
models. Especially in the case of quantum many-body sys-
tems, it appears that integrability is very fragile and even
a tiny integrability-breaking perturbation will induce chaos
and generic behavior in the limit of large system sizes and
long times [6]. Nevertheless, interesting phenomena such as
prethermalization can occur in the regime close to integra-
bility [53,54], and it is an interesting question to what extent
the dynamics of weakly perturbed systems can be understood
due to their vicinity to an integrable point [55–59]. Generally,
however, the vast majority of quantum and classical systems,
particularly in spatial dimensions larger than one, are nonin-
tegrable and generic. For such systems, one typically expects
that the emerging transport behavior at long times is given
by standard diffusion. Such normal diffusive transport has
indeed been numerically confirmed in a variety of models
[41,60–65]. However, the numerical extraction of quantita-
tive values for transport coefficients (e.g., diffusion constant),
especially in the quantum case, is quite challenging and still
an actively pursued direction of research [18,19,21]. Further-
more, even in the case of nonintegrable systems which fulfill
various indicators of quantum and classical chaos, there still
exist counterexamples to the expected diffusive behavior. This
includes models with additional symmetries or conservation
laws and models with kinetic constraints [25,66,67], which
can host anomalous types of transport such as subdiffusion,
as well as long-range systems where transport can become
superdiffusive [68–70].

Even though strongly correlated many-body quantum sys-
tems generally do not have an obvious classical limit, a natural
choice in the case of quantum spin models is to consider
the limit of infinite spin quantum number s → ∞, where the
quantum spin operators become classical three-dimensional
vectors. In this context, it is an intriguing question to ask
whether and to what extent the dynamics, and, in particular,
the transport properties, of the quantum and the corresponding
classical spin models agree with each other. In particular,
even though the emerging late-time transport behavior of
quantum models may effectively be described by a classical
hydrodynamic theory (e.g., a diffusion equation), it is not ob-
vious that quantum and classical dynamics agree on a detailed
quantitative level (for instance, regarding the explicit value of
diffusion coefficients). Such a quantitative agreement is non-

trivial even at high temperatures, where quantum effects are
less pronounced, due to the different microscopic equations of
motion. Moreover, sending s → ∞ can break the integrability
of the original spin-1/2 model. Complementing earlier work
in this direction [71–73], the goal of this paper is to provide
a comprehensive comparison between quantum and classical
dynamics in models of interacting spins. To this end, we focus
on the buildup of spatiotemporal correlation functions of local
spin and energy densities, which probe transport properties in
the linear response regime [11], and are also intimately related
to experimentally accessible quantities such as the spin struc-
ture factor measurable with inelastic neutron scattering [74].

Studying the dynamics of quantum many-body systems
is notoriously challenging due to the exponentially growing
Hilbert space. In this paper, we rely on the concept of quan-
tum typicality [20,75], which refers to the fact that even a
pure random quantum state can faithfully approximate the
full ensemble average. In particular, as we will explain be-
low in more detail, the statistical error of quantum typicality
decreases exponentially with the size of the system. As a
consequence, significantly less averaging over random states
is required in larger systems to obtain the same accuracy.
Combined with efficient sparse-matrix techniques for the time
evolution of pure quantum states, quantum typicality enables
us to simulate spatiotemporal correlation functions in sys-
tems with Hilbert-space dimensions far beyond the range of
full exact diagonalization. More specifically, we solve the
time-dependent Schrödinger equation for models with up to
40 spin-1/2 degrees of freedom, i.e., the total Hilbert space
has dimension 240 ≈ 1012, which yields converged results
for the buildup of spatiotemporal correlation functions on
sufficiently long timescales to extract the asymptotic hydro-
dynamic behavior. Crucially, we demonstrate that for such
enormous Hilbert-space dimensions, the statistical fluctua-
tions of quantum typicality are strongly suppressed, such that
even a single random state approximates the spatiotemporal
correlation function with an extremely low level of noise that
is negligible for all practical purposes. These results are then
compared to the corresponding classical system. In contrast to
quantum systems, the phase space of classical mechanics only
grows linearly with the number of lattice spins, such that sim-
ulations are significantly less costly and much larger system
sizes can be treated in principle. However, as we demonstrate
in this paper, a classical analog of the concept of typicality is
missing. In particular, we show that the statistical fluctuations
in the classical trajectories are not reduced with increasing
system size, such that it remains necessary even for larger and
larger systems to perform extensive statistical averaging over
a high number of trajectories to achieve the same low noise
level as in the quantum case.

Focusing on (quasi-)one-dimensional spin chains and lad-
ders, we typically find remarkably good agreement between
quantum and classical dynamics. This applies not only to
cases where both the quantum and classical model are non-
integrable but also to cases where the quantum model is
integrable and the corresponding classical model is not. Our
analysis is based on the comparison of space-time profiles of
the spin and energy correlation functions, where the agree-
ment is found to hold not only in the bulk but also in the tails
of the resulting density distribution. This fact also manifests

043147-2



SPATIOTEMPORAL DYNAMICS OF CLASSICAL AND … PHYSICAL REVIEW RESEARCH 4, 043147 (2022)

itself in the time dependence of the mean-squared displace-
ment of the density profiles, which reflects the nature of
emerging hydrodynamics and exhibits very similar scaling
for quantum and classical models, at least on the time and
length scales considered here, with the exception of cases
where transport is dominated by integrability. Furthermore,
we show that such a correspondence between quantum and
classical dynamics can also be achieved in less obvious cases
where the original quantum system is not directly written in
spin language. In particular, we consider the one-dimensional
Fermi-Hubbard model, which by means of a Jordan-Wigner
transform can be brought into the form of a particular type of
spin ladder, for which we then take the s → ∞ limit.

