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Transmission and transformation of entangled states with high fidelity in a non-Hermitian system
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The study of non-Hermitian systems has attracted more and more attention, because physical properties in
many real systems should be described by non-Hermitian Hamiltonians. Due to the existence of absorption and
dissipation, transmission and transformation of entangled states with high fidelity are very difficult to realize
in the non-Hermitian systems. How to realize transmission and transformation of entangled states with high
fidelity in these dissipative systems becomes an open problem. Here we provide an inverse design scheme for
topologically protected channels to solve such a problem. From our scheme, topologically protected channels
can be designed according to the requirements for the overlap integrals among the initial states, target states,
and eigenstates of the system. As a result, robust transmission and transformation of entangled states with
high fidelity can be achieved in the non-Hermitian systems. Our proposed scheme has been demonstrated
experimentally using the constructed non-Hermitian quantum walk platform. This work interconnects topology,
quantum physics, and non-Hermitian systems, and opens up an avenue for quantum engineering in real systems.
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I. INTRODUCTION

The realization of robust transmission and transformation
of entangled states with high fidelity is crucial for applications
in quantum information, computing, and communications
[1,2]. At present, the discussions in this regard mainly focus
on Hermitian systems [3–20]. In many real cases, however,
physical properties should be described by non-Hermitian
Hamiltonians due to inevitable interactions with their sur-
roundings [21–30]. In fact, due to the existence of absorption
and dissipation, it is very difficult to achieve transmission and
transformation of entangled states with high fidelity in the
non-Hermitian systems. The question is whether or how to
achieve transmission and transformation of entangled states
with high fidelity in these dissipative systems.

In this work, we provide an inverse design scheme to
solve the above problem by combining the non-Hermitian
quantum physics with topology. In general, quantum states
are fragile and easily affected by the environment. Combining
these quantum states with topology, they can become robust
against external perturbations, which has been demonstrated
in the Hermitian systems [11,14,19,20]. However, the discus-
sion of topological entanglement states in the non-Hermitian
systems is still lacking, although many interesting topological
phenomena associated with edge states have been revealed,
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e.g., skin effect [31–49], lasing [50–54], and so on. Here, we
present a theory to realize transmission and transformation
of entangled states with high fidelity in non-Hermitian sys-
tems. Our theory is based on the inverse design scheme for
topologically protected channels in non-Hermitian systems.
The topologically protected channels are designed according
to the requirements for the overlap integrals among the initial
states, target states, and eigenstates of the system. The scheme
has been demonstrated experimentally using our constructed
non-Hermitian quantum walk platform.

II. THEORY OF INVERSE DESIGN FOR
TOPOLOGICALLY PROTECTED CHANNELS IN

NON-HERMITIAN SYSTEMS

Recently, we have provided an inverse design scheme
for topologically protected channels to realize nearly perfect
transmission and transformation of entangled states in the
Hermitian system [19]. However, such a scheme cannot be di-
rectly extended to the non-Hermitian system. This is because
the inverse design scheme strongly relies on the overlap inte-
gral of the system, which has a close relation to the spectral
decomposition. The spectral decompositions in the Hermitian
case cannot be employed in the non-Hermitian system. In the
following, we demonstrate a unique inverse design scheme
that can work in the non-Hermitian system.

The evolution process in the non-Hermitian system is
shown in Fig. 1(a), in which one component of the entangled
state alternately experiences gain and loss and the other travels
in vacuum. Such an evolution process can be described by
the evolution operator Utot = UT · · ·Ui · · ·U1, where Ui is the
evolution operator of the ith step. In the first half of each step,
the amplitude of the wave function undergoes the amplifica-
tion when directing to the left-side positions. In contrast, the
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FIG. 1. Construction of a topological channel in a non-Hermitian system. (a) Transmission or transformation of entangled states in the
topological channel, which is shown in cyan at the interface. (b) The topological phases are identified by (v0, vπ ) in Uwalk,i. The green and
black circles (rectangles) denote the rotation angles in the regions with 0 � x � Nx (−Nx � x < 0) for the transmission (transformation) of
entangled states at the first step. The distribution of eigenstates in Uwalk,1 (Uwalk|ϕwalk〉 = λwalk|ϕwalk〉) for the transmission (c) or transformation
(d). Insets in (c,d) show the eigenspectra of Uwalk,1. Red: topological boundary states; blue: bulk states.

amplitude of the wave function is reduced when directing to
the right-side positions. In the second half of each step, the
amplification and reduction are exchanged. The amplitude of
the wave function traveling to the left side is reduced and that
to the right side is amplified. With this alternating amplifica-
tion and reduction, a non-Hermitian system with parity-time
symmetry can be constructed [32,33,45,55,56]. At each step,
we can create two regions belonging to different topological
phases, and build a channel at their interface. The quantum
states can be transmitted along the channel.

The transmission and transformation of quantum
states along the channel can be regarded as a scattering
process, which can be further regarded as a discrete-
time quantum walk (QW) process. A representative
non-Hermitian QW with parity-time symmetry is
Uwalk,i = GSR[θ2,±(i)]G−1SR[θ1,±(i)] [25,47,48]. Here

G = ∑
x |x〉〈x| ⊗ (er 0

0 e−r ) is the gain-loss operator, where
the superscript r is the gain-loss strength. Under the action
of G, the wave function with the coin state |0〉 = (1, 0)T

[|1〉 = (0, 1)T ] is amplified (reduced). The state |x〉 denotes
the position in the QW. A conditional shift operator S
is S = ∑

x |x + 1〉〈x| ⊗ |0〉〈0| + |x−1〉〈x| ⊗ |1〉〈1|, and
R[θm,±(i)] = e−iθm,±(i)σy/2σz (m = 1, 2) represents the coin
operator acting on the coin state. For this QW, topological
phases are characterized by topological invariants (v0, vπ ),
which come from the summation and subtraction of the
Zak phases for Uwalk,i and the time-shifted version of Uwalk,i

[25,48]. Topological phases are shown in Fig. 1(b). When
rotation angles (θ1,−, θ2,−) for positions −Nx � x < 0
and (θ1,+, θ2,+) for 0 � x � Nx are chosen from different

topological phases, the topologically protected channel is
constructed at x = 0.