The rest of this paper is structured as follows. In Sec. II,
we introduce the quantum spin models and their classical
counterparts, as well as the corresponding observables which
are studied in this paper. Our numerical approach based on
quantum typicality is introduced in Sec. III, where we also
explain the methods used to integrate the quantum and classi-
cal equations of motion as well as the role of averaging. We
present our results for spin and energy transport in Sec. IV,
where we consider spin chains in Sec. IV A and spin ladders
in Sec. IV B. Moreover, we discuss charge transport in the
Fermi-Hubbard chain in Sec. IV C. We summarize our find-
ings and conclude in Sec. V.

II. MODELS AND OBSERVABLES

A. Models

In this paper, we consider different versions of (quasi-)one-
dimensional lattice models described by Hamiltonians of the
form

H =
L∑

r=1

hr, (1)

with periodic boundary conditions L + 1 ≡ 1. For quantum
spin models, the lattice sites are occupied by stationary spins
with spin quantum number s, represented by spin vector op-
erators sr = (sx

r , sy
r , sz

r ). Their components fulfill the defining
spin algebra (h̄ = 1),[

sμ
r , sν

r′
] = i δrr′ εμνλ sλ

r , (2)

where δrr′ is the Kronecker delta, εμνλ is the antisymmetric
Levi-Civita symbol, and μ, ν, λ ∈ {x, y, z}. For spin quantum
number s = 1/2, the components can be expressed in terms of
Pauli matrices, sμ

r = σμ
r /2.

First, we consider the anisotropic Heisenberg chain (XXZ
chain) with local energy terms

hr = J
(
sx

r sx
r+1 + sy

rsy
r+1 + �sz

rsz
r+1

)
, (3)

where J > 0 is the antiferromagnetic exchange coupling con-
stant and � parametrizes the anisotropy in z direction. For any
anisotropy, the total magnetization Sz = ∑

r sz
r is conserved,

[H, Sz ] = 0. We note that the spin-1/2 XXZ chain is inte-
grable in terms of the Bethe ansatz, which has consequences
for the transport properties of the model. In particular, the
energy current is an exact constant of motion such that energy
transport in the spin-1/2 XXZ chain is dissipationless for all
values of � [11]. Therefore, we here focus on the dynamics

of magnetization which can exhibit various types of behav-
ior depending on the choice of �, as discussed in detail in
Sec. IV A below. On the other hand, when considering the
classical version of the XXZ chain with s → ∞ (cf. Sec. II C),
the integrability of the model is broken such that one would
naively expect chaotic dynamics resulting in the emergence
of diffusive transport. While diffusive energy transport has
indeed been found in classical XXZ chains, it turns out that
observing clean spin diffusion in all � regimes is a subtle
issue [76–84]. This might be related to the fact that taking
the classical limit s → ∞ is in some sense only a weak
integrability-breaking perturbation [59,85,86], as it leaves the
overall structure (such as the symmetries) of the Hamiltonian
intact. As a consequence, the impact of this perturbation on
the original quantum dynamics might be less pronounced.
As we demonstrate in the Appendix, observing the onset of
standard spin diffusion in classical spin chains (in a � regime
where quantum dynamics is ballistic) is indeed extremely
challenging and requires the analysis of large system sizes on
long timescales.

Second, as a quasi-1D spin model, we study the isotropic
Heisenberg ladder (XXX ladder),

hr = J
∑
l=1,2

sr,l · sr+1,l + J

2

r+1∑
r′=r

sr′,1 · sr′,2, (4)

where the local energy is defined on a plaquette consisting
of four spins. As above, the total magnetization Sz = ∑

r,l sz
r,l

is conserved. However, in contrast to the XXZ chain, the
XXX ladder is nonintegrable for s = 1/2. Thus, this is an
example where both the quantum and classical models are
nonintegrable.

Moving deeper into the realm of genuinely quantum mod-
els, we also consider the Fermi-Hubbard chain with local
Hamiltonians

hr = − th
∑

σ=↑,↓
(c†

r,σ cr+1,σ + H.c.)

+ U

(
nr,↑ − 1

2

)(
nr,↓ − 1

2

)
, (5)

where th is the hopping amplitude of the spin-σ fermions and
U is the on-site interaction strength. The creation operator c†

r,σ
creates a spin-σ particle at site r, whereas the annihilation
operator cr,σ annihilates a spin-σ particle at site r. They fulfill
the fermionic anticommutation relations,

{ cr,σ , cr′,σ } = 0, { cr,σ , c†
r′,σ } = δrr′ , (6)

and define the local particle number operator nr,σ = c†
r,σ cr,σ .