Generally, even though the localized probability in the
topological channel is obvious, the initial states are changed
considerably after passing through the topological channel
without any design [11,14]. If we can construct the non-
Hermitian QW whose eigenmodes in the channel support
the transmission of the initial state, the scattering loss can
be overcome and the transmission with high fidelity can be
realized. The design of the non-Hermitian QW with specific
eigenmodes requires us to do spectral decomposition, which
is greatly different from the Hermitian systems. The right and
left biorthogonal eigenstates |ϕi〉 and |χi〉 (U |ϕi〉 = λi|ϕi〉 and
U †|χi〉 = λ∗

i |χi〉) are chosen, and satisfied by the biorthogonal
relation 〈χi|ϕ j〉 = 0(i �= j). The completeness relation in the

non-Hermitian case is
∑

i=1n |ϕd i〉〈χi|
〈χi|ϕi〉=I . With the normalized

right (left) eigenstate |ϕi〉√〈χi|ϕi〉 ( |χi〉√〈χi|ϕi〉 ), the initial state |φm〉
after one step of evolution changes to

U |φm〉 =
n∑

i=1

λi
|ϕi〉〈χi|
〈χi |ϕi〉 |φm〉

= λ1
|ϕ1〉〈χ1|
〈χ1 |ϕ1〉 |φm〉+λ2

|ϕ2〉〈χ2|
〈χ2 |ϕ2〉 |ϕm〉

+ · · · λn
|ϕn〉〈χn|
〈χn |ϕn〉 |ϕm〉. (1)

The overlap integral of the eigenstate and the target
quantum state |φl〉 is defined as Pi

l,m = |〈φl |λi
|ϕi〉〈χi|
〈χi|ϕi〉 |φm〉| to

evaluate the transportation. The large value of the overlap
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FIG. 2. Perfect transmission and transformation in non-Hermitian QWs. (a,b) The fidelity and localization at the channel in the transmission
of |φ1〉. (c,d) The fidelity and localization at the channel in the transformation from |φ1〉 to |φ3〉. Dashed line, theoretical results; solid line,
experimental results. All error bars refer to ±1 s.d. estimated from Poissonian photon-counting statistics. Insets in (a,c) show the experimentally
obtained density matrix at the fourth step. The similarity S indicates the degree of agreement between the experiment and theory. (e) Many
steps of non-Hermitian QWs in the experiment. The evolution at the ith step is Uexp,i = LSR[θ2,±(i)]L′SR[θ1,±(i)].

integral can be obtained in two ways. The first way is from
the large overlap among the initial state, the eigenstates of
the system, and the final state. It corresponds to a successful
transportation of the initial state for the eigenstate of the
system supports the transmission very well, which is also our
goal in the design. The second way comes from the zero or
nearly zero 〈χi|ϕi〉 in the denominator. This situation often
emerges in the non-Hermitian system possessing exception
points, which leads to the self-orthogonal phenomenon with
〈χi|ϕi〉= 0. Such an abnormally large overlap integral can’t
be used in the transmission or transformation of states.

When the maximum entangled states |φ1〉 = 1√
2
(|00〉 +

|11〉), |φ2〉 1√
2

= (|00〉 − |11〉), |φ3〉 = 1√
2
(|01〉 + |10〉), and

|φ4〉 = 1√
2
(|01〉 − |10〉) are chosen as the initial states, the first

component of the entangled states is sent into the topological
channel in Uwalk,i, and the other component of the entangled
states is sent into vacuum I . The evolution operator for the
ith step is Ui = Uwalk,i ⊗ I . To design a non-Hermitian QW
supporting the transmission or transformation, the overlap
integral involving the target state and the input state is calcu-
lated by sweeping points in [−π,π ] at the interval of π/32
for rotation angles θ1,± and θ2,±. Then, the rotation angles
(θ1,+, θ2,+) and (θ1,−, θ2,−) with a large overlap integral are
picked at this step, and these rotation angles are indeed from
different topological phases. Here the value Nx is taken as
Nx = 20, which is large enough for the evolution within eight
steps. This inverse design process is repeated in each step and
the rotation angles θ1(2),± are thus obtained.

The rotation angles for the first step of transmission of |φ1〉
and transformation from |φ1〉 to |φ3〉 are shown in Fig. 1(b).
The corresponding distributions of eigenstates have been pre-
sented in Figs. 1(c) and 1(d), respectively. Topological edge

states are shown in red at the interface (x = 0), and the corre-
sponding isolated eigenvalues are also observed in the insets.
These results show that the channel at x = 0 is topologically
protected. Moreover, the rotation angles can be optimally
chosen by the inverse design process, and to achieve trans-
mission or transformation of entangled states in the channel
with both high fidelity and high efficiency. Figures 2(a) and
2(c) show the theoretical results (dashed lines) for realization
of high-fidelity transmission of |φ1〉 and transformation from
|φ1〉 to |φ3〉, respectively. The details of the rotation angles
have been provided in Appendix A. During the transmission
or transformation, the fidelity averaging with four steps is
higher than 90%. The oscillatory behaviors of fidelities in
Figs. 2(a) and 2(c) are due to the changes of eigenmodes
with the rotation angle at each step, which result in some
deviations between the actual optimized results and the ideal
cases.

In addition to the high fidelity, the scattering loss can also
be controlled to be relatively small and leads to strong local-
ization at the topological channel. Due to the gain effect in the
non-Hermitian QW, the summation of probability at each step
might be larger than 1 and is called “corrected probability”
[33]. The blue dashed lines in Figs. 2(b) and 2(d) represent
the corrected probabilities in the topological channel during
the transmission and transformation, respectively. The mean
values of corrected probability averaging with four steps in
the channel are both larger than 0.7. Here, only one gain-loss
strength (r = 0.076) is considered. The nearly perfect trans-
mission of entangled states with other gain-loss strengths has
been presented in Appendix A. The perfect transformation
from |φ1〉 to other entangled states is available in Appendix
B. Detailed analysis about the localization has been shown in
Appendix C.
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FIG. 3. The robustness in the transmission and transformation
of entangled states. (a) The fidelity of transmission of |φ1〉 against
disorder. (b) The fidelity for transformation from |φ1〉 to |φ3〉. The
purple bars represent the cases without disorder, and the black cross
dots represent those with disorder. Inset, eigenvalues λwalk,1 with
disorder. Error bars indicate the standard deviation.