Similar to the XXZ chain, the Fermi-Hubbard chain is a prime
example of an integrable quantum system. In particular, as in
the XXZ chain, energy transport in the Fermi-Hubbard chain
is ballistic for all values of U such that we here focus only
on charge transport. Notably, by Jordan-Wigner transforma-
tion [87], this model is in turn equivalent to a modified version
of the spin ladder,

hr = − 2J‖
∑
l=1,2

(
sx

r,l s
x
r+1,l + sy

r,l s
y
r+1,l

) + J⊥
2

r+1∑
r′=r

sz
r′,1sz

r′,2,

(7)
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with J‖ = th and J⊥ = U . Each leg of the spin ladder is
associated with one of the fermionic species ↑ or ↓. The
local magnetizations in the spin formulation correspond to
occupation numbers in the Hubbard language:

nr,σ = sz
r,l + 1

2 . (8)

B. Setup and observables

We study the dynamics of local densities �r of either mag-
netization (M) or energy (E ) based on the time-dependent
density-density correlation function,

Cr,r′ (t ) = 〈�r (t )�r′ 〉 , (9)

where 〈•〉 = Tr[ ρβ• ] denotes the expectation value with re-
spect to the canonical density matrix ρβ = exp(−βH)/Z
and Z = Tr[ exp(−βH) ] is the canonical partition function
at inverse temperature β = 1/kBT . Here, operators evolve
in time according to the Heisenberg picture, i.e., �r (t ) =
exp(iHt ) �r exp(−iHt ).

In the following, we fix r′ = L/2 and study the time depen-
dence of the profile:

Cr (t ) ≡ Cr,L/2(t ) = 〈�r (t )�L/2〉 . (10)

We focus on the high-temperature limit β → 0, where ρβ →
1/dL with Hilbert-space dimension dL (d denotes the model-
specific local Hilbert-space dimension). Accordingly, the
density profile is obtained by calculating

Cr (t ) = Tr[ �r (t )�L/2 ]

dL
, (11)

where the different local densities, depending on the system’s
geometry, are defined as

�(M )
r =

{
sz

r, XXZ chain

sz
r,1 + sz

r,2, XXX ladder
(12)

and

�(E )
r = hr . (13)

Moreover, in the case of charge transport in the Fermi-
Hubbard chain, we have �r = nr,↑ + nr,↓ − 1 = sz

r,1 + sz
r,2,

i.e., analogous to the case of spin dynamics in the XXX ladder.
Initially, a peaked spatial distribution arises for the local

magnetizations,

C(M )
r (t = 0)

{ �= 0 , r = L/2
= 0 , else, (14)

as can be seen from the spatiotemporal density profiles shown
in Fig. 1. A similarly peaked initial density distribution also
arises for C(E )

r (t = 0), albeit accompanied by two smaller
peaks at adjacent lattice sites L/2 ± 1 due to shared bonds
between local energy terms hr and hr±1. The main contribu-
tion of this paper is to provide a detailed comparison between
the real-time broadening of such density profiles for quantum
and classical spin models.

C. Classical limit

The classical counterpart of the quantum spin mod-
els introduced above is achieved by taking the limits of
both h̄ → 0 and s → ∞ while maintaining the constraint

0

0.1

1 36 1 36

1 36
t

r

C
r
(t

)

t

r

C
r
(t

)

t

r

C
r
(t

)

t

r

C
r
(t

)

C
r
(t

)

r

tJ = 5

r

tJ = 10

r

QM
CM

tJ = 15

FIG. 1. Exemplary plot of an initially peaked density profile that
broadens over time by diffusion. The data shows quantum and clas-
sical magnetization dynamics in the XXZ spin chain with anisotropy
� = 1.5 and system size L = 36. For a more detailed discussion of
the results, see Sec. IV A below. Note that the legend in the lower
right panel applies to all other panels.

h̄
√

s(s + 1) = const. Then, the spin operators become three-
dimensional vectors of constant length, |sr | = 1, and the
relation Eq. (2) turns into{

sμ
r , sν

r′
} = δrr′ εμνλ sλ

r , (15)

where { •, • } denotes the Poisson bracket. Consequently, the
time evolution of each spin is determined by the Hamiltonian
equations of motion:

ṡr = {sr,H} = ∂H
∂sr

× sr . (16)

The infinite-temperature correlation function Eq. (11) can be
obtained in the classical case by taking 〈•〉 as an average over
trajectories in phase space:

Cr (t ) ≈ 1

N

N∑
n=1

�r (t )�L/2(0). (17)

For each of the N � 1 realizations, the initial configurations
sr (0) are drawn at random.

D. Diffusion on a lattice

The correlation functions Cr (t ) can be connected to the
time dependence of local densities qr (t ) in a scenario, where
the initial state is prepared close to the canonical equilibrium
density matrix ρβ as

ρ(0) ∝ e−β(H−ε�L/2 ), (18)

which can be expanded in ε and, for high temperatures, takes
on the simple form

ρ(0) ∝ 1 + βε�L/2. (19)

For this initial state and using Tr[ �r ] = 0,

qr (t ) = 〈�r (t )〉 = Tr[ �r (t )ρ(0) ]

∝ Tr[ �r (t )�L/2 ] ∝ Cr (t ), (20)

i.e., Cr (t ) describes the dynamics of the local densities qr (t )
after an initial density distribution of the form Eq. (14). Speak-
ing differently, Cr (t ) can be interpreted as the dynamics and
relaxation of some initial spin or energy excitation evolving
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on top of a featureless infinite-temperature many-body back-
ground.