III. EXPERIMENTAL DEMONSTRATION OF PERFECT
TRANSMISSION AND TRANSFORMATION OF

ENTANGLED STATES

The experimental setup for the non-Hermitian QW with
a topologically protected channel is shown in Fig. 2(e). Po-
larization bell states |HH〉 + eiα|VV 〉 are generated from a
spontaneous parametric down-conversion source. Now, we
study transportation of these entangled states in the topolog-
ically protected channel. The coin states |0〉 and |1〉 in the
non-Hermitian QW are encoded in the horizontal |H〉 and
vertical |V 〉 polarization states of the beam. The gain and
loss are experimentally realized in an equivalent way, where
a smaller (larger) loss in the beam with one (another) polar-
ization is regarded as a gain (loss). The one step evolution
operator is Uexp,i = l1l2Uwalk,i = LSR[θ2,±(i)]L′SR[θ1,±(i)] in

which the equivalent gain-loss operators are L = (l1 0
0 l2

) and

L′ = (l2 0
0 l1

)(0 � l1, l2 � 1, l1 �= l2). The gain-loss strength

is r = 1
2 ln(l1/l2). The operator L is implemented by using a

partially polarizing beam splitter (PPBS), and L′ is realized by
the HWP (half-wave plate)-PPBS-HWP combination.

The conditional shift operator S is realized by a bire-
fringent crystal beam displacer (BD). Output positions on
the lateral section of the BD correspond to positions in the
QW. The rotation operator R[θ1(2),±(i)] is implemented by the
HWP. The topological channel can be constructed by applying
different HWPs for positions −Nx � x < 0 and 0 � x � Nx.

FIG. 5. Theoretical results of the transmission of the entangled
state |φ3〉. (a) The overlap integrals. (b) The fidelity.

In the experiment, one photon travels in vacuum, and the other
passes through the topological channel. The coincidence mea-
surement is performed at the end. More experimental details
are described in Appendix D.

The experimental results of fidelity for the transmission of
|φ1〉 are shown in Fig. 2(a); they are basically the same as the
theoretical results, and the mean value of fidelity averaging
with four steps is about 91.6%. For quantitative comparison,

the similarity S is defined as S[ρth, ρex] = tr
√

ρ
1/2
th ρexρ

1/2
th ,

where ρth (ρex) represents the theoretical (experimental) den-
sity matrix. The value S = 0.945 ± 0.022 is obtained at the
fourth step. The localization at the topological channel is
provided in Fig. 2(b). Here, the “raw probability” is defined
by dividing the coincidence count by the total number of pho-
ton pairs before entering the system [33]. The experimental
raw probabilities at the topological channel are shown as the
orange solid line, and the corresponding theoretical values
obtained from Uexp,i are presented as the orange dashed line
for comparison. The raw probability (orange) is linked to the
corrected probability (blue) by multiplying a correction factor
(l1l2)2t for the corresponding step t . Large corrected probabili-
ties (blue solid line) at the channel are shown to verify the high
efficiency in the transmission. It should be pointed out that the
experimental results with four steps are sufficient to display
the phenomenon, and we does not need more steps in the
experiment. Moreover, the nearly perfect transformation from
|φ1〉 to |φ3〉 has also been realized experimentally. The aver-
age fidelity of |φ3〉 reaches 91.7% after the transformation,
and the similarity at the fourth step is S = 0.936 ± 0.018;
see Fig. 2(c). In Fig. 2(d), the localization at the topological
channel is presented. Large corrected probabilities (blue solid)
at the channel are provided to show the high efficiency in
the transformation. More experimental results are available in
Appendix D.

FIG. 4. The fidelity in the transmission of |φ1〉 with different gain-loss strengths. (a) The gain-loss strength is r = 0.076. (b) The gain-loss
strength is r = 0.1. (c) The gain-loss strength is r = 0.2.

043144-4



TRANSMISSION AND TRANSFORMATION OF ENTANGLED … PHYSICAL REVIEW RESEARCH 4, 043144 (2022)

TABLE I. θ1,± and θ2,± of Uwalk,i for r = 0.076 (1), r = 0.1 (2) and r = 0.2 (3).

1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

(θ1,+, θ2,+) ( 7π

16 , 4π

16 ) ( −7π

16 , −3π

16 ) ( 9π

16 , −11π

16 ) ( 7π

16 , −5π

16 ) ( −7π

16 , −5π

16 ) ( −9π

16 , −12π

16 ) ( 9π

16 , −6π

16 ) ( 7π

16 , −10π

16 )
(θ1,−, θ2,−) ( −1π

16 , 7π

16 ) ( 14π

16 , −5π

16 ) ( −15π

16 , −6π

16 ) ( −9π

16 , −10π

16 ) ( −13π

16 , −9π

16 ) ( −1π

16 , −10π

16 ) ( 2π

16 , −9π

16 ) ( −12π

16 , −7π

16 )
2 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
(θ1,+, θ2,+) ( 7π

16 , 4π

16 ) ( −7π

16 , −3π

16 ) ( 9π

16 , −11π

16 ) ( 7π

16 , −5π

16 ) ( −7π

16 , −5π

16 ) ( −9π

16 , −12π

16 ) ( 9π

16 , −6π

16 ) ( 7π

16 , −10π

16 )
(θ1,−, θ2,−) ( −1π

16 , 7π

16 ) ( 14π

16 , −5π

16 ) ( −15π

16 , −6π

16 ) ( −9π

16 , −10π

16 ) ( −13π

16 , −9π

16 ) ( −1π

16 , −10π

16 ) ( 2π

16 , −19π

32 ) ( −12π

16 , −6π

16 )
3 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
(θ1,+, θ2,+) ( 7π

16 , 5π

16 ) ( −7π

16 , −1π

16 ) ( 9π

16 , −11π

16 ) ( 15π

32 , −11π

32 ) ( −7π

16 , −12π

16 ) ( −8π

16 , −10π

16 ) ( 9π

16 , 31π

32 ) ( 7π

16 , −1π

32 )
(θ1,−, θ2,−) ( −15π

16 , 7π

16 ) ( 15π

16 , −4π

16 ) ( −8π

16 , −10π

16 ) ( −7π

16 , −5π

16 ) ( −3π

16 , −5π

16 ) ( 1π

32 , −10π

16 ) ( 4π

16 , −10π

16 ) ( 1π

16 , −13π

32 )