The local densities qr (t ) show diffusive transport if they
fulfill the lattice diffusion equation,

d

dt
qr (t ) = D[qr−1(t ) − 2qr (t ) + qr+1(t )], (21)

with some diffusion constant D. The temporal growth of the
spatial variance,

�2(t ) =
L∑

r=1

r2δqr (t ) −
[

L∑
r=1

rδqr (t )

]2

, (22)

with δqr (t ) ∝ qr (t ) normalized to
∑

r δqr (t ) = 1 for all times
t , can also be used for characterizing the dynamics. A scaling
according to �(t ) ∝ tα is called ballistic for α = 1, superdif-
fusive for 1/2 < α < 1, diffusive for α = 1/2, subdiffusive for
0 < α < 1/2, and insulating for α = 0.

Additionally, for initial density distributions of the form
Eq. (14), the solution of the diffusion Eq. (21) reads

δqr (t ) = exp(−2Dt )Ir−L/2(2Dt ), (23)

where Ir (t ) is the modified Bessel function of the first kind
and of order r. The corresponding spatial dependence for fixed
times t is well approximated by Gaussian functions,

δqr (t ) = 1

�(t )
√

2π
exp

[
− (r − L/2)2

2�2(t )

]
, (24)

where �(t ) = 2Dt . While the scaling analysis of the spatial
width Eq. (22) may hint at the existence of diffusive transport,
the form Eq. (24) of the spatial dependence of the density
distribution is a precise diagnostics.

III. NUMERICAL METHODS

A. Dynamical quantum typicality

For the quantum systems, we employ the concept of dy-
namical quantum typicality [88–95], which essentially allows
us to replace the trace in the calculation of the correlation
function Eq. (10) by a scalar product between two auxiliary
pure states [96,97],

Cr (t ) = 〈φβ (t )| �r |ϕβ (t )〉 + ε(|φ〉), (25)

where the states

|ϕβ (t )〉 = e−iHt�L/2 |φβ〉 , |φβ (t )〉 = e−iHt |φβ〉 (26)

are constructed with

|φβ〉 =
√

ρβ |φ〉√〈φ| ρβ |φ〉 . (27)

The typical reference state |φ〉 is constructed as a random
superposition of states |k〉 in the given orthonormal basis,

|φ〉 =
dL∑

k=1

ck |k〉 , (28)

where the complex coefficients ck are randomly drawn from
a distribution which is invariant under all unitary transforma-
tions in the Hilbert space (Haar measure) [94]. In practice, the
real and imaginary parts of the ck are drawn independently

from a standard normal distribution. The variance of the sta-
tistical error ε(|φ〉) that arises in Eq. (25) is bounded from
above [75],

σ (ε) < O

(
1√

dimeff

)
, (29)

where dimeff = Tr[ e−β(H−E0 ) ] with ground-state energy E0

is the effective Hilbert-space dimension at inverse tempera-
ture β. In the infinite-temperature limit, limβ→0 dimeff = dL,
which renders the typicality error negligibly small for the
system sizes considered here. Additionally, for β → 0, the
calculation of Eq. (25) can be further simplified to [98]

Cr (t ) = 〈ψ (t )| �r |ψ (t )〉 + ε(|φ〉), (30)

using just one pure state

|ψ (0)〉 =
√

�L/2 + c |φ〉√〈φ|φ〉 , (31)

where the constant c ensures that the operator �L/2 + c has
nonnegative eigenvalues.

The time dependence is now a property of the pure states
and can be obtained by iteratively applying the time evolution
in small time steps,

|ψ (t + δt )〉 = e−iHδt |ψ (t )〉 , δt � J. (32)

For each time step, the action of the time-evolution op-
erator on the state is obtained by massively parallelized
simulations on supercomputers, which rely on both Trotter
decompositions [99,100] and Chebyshev-polynomial expan-
sions [101,102].