IV. ROBUSTNESS

To test the robustness in the transmission of entangled
states, the static disorder in the system is introduced by adding
a random angle δθ to θ1 and θ2 (θ1,± + δθ, θ2,± + δθ ), where
the degree of disorder δθ is chosen randomly from the interval
(−0.063π, 0.063π ) in a uniform distribution. Ten groups of
different rotation angles are randomly selected in experiment.
The solid line in Fig. 3(a) displays the experimental results
for the fidelity of |φ1〉. Comparing it with that without dis-
order (column bars), we find little difference among them.
The bound states (red dots) still exist when the disorder is
introduced [see the inset of Fig. 3(a)]. In a similar way, we also
demonstrate the robustness of transformation from |φ1〉 to |φ3〉
[Fig. 3(b)]. In Appendix E, similar topological phenomena
can be observed when δθ increases. The transmission and
transformation of entangled states without topological chan-
nel are also provided for comparison, where very low fidelities
show the importance of the topological channel in our design.

V. DISCUSSION AND CONCLUSIONS

The discussions above only focus on the case that one part
of the entangled states is sent into the topological channel in
the non-Hermitian QW, and the other part of the entangled
states travels in vacuum. In fact, the inverse design scheme
is also suitable for the case that all entangled photons walk
along the topological channels. In Appendix F, we have
shown that two parts of the entangled states are sent into
the inverse-designed topological channels. The nearly perfect
transmission of the entangled state can also be realized.

Here, we emphasize again that the inverse design method
used in this work is not an extension of the Hermitian case.
In fact, the core of our inverse design method is to obtain
the large overlap integrals among the initial states, target
states, and eigenstates of the system. The spectral decomposi-
tion is provided in aid of analysis, which is totally different
between the Hermitian and non-Hermitian systems. To ac-
commodate the discussion in non-Hermitian cases, the right
and left biorthogonal eigenstates are chosen. These biorthog-
onal eigenstates satisfy the biorthogonal relation and lead to
a specific completeness relation. None of the above appear in
the Hermitian cases.

In conclusion, we have presented theoretically an inverse
design scheme for the non-Hermitian topological channel.
The topological channels have been designed according to the
large overlap integrals among the initial states, target states,

and eigenstates of the system. Then, the robust transmission
and transformation of entangled states with high fidelity have
been realized in these channels. The corresponding exper-
iments using the constructed non-Hermitian quantum walk
platform have been performed to demonstrate the theoretical
schemes. Although the present work has been implemented in
free space, the idea of the combination of the inverse design
and the non-Hermitian topology can be extended to other sys-
tems, e.g., waveguides, integrated chips, and so on. Moreover,
the present work only considers one specific non-Hermitian
system possessing parity-time symmetry; however, the design
method can be employed to a generalized non-Hermitian sys-
tem. The successful inverse design depends on the overlap
integral and related spectral decomposition, which is appli-
cable to general non-Hermitian systems. Our studies pave a
way to achieve the scalable quantum information process and
quantum engineering in reality [57–74].
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APPENDIX A: STUDY OF TRANSMITTING |φ1〉 WITH
DIFFERENT GAIN-LOSS STRENGTHS AND

TRANSMISSION BEHAVIORS OF DIFFERENT
ENTANGLED STATES

In the main text, the transmission of the entangled state |φ1〉
is provided with the gain-loss strength r = 0.076. Herein, the
theoretical results of the transmission of |φ1〉 with different

FIG. 6. The fidelity in the transmission of the entangled state
1
2 |00〉 +

√
3

2 |11〉.
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FIG. 7. Theoretical results of the transformation of entangled
states in the non-Hermitian QW. (a) The overlap integral Pi

3,1 of
the transformation of entangled states from |φ1〉 to |φ3〉 within eight
steps. (b) The fidelity between the output state and |φ3〉. (c,d) The-
oretical results of the density matrix at the fourth and eighth steps.
The gain-loss strength is taken as r = 0.076.

gain-loss strengths are also addressed; see Fig. 4. Even though
the gain-loss strength r increases, the perfect transmission of
the entangled state |φ1〉 can also be achieved. The fidelity still
maintains a high value. To reach such a perfect transmission,
the inverse design method is also employed. The specific rota-
tion angles of each step are listed in Table I. When r = 0.076,
the fidelity averaging over eight steps is 94.8%. When r =
0.1, the fidelity averaging over eight steps is 91.1%. When
the gain-loss strength r increases to 0.2, the average value of
fidelity over eight steps is approximately 86.8%.

Not only |φ1〉, but other entangled states can also be trans-
mitted perfectly through the inverse design. We have also
carried out theoretical calculations on the transmission of
the entangled state |φ3〉. The inverse design method is also
employed. The optimal rotation angles of each step are listed
in Table II. Figures 5(a) and 5(b) show the theoretical results
of the transmission of the entangled state |φ3〉. It can be clearly
seen that the overlap integral Pi

3,3 has always maintained a
high value, and the average fidelity of eight steps is equal to
94.1%.

In addition to the maximum entangled state, our method
is also applicable to the nonmaximum entangled state. The
entangled state 1

2 |00〉 +
√

3
2 |11〉 is chosen. The inverse design

method is also employed. The optimal rotation angles of each
step are listed in Table III. The transmission of this state is
shown in Fig. 6. The red dots in Fig. 6 represent the fidelity
whose average value over eight steps is approximately 93.1%.
The results above show that the perfect transmission of the
nonmaximum entangled state is still achieved.

FIG. 8. Theoretical results of the transformation of entangled
states. (a,b) Transformation of entangled states from |φ1〉 to |φ2〉.
(c,d) Transformation of entangled states from |φ1〉 to |φ4〉. (a,c),
overlap integrals. (b,d), the fidelity between the output state and the
target states.