B. Classical averaging

The simulation of the classical spin systems is done by
numerically solving the Hamiltonian equations of motion
Eq. (16) using a fourth-order Runge-Kutta (RK4) scheme.
We use a time step δt that is small enough to ensure that
the total energy and magnetization are conserved to very high
accuracy. The computational complexity of the simulation of
classical systems grows only linearly in their system size L
and is mainly determined by the number N of samples used
in the averaging Eq. (17). Importantly, there exists no analog
of typicality in classical mechanics, such that we have to
average over many samples N � 1 of independent random
initial-state configurations, no matter how large the system
size L. This crucial difference between classical and quantum
simulations is illustrated in Fig. 2, which shows the single-
state trajectories of the equal-site correlation function CL/2(t )
for 300 random initial states in the classical [cf. Fig. 2(a)]
and quantum [cf. Fig. 2(b)] versions of the XXZ chain with
anisotropy � = 1.5. In the classical case, each individual
trajectory appears random and the behavior of CL/2(t ) can
only be inferred from the average, whereby the average over
N = 103 trajectories still shows significant deviations from
the average over N = 109 trajectories. In contrast, in the quan-
tum case, the individual random realizations show only small
deviations from the average over N = 103 states, even for
the small system size L = 12 used here. Figure 2(c) shows
the corresponding relative variance of the sample-to-sample
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FIG. 2. Single-state trajectories of CL/2(t ) (blue lines) for 300
random initial states in the XXZ chain with � = 1.5 in the classical
case (a) and the quantum case (b). Red and orange lines show the
corresponding averages over N = 103 and N = 109 (only classical)
trajectories. (c) Relative variance R(t ) of sample-to-sample fluctu-
ations as obtained by Eq. (33) for N = 103 and different system
sizes L = 24, 25, . . . , 219 (classical) and L = 8, 9, . . . , 20 (quantum).
Dashed line indicates the value of R(0) for the classical case which
is essentially the second moment of the probability distribution for
�2

L/2(0) that arises from the random initial configuration of the state.
Note that we consider the high-temperature limit β → 0 and that
CL/2(0) is set to 1.

fluctuations,

R(t ) = CL/2(t )2 − CL/2(t )
2

CL/2(t )
2 , (33)

for different system sizes L = 24, 25, . . . , 219 (in the classical
case) and L = 8, 9, . . . , 20 (in the quantum case). Here, the
overbar in CL/2(t ) denotes the average over N = 103 samples.
Note that a given quantity, here CL/2(t ), is sometimes called
self-averaging if R(t ) decreases with increasing L, e.g., R(t ) ∝
L−1 is referred to as strong self-averaging in Ref. [103]. As
shown in Fig. 2(c), in the classical case, R(t = 0) starts at
a value that results from the second moment of the proba-
bility distribution for the initial value �2

L/2(0). We find that

R(t ) increases with time, as the average CL/2(t ) itself de-
cays to smaller and smaller values. Importantly, there is no
dependence on system size in this behavior, even for the
exponentially increasing L. Thus, self-averaging is absent in
the case of classical dynamics such that large values of N are
necessary to faithfully capture the ensemble average also for
large system sizes L.

In the quantum case, R(t ) shows a similar increase in time
as above, while at the same time being orders of magni-
tudes smaller than in the classical case—even for the smallest
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FIG. 3. (a1)–(c2) Profiles Cr (t ) of magnetization densities in the
XXZ spin chain Eq. (3) with anisotropy � = 1.5 and L = 36, sam-
pled over N initial states. Solid lines are Gaussian fits (24) to the QM
data. (d) Time-dependent spatial width �(t ) as obtained by Eq. (22).
Dashed and solid lines indicate scaling tα for α = 1 and 1/2. To
illustrate the necessity for large sample sizes in the simulations of
classical dynamics, additional CM data is shown for different sample
sizes N = 2l × 103 with l = 0, 1, . . . , 20 (grey scales). Note that we
consider the high-temperature limit β → 0 and that the legend in
panel (d) applies to all other panels.

system size L = 8 shown. Crucially, for increasing system
size, R(t ) decreases exponentially in line with the typicality
estimate Eq. (29). In this sense, quantum typicality can be
seen as an extreme form of self-averaging as exponentially
less random realizations are required at larger L to accurately
determine the full ensemble average.

IV. RESULTS

The discussion of our numerical results includes the com-
parison between quantum and classical density dynamics of
magnetization in the 1D XXZ chain in Sec. IV A, magneti-
zation and energy in the quasi-1D XXX ladder in Sec. IV B,
as well as charge in the Fermi-Hubbard model in Sec. IV C.
In all cases, we will focus on timescales where the bulk of the
density distribution is still reasonably concentrated around the
center and away from the boundaries. The time dependence
of the classical correlation functions is always rescaled by the
factor s̃ = √

s(s + 1) to account for the different lengths of
quantum and classical spins. For the quantum spin s = 1/2
considered here, this factor is s̃ ≈ 0.87.

A. Magnetization dynamics in the 1D XXZ chain

We first focus on the dynamics of magnetization in the
integrable 1D XXZ chain Eq. (3) of size L = 36 for different
values of the anisotropy � = 0.5, 1, and 1.5.

Starting with the anisotropy � = 1.5, Figs. 3(a1)–3(c2)
show the corresponding profiles Cr (t ) from quantum and clas-
sical dynamics at fixed times t in linear and semilogarithmic
plots. For all values of t , the quantum and classical profiles
show very good agreement and are accurately described by
Gaussian functions Eq. (24) that broaden over time. This is in

043147-6



SPATIOTEMPORAL DYNAMICS OF CLASSICAL AND … PHYSICAL REVIEW RESEARCH 4, 043147 (2022)

10−5
10−4
10−3
10−2
10−1

0

0.1

1 36 1 36 1 36

10−1

100

101

10−1 100 101
10−1

100

101

10−1 100 101

C
r
(t

)

(a1)

tJ = 5

(b1)

tJ = 10

lin
.-log.

(c1)

tJ = 20

C
r
(t

)

r

(a2)

r

(b2)

r

lin
.-lin

.

(c2)

Σ
(t

)

tJ

CM (N = 109)
QM (N = 1)

(d)

Σ
(t

)

tJ

t2/3

t
(d)

FIG. 4. (a1)–(c2) Profiles Cr (t ) of magnetization densities in the
XXZ spin chain Eq. (3) with anisotropy � = 1.0 and L = 36, sam-
pled over N initial states. Solid lines are Gaussian fits Eq. (24) to the
QM data. Dashed lines indicate KPZ scaling functions [104]. Dotted
lines indicate a function ∝ exp(−a|r − L/2|3). (d) Time-dependent
spatial width �(t ) as obtained by Eq. (22). Dashed and solid lines
indicate scaling tα for α = 1 and 2/3. Note that we consider the
high-temperature limit β → 0 and that the legend in panel (d) applies
to all other panels.

line with the diffusive transport that is expected in the regime
� > 1 [11]. To illustrate the necessity for extensive averaging
of the classical data, we show additional data for different
sample sizes N = 2l × 103 with l = 0, 1, . . . , 20 in the same
plots. While the time dependence of Cr (t ) in the center of the
chain is already reasonably well captured for smaller sample
sizes N = O(103), the level of noise away from the center is
considerable and only sufficiently suppressed for the largest
sample sizes N = O(109) − O(1010). In the following, we
will thus always use a rather large sample size N = 109 for
our simulations of classical systems.

In addition to the space-time profiles, Fig. 3(d) shows the
time dependence of the corresponding spatial width �(t ) as
obtained by Eq. (22). Naturally, an accurate calculation of
�(t ) also relies on a good signal-to-noise ratio, which is
again illustrated by additional data for smaller sample sizes
N in the classical results. For the largest sample sizes, we
see very good agreement between the quantum and classical
results, both in the initial ballistic scaling �(t ) ∝ t as well as
in the diffusive scaling �(t ) ∝ √

t for later times. The initial
ballistic scaling at short times can be understood as a local ex-
pansion of the spin excitation below its mean-free path. Above
this mean-free path, the essentially classical hydrodynamic
description applies and the ballistic behavior crosses over to
the asymptotic diffusive transport.

Moving on to the isotropic spin chain, Fig. 4 shows analo-
gous data as above, but now for � = 1.0. Similarly as before,
we see good agreement between the classical and quantum
results, albeit with some small but visible deviations in the
profiles Cr (t ) [cf. Fig. 4(a1)–4(c2)]. Especially in the tails
of the distributions, we find that the overall shape of the
profiles is no longer described by Gaussian functions Eq. (24),
indicating the shift from normal to anomalous diffusion.
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FIG. 5. (a1)–(c2) Profiles Cr (t ) of magnetization densities in the
XXZ spin chain Eq. (3) with anisotropy � = 0.5 and L = 36, sam-
pled over N initial states. (d) Time-dependent spatial width �(t )
as obtained by Eq. (22). Solid line indicates scaling tα for α = 1.
Note that we consider the high-temperature limit β → 0 and that the
legend in panel (d) applies to all other panels.

Indeed, the existence of superdiffusion at the isotropic point is
well established (see Ref. [43] and references therein). More
specifically, it has been shown that Cr (t ) is well described
by the KPZ scaling function, which is similar to a Gaussian
in the bulk of the distribution but exhibits faster than Gaus-
sian decay in the tails. Yet, for the system sizes and times
shown here, the agreement with the KPZ scaling function
is not fully developed, and the data is rather described by
a function ∝ exp(−a|r − L/2|3). The anomalous transport is
also reflected in the scaling of the spatial width � ∝ tα with
α = 2/3, which is captured both by quantum and classical
dynamics [cf. Fig. 4(d)].

As the final comparison in the 1D XXZ chain, Fig. 5 shows
data for anisotropy � = 0.5. In this regime, the quantum dy-
namics is dominated by an extensive set of conservation laws
and good agreement between quantum and classical dynamics
can no longer be expected. This expectation is confirmed by
the space-time profiles Cr (t ) [cf. Figs. 5(a1)–5(c2)], where
we observe noticeable differences between the classical and
quantum results. Interestingly, however, the rough shape of
the profiles as well as the overall speed at which they spread
over time are captured quite well by the classical results—
at least on the timescales shown here. This also pertains
to the scaling of the spatial width, �(t ) ∝ t [cf. Fig. 5(d)],
which indicates the ballistic transport that has been rigorously
proven to exist for the quantum system in the thermodynamic
limit [35,36,105]. However, for longer times tJ � 10, a slow-
down in the scaling of the width �(t ) in the classical data
becomes noticeable.

The similarities between the quantum and classical data in
Fig. 5 might indicate that taking the classical limit s → ∞
appears to be a rather weak form of integrability breaking. In
particular, while the quantum s = 1/2 model features strict
ballistic transport, the classical model is expected to be fully
chaotic and therefore to exhibit diffusive transport at � = 0.5
(especially since we are now away from the potentially special
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dependent spatial width �(t ) as obtained by Eq. (22). Dashed and
solid lines indicate scaling tα for α = 1 and 1/2. Note that we
consider the high-temperature limit β → 0 and that the legend in
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point � = 1). However, as becomes clear from Fig. 5, this
conjectured diffusive behavior in the classical chain must set
in at significantly longer time and length scales. For some
additional data from classical dynamics in a larger system of
size L = 2000, see the Appendix.