APPENDIX B: PERFECT TRANSFORMATION OF
ENTANGLED STATES FROM |φ1〉 TO |φ2〉, |φ3〉, AND |φ4〉

By using the inverse design method, we can not only
realize the perfect transmission of entangled states, but also
achieve the nearly perfect transformation of entangled states.
For the transformation of entangled states, the initial state
and the target state are not the same; |φl〉 �= |φm〉. We se-
lect the initial state |φm〉 = |φ1〉 = 1√

2
(|00〉 + |11〉) and the

target state |φl〉 = |φ3〉 = 1√
2
(|01〉 + |10〉). To realize the per-

fect transformation, we optimize the overlap integral Pi
l,m

through scanning rotation angles θ1,± and θ2,± within the
range [−π,π ] at the interval π/32. Then the output state at
this step is treated as the initial state of the next step to repeat
the optimization again. The corresponding rotation angles for
the transformation from |φ1〉 to |φ3〉 are provided in Table IV.

As shown in Fig. 7(a), the overlap integral Pi
3,1 among the

initial state, the topological state, and the target state is not
large at the first step, but rises to a larger value from the second
step. The value of Pi

3,1 even reaches 0.73 at the eighth step,
implying the good support from the constructed topological
channel in the transformation. Figure 7(b) depicts the fidelity
of |φ3〉. It increases to a high value (>90%) after the first step,
which indicates the nearly perfect transformation from the
initial state |φ1〉 to |φ3〉. The quantum state tomographies at
the fourth and eighth steps are shown in Figs. 7(c) and 7(d), in
which the characteristics of the nearly perfect transformation
are more clearly observed again. All of the discussions above
demonstrate a nearly perfect transformation from |φ1〉 to |φ3〉.

We have also carried out theoretical calculations on the
transformation from entangled states |φ1〉 to |φ2〉 (|φ1〉 to

TABLE II. θ1,± and θ2,± of Uwalk,i for transmission of |φ3〉.

|φ3〉 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

(θ1,+, θ2,+) ( 7π

16 , 6π

16 ) ( 9π

16 , 10π

16 ) ( −7π

16 , 10π

16 ) ( 7π

16 , 6π

16 ) ( −7π

16 , 11π

16 ) ( 8π

16 , 6π

16 ) ( 13π

32 , 11π

32 ) ( −8π

16 , 9π

16 )
(θ1,−, θ2,−) ( 1π

16 , 7π

16 ) ( 1π

16 , 7π

16 ) ( 6π

16 , 4π

16 ) ( −1π

16 , 11π

16 ) ( 6.5π

16 , 31π

32 ) ( 3π

32 , 3π

16 ) ( −25π

32 , 19π

32 ) ( 3π

32 , 14π

16 )
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TABLE III. θ1,± and θ2,± of Uwalk,i for transmission of 1
2 |00〉 +

√
3

2 |11〉.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

(θ1,+, θ2,+) ( 10π

16 , 8π

16 ) ( −21π

32 , −7π

16 ) ( −9π

16 , −6π

16 ) ( −15π

32 , −11π

16 ) ( −7π

16 , −6π

16 ) ( −19π

32 , −12π

16 ) ( 8π

16 , −9π

16 ) ( −8π

16 , −7π

16 )
(θ1,−, θ2,−) ( 9π

16 , 3π

16 ) ( −4π

16 , −2π

16 ) ( 13π

16 , −13π

32 ) ( 13π

32 , −12π

16 ) ( −10π

16 , −9π

16 ) ( −1π

16 , −10π

16 ) ( −12π

16 , −15π

16 ) ( −10π

16 , −9π

16 )

|φ4〉). The inverse design method is also employed. The op-
timal rotation angles of each step are listed in Table V.

Moreover, the theoretical results of the transformation of
entangled states from |φ1〉 to |φ2〉 are shown in Figs. 8(a)
and 8(b). The overlap integral Pi

2,1 has always maintained a
high value after the transformation, and the average fidelity
of eight steps is equal to 94.9%. Similarly, we also calculated
the theoretical results of the transformation from entangled
state |φ1〉 to |φ4〉, which are depicted in Figs. 8(c) and 8(d).
After the transformation, the value of the overlap integral Pi

4,1
is well maintained. As the step increases, the fidelity remains
high. The average value of fidelity is equal to 92.8%.

APPENDIX C: STRONG LOCALIZATION AT THE
TOPOLOGICAL CHANNEL DURING THE

TRANSMISSION AND TRANSFORMATION

In our discussion above, we have shown that the fidelity of
entangled states keeps a high value during the transmission
or transformation. In addition to the high fidelity, the scat-
tering loss can also be controlled to be relatively small and
leads to strong localization at the topological channel. Due
to the gain effect in the non-Hermitian QW, the summation
of probability at each step might be larger than 1 and is called
“corrected probability.” The blue solid lines in Fig. 9 represent
the corrected probability in the topological channel during
the transmission. In the nearly perfect transmission of |φ1〉,
the localization probabilities in the topological channel are
large. When r = 0.076, the average value of the localization
probability is 0.83 [Fig. 9(a)]. When r = 0.1, the average
value of the localization probability is 1.09 [Fig. 9(b)]. When
the gain-loss strength r increases to 0.2, the mean value of
localization probability equals 1.26 [Fig. 9(c)]. It is found
that the larger the gain-loss strength, the higher the cor-
rected probability that can be obtained in the topological
channel.

Figure 9(d) shows the localization at the topological chan-
nel in the transmission of entangled state |φ3〉. The average
corrected probability in the topological channel is 0.77. In ad-
dition to the maximum entangled state, for the nonmaximum
entangled state 1

2 |00〉 +
√

3
2 |11〉, the localization probability at

the topological channel is obvious, which is expressed by the
blue dots in Fig. 9(e). The mean value of localization over
eight steps is approximately 0.48.

In Figs. 10(a)–10(c), we provide the summation of prob-
ability at each step with different gain-loss strengths. It is
clearly seen that the larger thegain-loss strength, the higher
the total corrected probability at each step, which reflects the
more obvious gain effect in the non-Hermitian system. We
also provide the proportion of corrected probability in the
topological channel at each step of QWs. At the eighth step,
for these three different gain-loss strengths, the nearly 20%
of total corrected probabilities is found in each topological
channel [Figs. 10(d)–10(f)]. Considering that the total cor-
rected probability increases with the gain-loss strength, the
more corrected probabilities can be found in the topological
channel at the larger gain-loss strength. It corresponds to the
discussion shown in Figs. 9(a)–9(c).