B. Magnetization and energy dynamics
in the quasi-1D XXX ladder

Next, we move from 1D chains to quasi-1D spin ladders
Eq. (4), where the integrability of the quantum system is
broken. We compare the quantum and classical dynamics for
magnetization and energy in an isotropic spin ladder of length
L = 20. Note that this corresponds to 40 spin-1/2 lattice sites
in total, which is far beyond the range of standard exact
diagonalization and close to the maximum system sizes that
are nowadays in reach of massively parallelized simulations
on state-of-the-art supercomputing clusters. The transport of
both magnetization and energy in the quantum case s = 1/2
is known to be diffusive in this model [60].

Figure 6 shows the space-time profiles Cr (t ) and the spatial
width �(t ) for magnetization. Again, the profiles Cr (t ) show
very good agreement in the comparison between the quan-
tum and the classical results and are accurately described by
Gaussian functions Eq. (24). Additionally, the corresponding
spatial width �(t ) agrees very well and the quantum and
classical results lie on top of each other, from the initial times
of ballistic scaling � ∝ t up to later times of diffusive scaling
�(t ) ∝ √

t .
Figure 7 shows the same data as Fig. 6, but for the dynam-

ics of local energy. The quantum and classical results again
agree very well and match the typical signatures of diffusive
transport. The only difference compared to the results in Fig. 6
lies in the initial scaling of the spatial width �(t ), which,
owing to the broader initial peak for local energy densities,
does start at a nonzero initial value.
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FIG. 7. (a1)–(c2) Profiles Cr (t ) of energy densities in the XXX
spin ladder Eq. (4) with L = 20, sampled over N initial states. Solid
lines are Gaussian fits Eq. (24) to the QM data. (d) Time-dependent
spatial width �(t ) as obtained by Eq. (22). Solid line indicates scal-
ing tα for α = 1/2. Note that we consider the high-temperature limit
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The good agreement between quantum and classical dy-
namics in the XXX ladder might not be entirely surprising
due to the fact that we are considering high temperatures
β → 0 and that both the quantum and classical models are
nonintegrable. However, we still find it remarkable that Cr (t )
agrees quantitatively on a very detailed level, leading to an
essentially indistinguishable dynamics of the mean-squared
displacement �(t ). Crucially, the latter is directly related to
physically important quantities such as the diffusion coeffi-
cient. Our results in Figs. 6 and 7 suggest that this diffusion
coefficient is the same in the quantum and classical models,
emphasizing that (the significantly less costly) simulations of
classical systems can provide a useful strategy to gain insights
into the properties of strongly correlated quantum many-body
systems. While not shown here, we expect similarly good
agreement between quantum and classical dynamics also for
XXZ spin ladders [i.e., when incorporating an anisotropy � in
the Hamiltonian Eq. (4)]. In particular, studying the equal-site
correlation functions CL/2(t ) of magnetization and energy,
Ref. [72] found convincing agreement between the quantum
and classical dynamics in ladders with � = 0.5, 1, and 1.5.

C. Charge dynamics in the Fermi-Hubbard chain

Finally, we turn to the dynamics of local charge densities in
the integrable Fermi-Hubbard chain, where earlier numerical
studies have found clear signatures of diffusive charge dy-
namics for strong interactions U/th ≈ 16 [41,106]. However,
let us note that this observation of diffusion is at odds with
generalized hydrodynamics results, which predict the occur-
rence of superdiffusive charge transport [11], given the SU(2)
symmetry of the Fermi-Hubbard model (similar to the case
of spin transport in the isotropic spin-1/2 Heisenberg chain).
Here, we consider a somewhat lower interaction strength,
U/th = 4, and study chains of length L = 18. Let us stress
again that, while the Fermi-Hubbard chain has no obvious
classical limit, the Jordan-Wigner transformation in Eq. (7)
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Hubbard chain Eq. (5) with L = 18 and U/th = 4, sampled over
N initial states. Solid lines are Gaussian fits Eq. (24) to the QM
data. (d) Time-dependent spatial width �(t ) as obtained by Eq. (22).
Dashed and solid lines indicate scaling tα for α = 1 and 1/2. Note
that we consider the high-temperature limit β → 0 and that the
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and the subsequent limit s → ∞ allows for a comparison with
classical dynamics also in this case.

Figure 8 shows the corresponding space-time profiles Cr (t )
and the spatial width �(t ). Comparing the results for quan-
tum and classical dynamics, we see good agreement in the
space-time profiles for all values of t shown here. While
the profiles are well described by Gaussians Eq. (24) in the
bulk of the system, we observe notable deviations from these
Gaussian fits in the tails of the distributions [cf. Fig. 8(b1)].
This might be reminiscent of the superdiffusive KPZ scaling
of spin transport in the Heisenberg chain discussed above
in Fig. 4. Then again, the overall broadening of the profiles
seems to follow a diffusive scaling, �(t ) ∝ √

t [cf. Fig. 8(d)],
both for quantum and classical dynamics. To be more precise,
at the longest time tth = 10 shown in Fig. 8(d), we actually
do observe some slight deviations in the time dependence of
�(t ), where the broadening in the classical case becomes no-
tably slower compared to the quantum case. This observation
might hint at the possibility that the nonintegrable classical
model supports diffusion, while the original integrable Fermi-
Hubbard chain asymptotically shows a crossover to superdif-
fusion. However, resolving the latter is numerically quite
challenging.

Finally, we note that the remarkable agreement between
quantum and classical dynamics observed for U/th = 4 in
Fig. 8 can, in general, neither be expected for very small inter-
actions U/th → 0 nor for much stronger interactions. On the
one hand, for weak interactions, the charge dynamics becomes
more and more ballistic, as the model is approaching the
limit of free fermions. On the other hand, for much stronger
values of U , the on-site interaction dominates the dynamics
and reduces the effective number of interacting neighbors in
the system [107], which is expected to affect the comparability
between quantum and classical dynamics.

V. CONCLUSION

In this paper, we have compared the quantum and classical
dynamics of spatiotemporal density-density correlation func-
tions in different (quasi-)one-dimensional systems for high
temperatures T → ∞. In the quantum case, we employed the
concept of quantum typicality in combination with an efficient
forward propagation of pure states to obtain results in spin-
1/2 systems with up to 40 lattice sites with an extremely low
level of statistical noise. To achieve a similar signal-to-noise
ratio in the classical case, we performed extensive averaging
over large samples of N = O(109) − O(1010) classical trajec-
tories. Based on the comparison of space-time profiles of spin
and energy correlations, we found remarkably good agree-
ment between quantum and classical dynamics—not only in
cases where both the quantum and classical model are nonin-
tegrable but also in cases where the quantum spin-1/2 model
is integrable and the corresponding classical s → ∞ model is
not. Further, we found that this agreement not only holds in
the bulk but also in the tails of the density distributions. The
good agreement between quantum and classical results also
manifested itself in the time dependence of the mean-squared
displacement of the density profiles, which exhibited very
similar scaling for quantum and classical models, at least on
the time and length scales considered here.

Furthermore, we showed that such correspondence be-
tween quantum and classical dynamics can also be achieved
in less obvious cases where the original quantum system is
not directly written in spin language. In particular, we con-
sidered the one-dimensional Fermi-Hubbard model, which
by means of a Jordan-Wigner transform can be brought into
the form of a particular type of spin ladder, for which we
then take the s → ∞ limit. The results from the simulations
of quantum and classical dynamics showed good agreement,
both for the space-time profiles of local charge as well as the
time dependence of the corresponding spatial width, at least
for the interaction strength considered here. This agreement
is expected to break down for smaller interaction strengths,
where the Fermi-Hubbard model approaches the integrable
limit of free particles, as well as for much stronger interaction
strengths, where the effective number of interacting neighbors
per site is reduced significantly [107].

There are several future directions of research to explore.
Apart from the question how far the agreement between quan-
tum and classical dynamics carries over to finite temperatures,
it would also be interesting to further explore the Fermi-
Hubbard model in more detail. For instance, one might expect
that the agreement between quantum and classical dynamics
increases in the extended Fermi-Hubbard model, where addi-
tional interactions increase the effective number of interacting
neighbors. Moreover, a study in higher spatial dimensions
would be interesting, where the range of the simulation of
quantum systems is severely limited.
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APPENDIX: LARGE CLASSICAL XXZ CHAIN
WITH � = 0.5

Complementary to the results for the XXZ chain with
anisotropy � = 0.5 discussed in Sec. IV A, we here present
additional classical results for longer times and a significantly
larger chain of size L = 2000.

Figure 9 shows the corresponding dynamics of the equal-
site correlation function CL/2(t ) for different sample sizes
N = O(105) − O(106). For the largest sample size shown, a
diffusive decay CL/2(t ) ∝ t−α with α = 1/2 becomes visible
on longer timescales, which follows from the Gaussian profile
[cf. Eq. (24)]

f (r̃, t ) = 1√
4πDt

exp

(
− r̃2

4Dt

)
, r̃ = r − L/2, (A1)

where the diffusion constant D may serve as a single fit pa-
rameter. In addition to the data for CL/2(t ), we also show the
correlation function Cr (t ) at a site r = L/2 + 100 far away
from the center of the chain, where Cr (t ) starts in the initial
infinite-temperature many-body background and increases at
times when the density peak in the center of the chain has
spread sufficiently far over the system. Remarkably, despite
the considerable fluctuations that are still present for the
shown sample size, the time dependence of Cr (t ) appears to
be well captured by the function Eq. (A1). Note that we do not
perform another fit, but instead reuse the diffusion constant D
obtained in the fit to CL/2(t ).

However, a genuine confirmation of diffusion would again
require the study of the full spatial dependence of the density
distributions Cr (t ). This in turn necessitates a substantially
larger sample size N , which, given the combination with large
L and long timescales, remains numerically challenging. A
more instructive approach to the transport behavior in larger
systems might be to study the density dynamics in momen-
tum space, i.e., the decay of long-wavelength Fourier modes
of the real-space data Cr (t ), for a different class of initial
states [108].
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