We also explore the transmission of |φ1〉 with more steps.
The inverse design method is employed to find the optimized
rotation angles. These rotation angles in the first eight steps
are the same as in 1 of Table I. The remaining rotation angles
obtained from the inverse design method for the ninth step to
the 14th step are listed in Table VI.

In Fig. 11, we show the transmission with 14 steps. Even
at the 14th step, the fidelity between the output state and |φ1〉
is larger than 0.8. The fidelity displays an oscillatory behavior
and it is not easy to keep a very high value with the step. This
is because at the higher steps, more eigenmodes of the system
are involved in the transmission at the topological channel,
and it is not easy to keep the high fidelity and high efficiency
at the same time. With our inverse design, the transmission of
|φ1〉 in the topological channel still has high efficiency. The
proportion of corrected probability in the topological channel
is larger than 20% even at the 14th step.

By using the inverse design method, we can not only
realize the perfect transmission of entangled states, but also
achieve the nearly perfect transformation of entangled states.
For the transformation of entangled states, the initial state
and the target state are not the same; |φl〉 �= |φm〉. When the
initial state is |φm〉 = |φ1〉 = 1√

2
(|00〉 + |11〉) and the target

state is |φl〉 = |φ3〉 = 1√
2
(|01〉 + |10〉), the average corrected

probability in the topological channel shown in Fig. 12(a) is
0.79. Moreover, the theoretical results of the transformation
of entangled states from |φ1〉 to |φ2〉 are shown in Fig. 12(b).
The average corrected probability in the topological chan-
nel is 0.92. Similarly, we also calculated the theoretical
results of the transformation from entangled state |φ1〉 to
|φ4〉; they are depicted in Fig. 12(c). The average value of

TABLE IV. θ1,± and θ2,± of Uwalk,i for the transformation from |φ1〉 to |φ3〉.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

(θ1,+, θ2,+) ( 15π

16 , 4π

16 ) ( 7π

16 , 11π

16 ) ( 7π

16 , 6π

16 ) ( 15π

32 , 11π

16 ) ( 7π

16 , 11π

16 ) ( 9π

16 , 6π

16 ) ( 9π

16 , 10π

16 ) ( 15π

32 , 13π

32 )
(θ1,−, θ2,−) ( −15π

16 , −11π

16 ) ( 7π

32 , 11π

16 ) ( 14π

16 , 25π

32 ) ( 12π

16 , 5π

16 ) ( 11π

32 , 9π

16 ) ( 12π

16 , 11π

32 ) ( 12π

16 , 7π

16 ) ( −3π

32 , 10π

16 )
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FIG. 9. The localized probability at the topological channel during the transmission. (a–c), the transmission of |φ1〉. (a) r = 0.076; (b) r =
0.1; (c) r = 0.2. (d) The transmission of |φ3〉, r = 0.076. (e) The transmission of nonmaximal entangled state 1

2 |00〉 +
√

3
2 |11〉, and r = 0.076.

FIG. 10. The corrected probabilities and the proportion in the topological channel during the transmission. (a–c), the total corrected
probability in the transmission of |φ1〉. (a) r = 0.076; (b) r = 0.1; (c) r = 0.2. (d–f), the proportion of corrected probability at the topological
channel in the transmission of |φ1〉. (d) r = 0.076; (e) r = 0.1; (f) r = 0.2.

FIG. 11. Theoretical results of more steps for the transmission of |φ1〉. (a) The distribution of corrected probability for 14 steps. (b) The
fidelity between the output states and |φ1〉. (c) The corrected probability in the topological channel. (d) The summation of corrected probability
at each step. The gain-loss strength r = 0.076.
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TABLE V. θ1,± and θ2,± of Uwalk,i for transformation from |φ1〉 to |φ2〉 (1) and transformation from |φ1〉 to |φ4〉 (2).

1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

(θ1,+, θ2,+) ( 7π

16 , −15π

16 ) ( −13π

32 , −31π

32 ) ( 7π

16 , −11π

16 ) ( 17π

32 , 10π

16 ) ( 17π

32 , 13π

32 ) ( 15π

32 , 6π

16 ) ( 7π

16 , 25π

32 ) ( 17π

32 , 13π

32 )
(θ1,−, θ2,−) ( −15π

16 , −9π

16 ) ( −11π

16 , −6π

16 ) ( −5π

16 , −10π

16 ) ( 5π

16 , 15π

32 ) ( −27π

32 , 3π

16 ) ( −13π

16 , 1π

16 ) ( 14π

16 , 5π

16 ) ( 12π

16 , 10π

16 )
2 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
(θ1,+, θ2,+) ( 1π

16 , 7π

16 ) ( 15π

32 , 10π

16 ) ( 15π

32 , 13π

32 ) ( 15π

32 , 19π

32 ) ( 15π

32 , 13π

32 ) ( −15π

32 , −6π

16 ) ( 17π

32 , 6π

16 ) ( 8π

16 , 9π

16 )
(θ1,−, θ2,−) ( −15π

16 , 17π

32 ) ( 7π

32 , 19π

32 ) ( 1π

16 , 11π

16 ) ( 3π

16 , 10π

16 ) ( 11π

16 , 19π

32 ) ( 1π

32 , −12π

16 ) ( 4π

16 , 21π

32 ) ( −17π

32 , 15π

16 )

corrected probability in the topological channel is approxi-
mately 0.84.

APPENDIX D: DETAILS OF EXPERIMENTS IN
TRANSMISSION AND TRANSFORMATION OF

ENTANGLED STATES

The pump source we used is a picosecond pulsed laser
from Spectra-Physics, with a center wavelength of 800 nm.
After passing through the second harmonic generator (SHG),
a pulse of UV light with a central wavelength of 400 nm
and an average power of 200 mW is generated. To obtain
more entangled photons through the spontaneous parameter
down-conversion process, the pulses of light pass through a
4 f system composed of two lenses with different focal lengths
and are finally focused on two noncollinear type-I β-BaB2O4

(BBO) crystals, which are vertically pasted together. The
thickness of BBO in the experiment is 0.5 mm. A vertically
(horizontally) polarized UV light only works in crystal 1(2);
the resulting down-conversion light cones are in a horizontally
(vertically) polarized state. A 45 °-polarized pump photon is
equally likely to down-convert in either crystal, and the pho-
tons are automatically created in the state |HH〉 + eiα|VV 〉.
By adjusting the phase of the pump light between the hor-
izontal and vertical polarization components, the maximum
polarization entangled state can be prepared.

In the experiment of the non-Hermitian QW, the condi-
tional shift operator is realized by the beam displacer (BD).
Due to the birefringence effect, after passing through the
BD, a light spot is divided into two light spots with a fixed
interval of 3 mm according to different polarization states.
By cutting the BD at a specific angle, the horizontally po-
larized beam can be directly transmitted without changing its
transmission direction, while the vertically polarized beam is
spatially translated to a grid point 3 mm adjacent to it. In
this way, the function of conditional shift operator S can be
realized.

For the polarization-dependent loss operators L = (l1 0
0 l2

)

and L′ = (l2 0
0 l1

), a partial polarization beam splitter (PPBS)
is used to achieve it. The PPBS is an optical device that has

different transmittance (tH , tV ) = (l2
1 , l2

2 ) for the horizontal
and vertical polarization of the incident light. In the exper-
iment, the horizontal polarization can be completely trans-
mitted (tH = l2

1 = 1), while the vertical polarization has a
transmittance tV = l2

2 , which achieves polarization-controlled
loss operators. The gain-loss strength r = 1/2 ln(l1/l2) se-
lected in our experimental program is equal to 0.076, so
the corresponding transmittance parameter of our customized
PPBS is (l2

1 , l2
2 ) = (1, 0.738). Similarly, the loss operator

L′ can be implemented by the PPBS with another type of
transmittance (tH , tV ) = (l2

2 , l2
1 ). To realize this kind of PPBS

with special transmittance to polarization, we insert half-wave
plates with rotation angles of π/4 before and after the light
is incident on the PPBS. In this way, the loss operator L′
can be realized experimentally by the optical device of the
sandwich-type HWP-PPBS-HWP combination.

In the experimental construction of the optical platform of
the QW, the most important thing is to adjust the cascade inter-
ferometer network composed of multiple BDs. To maximize
the interference contrast, we need to insert polarization-
independent phase shifters in different spatial mode paths.
In the experiment, a high-transmittance cover glass can be
used to achieve phase adjustment by precisely adjusting the
effective thickness of the phase shifters, which is realized
by rotating the cover glasses out of the plane perpendicular
to the beams. However, the instability of the interferometer
under the influence of the external environment during the
experiment causes a decrease in the interference visibility.
Due to a manufacturing technology problem, each PPBS has
a slightly different transmittance for vertically polarized light,
which fluctuates approximately 0.738. In addition, after mul-
tiple parallel incident lights enter the PPBS, the emergent
lights are not at the same height. The imperfect processing
of the above-mentioned optical devices causes the final exper-
imental results to be slightly inconsistent with the theoretical
results.

In non-Hermitian systems, we have also achieved transmis-
sion and transformation with high fidelity of other maximally
entangled states; the experimental results of transmission
of entangled states |φ3〉 are shown in Figs. 13(a)–13(c).
The mean fidelity of the four steps is equal to 91.6%. The

TABLE VI. θ1,± and θ2,± of Uwalk,i for transmission of |φ1〉 (r = 0.076) (1).

1 i = 9 i = 10 i = 11 i = 12 i = 13 i = 14

(θ1,+, θ2,+) ( −15π

32 , 6π

16 ) ( 15π

32 , 11π

16 ) ( 17π

32 , 6π

16 ) ( 15π

32 , 10π

16 ) ( 17π

32 , 6π

16 ) ( 17π

32 , 10π

16 )
(θ1,−, θ2,−) ( 15π

16 , 15π

32 ) ( −10π

16 , −3π

32 ) ( −14π

16 , 1π

16 ) ( −14π

16 , 3π

16 ) ( −15π

16 , −1π

32 ) ( −13π

16 , −1π

32 )
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FIG. 12. The corrected probability in the topological channel during the transformation. (a–c), r = 0.076. (a) The transformation from |φ1〉
to |φ3〉. (b) The transformation from |φ1〉 to |φ2〉. (c) The transformation from |φ1〉 to |φ4〉.

average corrected probability in the topological channel
is 0.97. The quantum state tomography is shown at the
fourth step. The similarity S = 0.934 ± 0.019 indicates
that the experiments are consistent with the theoretical
results. Furthermore, we also experimentally realize the
transformation from |φ1〉 to |φ2〉, and the corresponding
results are described in Figs. 13(d)–13(f). The entangled
state is transformed into |φ2〉 after two steps, and the
average fidelity after transformation is approximately
93.9%. The corrected probability in the topological
channel averaging over four steps reaches 1.05. The
similarity S = 0.966 ± 0.008 shows the excellent agreement
between the experimental and theoretical results. In

Figs. 13(g)–13(i), the transformation from |φ1〉 to |φ4〉 is
addressed. The average fidelity reaches 91.7% after the
transformation, and the average value of the corrected
probability in the topological channel is 0.89. The similarity
S = 0.946 ± 0.013 at the fourth step indicates that the
theoretical results are well verified by experimental
results.

APPENDIX E: ROBUSTNESS IN THE TRANSMISSION
AND TRANSFORMATION OF ENTANGLED STATES

We have tested the robustness of the transmission and
transformation of entangled states against disorder in a non-

FIG. 13. Experimental results of the transmission and transformation of entangled states. (a–c) Transmission of the entangled state |φ3〉.
(d–f) Transformation of entangled states from |φ1〉 to |φ2〉. (g–i) Transformation of entangled states from |φ1〉 to |φ4〉. (a,d,g) The fidelity
between the output state and the target states. The red solid (dashed) lines represent the experimental (theoretical) results. (b,e,h) The corrected
probability in the topological channel. Orange represents the raw probabilities obtained from the experiment with only loss, and blue represents
the corrected probabilities with gain and loss. All error bars refer to ±1 s.d. estimated from Poissonian photon-counting statistics. (c,f,i) The
corresponding experimental results of the density matrix at the fourth step. The similarity S is used to indicate the degree of agreement between
experiment and theory.
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FIG. 14. The transmission and transformation of entangled states
in the topological channel. Three different degrees of disorder, δθ ′,
2δθ ′, and 3δθ ′, are introduced. The transmission results of |φ1〉 are
shown in (a,b). (a) The fidelity of |φ1〉 with a step in the presence of
disorder. (b) Corrected probabilities in the topological channel with
disorder. The transformation results from |φ1〉 to |φ3〉 are presented
in (c,d). (c) The fidelity of |φ3〉 with disorder. (d) The corrected
probabilities in the topological channel with disorder.

Hermitian system. The results in the main text show that
with the introduction of disorder, perfect transmission and
transformation of entangled states can also be achieved as
in those without disorder. For completeness, we provide the
results under the influence of varying degrees of disorder.
Three different degrees of disorder, δθ ′, 2δθ ′, and 3δθ ′, are
introduced in the non-Hermitian system, which correspond
to the intervals (−0.031π, 0.031π ), (−0.063π, 0.063π ), and
(−0.094π, 0.094π ), respectively. The relation between the
disorder here δθ ′ and that in the main text δθ is δθ = 2δθ ′.
Ten different sets of rotation angles are randomly chosen. The
results averaging over these ten sets are shown in Fig. 14.
In Figs. 14(a) and 14(b), we can find that with the in-
crease in disorder degree, the fidelity of |φ1〉 only decreases

slightly and keeps a large value, and the corrected proba-
bility in the topological channel is also high. Similarly, in
Figs. 14(c) and 14(d), the fidelities and corrected probabil-
ities in the topological channel of transformation from |φ1〉
to |φ3〉 are also obvious, which reveals the robustness of the
topologically protected channel against different degrees of
disorder.

In our study, we also provide the transmission of entan-
gled state |φ1〉 without a topological channel for comparison.
The rotation angles are chosen from the same topological
phase for the regions 0 � x � Nx and −Nx � x < 0, so the
channel without the topological protection is created at the
interface x = 0. In Fig. 15(a), we provide the rotation angles
(θ1,+, θ2,+) = ( 7π

16 , 4π
16 ) and (θ1,−, θ2,−) = ( 4π

16 , π
32 ) as black

and green circles, which are in the same topological phase.
The entangled state |φ1〉 is transmitted along this channel.
As shown in Figs. 15(b) and 15(c), the fidelity of the output
state decreases quickly, accompanied by the very low cor-
rected probability at the nontopologically protected channel.
For comparison, when the entangled state |φ1〉 is transmitted
along the topological channel, the fidelity of the output state
at the eighth step is about 0.95 [Fig. 4(a)] and the corrected
probability in the topological channel at the eighth step is
higher than 0.6 [Fig. 9(a)].

Moreover, we also discuss the transmission of entan-
gled state |φ1〉 with the presence of disorder. In Figs. 15(b)
and 15(c), the static disorder in the system is introduced
by adding random angles 2δθ ′ and 3δθ ′ to θ1 and θ2 as
(θ1,± + 2δθ ′, θ2,± + 2δθ ′) and (θ1,± + 3δθ ′, θ2,± + 3δθ ′), re-
spectively. The degree of disorder δθ ′ is chosen randomly
from the interval (−0.031π, 0.031π ) in a uniform distribu-
tion. It is found that the fidelity of the output states and
the corrected probabilities in the nontopologically protected
channel are also small. As a comparison, even in the presence
of disorder, the fidelities in the transmission of entangled
state |φ1〉 at the topological channel are very large, and the
corrected probabilities in the topological channel are also
obvious; see Fig. 14.

Based on such comparisons above, we can conclude that
we have designed topologically protected channels according
to our proposed inverse design scheme and realized nearly
perfect transmission and transformation of entangled states.
Our scheme is able to combine the advantages from topology

FIG. 15. The transmission of |φ1〉 in the non-Hermitian QW without the topological channel. (a) Rotation angles in the regions 0 � x � Nx

and −Nx � x < 0 are (θ1,+, θ2,+) = ( 7π

16 , 4π

16 ) and (θ1,−, θ2,−) = ( 4π

16 , − π

32 ), respectively. These two sets of rotation angles are labeled as black
and green circles. (b) The fidelity in the transmission of |φ1〉 with a step. (c) The corrected probability at the position x = 0. (b,c) Green,
without disorder; red, the disorder 2δθ ′ introduced; blue, the disorder 3δθ ′ introduced. The gain-loss strength r = 0.076.
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FIG. 16. Evolution of entangled states in a non-Hermitian sys-
tem. (a) Transmission of entangled states in topological channels.
One part of the entangled state passes through the topological chan-
nel, and the other also travels in the same topological channel. (b)
The fidelity between the output state and |φ1〉. (c) The corrected
probabilities in the topological channels. The blue dots represent the
case in which both parts of the entangled state enter the topological
channels. The pink dots represent the case in which one part of the
entangled state enters the topological channel, and the other one
travels in vacuum.

and special design in maintaining high fidelity and high effi-
ciency for entangled states during the evolution.

APPENDIX F: TRANSMISSION FOR BOTH PARTS
OF ENTANGLED STATES ENTERING INTO

TOPOLOGICAL CHANNELS

Another situation is considered in which both parts of the
entangled state enter the topological channel [Fig. 16(a)]. The
perfect transmission of entangled state |φ1〉 is also verified.
The rotation angles are same as those used in Fig. 4. The
fidelities and the corrected probabilities in the topological
channel are represented by blue dots in Figs. 16(b) and 16(c),
respectively. For comparison, pink dots are used to represent
the results in Figs. 4(a) and 9(a). It can be seen that when both
parts of the entangled state enter the topological channels,
the fidelity of the entangled state |φ1〉 still maintains a high
value and propagates almost unchanged. In addition, the cor-
rected probabilities in the topological channel are also large.
The discussion above indicates that even when both parts of
the entangled state enter the topological channels, the per-
fect transmission of the entangled state in the non-Hermitian
system can also be achieved by using our inverse design
method.
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